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ABSTRACT

Given the extensive participation of mining stocks in the Peruvian stock market, the Lima 
Stock Exchange (BVL) provides an ideal setting for exploring both the impact of metal returns 
on mining stock returns and stock market volatility, and the comovements between mining 
stock returns and metal returns. This research is a first attempt to explore these issues using 
international metal prices and the prices of the most important mining stocks on the BVL 
and the IGBVL index. To achieve this, we use univariate GARCH models to model individual 
volatilities, and the Exponentially Weighted Moving Average (EWMA) method and multivariate 
GARCH models with time-varying correlations to model comovements in returns. We found 
that Peruvian mining stock volatilities mimic the behavior of metal volatilities and that there are 
important correlation levels between metals and mining stock returns. In addition, we found 
time-varying correlations with distinctive behavior in different periods, with rises potentially 
related to international and local historical events.
Keywords: Comovements, Peruvian stock market.
JEL classification: C22, C58, G15.

Retornos metálicos, rendimiento de las acciones y volatilidad del mercado 
de valores

RESUMEN

Dada la amplia participación de acciones mineras en el mercado de valores peruano, la Bolsa 
de Valores de Lima (BVL) resulta un escenario ideal para explorar tanto el impacto de los ren-
dimientos de acciones de metales en los rendimientos de las acciones mineras y la volatilidad 
del Mercado de valores, así como los co-movimientos entre los rendimientos de las acciones 
mineras y los rendimientos de los metales. Este estudio es un primer intento en explorar estos 
temas usando precios internacionales de los metales y los precios de las acciones mineras más 
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importantes de la BVL y del índice IGBVL. Para conseguir esto, hemos usado modelos GARCH 
univariados para modelar las volatilidades individuales, y el método de Media Móvil Ponderada 
Exponencialmente (EWMA) y modelos GARCH multivariados con correlaciones de variantes 
en el tiempo a modelos de co-movimientos en rendimientos. Hemos encontrado que las vola-
tilidades imitan el comportamiento de las volatilidades de los metales y que hay importantes 
niveles de correlación entre los metales y el retorno de las acciones mineras. Adicionalmente, 
encontramos correlaciones variantes en el tiempo con un comportamiento distintivo en periodos 
diferentes, el que aumenta potencialmente en relación con eventos históricos internacionales o 
nacionales.  
Palabras clave: co-movimientos, mercado de valores peruano.

Clasificación JEL: C22, C58, G15.

1. INTRODUCTION

The economic boom experienced by the Peruvian economy have often been associated 
with external factors such as favorable international commodity prices, including the 
prices of gold, copper, silver and zinc, among other metals. In consequence, mining 
companies are highly important actors in the economy. This importance is reflected 
in the Peruvian stock market, where mining stock constitutes the largest sector due to 
its strong participation in terms of size and traded volume. Given this fact and despite 
a recent increase in diversification, the Peruvian stock market has been historically 
considered as a mining stock market.

This importance is also reflected in the main index of the BVL: the Índice Selectivo 
de la Bolsa de Valores de Lima (IGBVL). This is a market-value-weighted index with a 
base date of December 30, 1991 and a base value of 100, and is commonly regarded as 
the benchmark of the Peruvian stock market. As at December 2014, the IGBVL was 
comprised of 27 stocks accounting for 82% of total market operations and 84% of 
the total volume traded. At least twice a year the BVL revaluates the companies listed 
on the index based on volume and number of operations, in order to consider the 
most representative stocks of the market. Mining companies’ participation in the index 
averaged 42% of the accumulated weight and 34% of the total number of stocks over 
the last decade. Despite recent diversification the values are still high, standing at 34% 
and 30% respectively as at December 2014.

The high participation of the mining sector at both market and index level is of 
particular interest, as it means higher market exposure to shocks as one of the factors 
that affect the performance of mining stocks. This renders the BVL an ideal setting for 
studying the comovements of mining stocks and the market index with metal prices. 
In this paper, a sample of selected mining companies, metals and the IGBVL for the 
period January 2, 2004 to December 19, 2014 is studied. We chose this particular 
period because it corresponds to a boom in metal prices and a series of volatile local and 
international events.
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In this paper we focus on modeling comovements between metal price returns and 
the BVL’s mining stocks, as well as the IGBVL index. For this purpose we selected 
three of the most representative mining companies in terms of metal diversification, 
and which are also important in terms of market capitalization, frequency and number 
of BVL transactions: Volcan Cia Minera SAA (Volcan), Southern Copper Corporation 
(Southern) and Cia de Minas Buenaventura SA (Buenaventura). For instance, as at 
December of 2014, Volcan ranked #2 in terms of operations (8.83% of total market 
operations), Southern ranked #1 in terms of market capitalization (20.73% of total 
market capitalization), and Buenaventura ranked #1 in terms of frequency (100% of 
trading days). As to the most-exploited metals, Volcan produce zinc, lead and silver; 
Southern produce cooper zinc and silver; and Buenaventura produce gold, silver, lead 
and zinc. Therefore, in this paper we selected gold, copper, silver, zinc, and lead as the 
metals. According to the United States Geological Survey (USGS) Minerals Resources 
Program, Peru ranks 6th in gold, 4th in lead, 2nd in cooper, 2nd in zinc, and 1st in 
silver for worldwide mine production by country, which confirms the representativeness 
of the mining companies and metals chosen1.

Even though the study of metal volatility and comovements has become an active 
area of research in recent years - see for example Ng and Craig (1994), Brunetti and 
Gilbert (1995), Batten et al. (2008), Hammoudeh and Yuan (2008), Hammoudeh et al. 
(2009) and Mei-hsiu (2010) - the study of the relationship between metal volatility 
and stock market volatility is scarce, see for instance Morales (2008) and Mishra et al. 
(2010). Moreover, as far as we know there is no academic literature that studies the 
effects of metal returns and volatilities on the principal mining stocks in the Peruvian 
stock market, or on its main stock market index, the IGBVL. This study is an attempt 
to help fill this gap in the literature

In addition, the findings of this paper constitute valuable inputs for portfolio risk 
management. The recent trend of capital market integration has once again renewed 
interest and focused attention on the structure of correlations and the benefits of 
portfolio diversification. As first described by Markowitz’s modern portfolio theory, the 
degree to which investors can reduce risk by diversifying their portfolio depends on the 
correlation between assets. Because correlation between assets gives us an idea as to how 
two assets move in relation to each other, the lower the correlation between them, the 
greater the potential for reducing risk. Every day Peruvian portfolio managers build and 
optimize their portfolios using mining stocks due to the importance of this sector to the 
economy. Therefore, measuring the movements and comovements of these two types of 
assets is a key component of their risk and optimization strategies.

Based on weekly returns of selected mining stocks, the IGBVL index, and some 
metals, the main contributions of this paper are twofold. 

1 Source:http://www.indexmundi.com/minerals. Accessed on May, 2012.
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First, the volatility of the selected time series is modeled. This is done through 
univariate GARCH models which are a typical choice for modeling volatility in metal 
returns, see for example Watkins and McAleer (2008). In recent literature, Zevallos 
(2008) uses univariate GARCH models to model volatility in the Peruvian stock market.

The second contribution of this paper is to model the comovements between 
mining stock returns and IGBVL index with metal returns. Thus, for each of the 
selected mining companies, we choose the primary metals produced and estimate the 
conditional correlation. Specifically, we consider the following cases: Southern, copper; 
Buenaventura, with a basket of Gold and Silver; (referred to as Gold-Silver); Volcan, 
with a basket of Lead and Zinc (named Lead-Zinc); Volcan, with Silver; IGBVL, 
with Gold-Silver; and IGBVL, with Copper.2 In addition, to gain insight into the 
relationship between the selected Peruvian mining stocks, we consider the following 
cases: Buenaventura with Southern; Buenaventura with Volcan; and Southern and 
Volcan. These comovements are estimated using the Exponentially Weighted Moving 
Average estimator and multivariate GARCH models with time-varying correlations: the 
Dynamic Conditional Correlation and Integrated Dynamic Conditional Correlation 
models (Engle, 2002) and the Asymmetric Dynamic Conditional Correlation model 
(Capiello et al., 2006). These methods are convenient choices in estimating conditional 
correlation dynamics because of their simplicity and parsimony.

The remainder of this paper is organized as follows. Section 2 briefly expounds 
the methodology used in this study, the data and empirical findings are presented in 
Section 3, and final conclusions are given in Section 4.

2. METHODOLOGY

In this section we describe the methodology used to estimate the volatilities and the time-
varying conditional correlations (linkages) between the time series returns considered. 
This approach follows Filleti et al. (2008).

Consider a multivariate time series of returns rt = (r1, t, ..., rK, t)T, t = 1, ..., n and 
assume that 

 rt = μt + Ht
1/2 εt,  (1)

where {εt} is a sequence of independent and identically distributed vectors of dimension 
K × 1 with zero mean and covariance matrix and equals the identity, μt is a K × 1 vector, 
and Ht is a K × K matrix. In addition, εt is independent of the past values of μt and Ht, 

2 Hereinafter, we use capital letters to refer to metals
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and both μt and Ht are constants conditioned on Ft –1, the information available up to 
time (t - 1). Then E(rt | Ft –1) = μt and Var(rt | Ft –1) = Ht are the conditional mean and 
conditional covariance matrix of rt, respectively. The elements of Ht are denoted by: hi,t 
for the conditional variances of the i-th return and hi j,t for the conditional covariance of 
i-th and j-th returns. Therefore, the correlation between the i-th and j-th time series at 
time t conditioned on the past is 

 ρij t
ij t

i t j t

h
h h

i j K,
,

, ,

, , , , .= = …1   (2)

Next, we present two methods for estimating the conditional correlations ρi j,t.

2.1. Exponentially Weighted Moving Average

The Exponential Weighted Moving Average (EWMA) method is usually employed by 
practitioners because its simplicity and the estimated correlations obtained using this 
method are frequently used as benchmarks to be compared against parametric model 
estimations. The basic idea of the EWMA method is that the elements of Ht evolve 
randomly in a way that depends on a smoothing parameter λ. Specifically, the method 
assumes that estimates of Ht are calculated as 

 Ĥt = λĤt –1 + (1 - λ)(rt –1 - μ̂ t –1)T (rt –1 - μ̂ t –1), t = 2, ..., n. (3)

Thus, Ĥt is a weighted mean where λ controls the degree of smoothing. In the 
literature the smoothing parameter λ can be chosen in an ad hoc way as a value in the 
interval (0.94,0.97) according to the specific characteristics of the time series returns, or 
can be estimated by: assuming that the returns follow a normal multivariate distribution 
(see section 13.2 in Zivot and Wang (2005)) or by minimizing the mean squared error 
of prediction assuming benchmarks values for the elements of Ht. Since the EWMA 
method is employed in this paper by way of explanation, we prefer to use the ad hoc 
value λ = 0.94 instead of estimating it. We thereby avoid assuming a distribution for 
returns and the use of controversial benchmark values for Ht. In addition, the initial 
conditional covariance Ĥ1 can be estimated by the sample covariance using all data or 
a subset thereof. In this paper we estimate Ĥ1 as the sample covariance of the first 20 
observations.

Having estimated the elements of Ht, we estimated the conditional correlations using 
the plug-in estimate of (2), i.e. ρ̂ i j, t = ĥi j,t /(ĥ i,t ĥ j,t)1/2, i, j = 1, ..., K.
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2.2. Multivariate GARCH Models

In the literature several multivariate GARCH models have been proposed: the Constant 
Conditional Correlation model of Bollerslev (1990), the BEKK model proposed in 
Engle and Kroner (1995), the OGARCH model of Alexander (2001a,b), the Dynamic 
Conditional Correlation (DCC) and Integrated Dynamic Conditional Correlation 
(IDCC) models proposed by Engle (2002), the GO-GARCH model of van der Weide 
(2002), and the scalar Asymmetric Dynamic Conditional Correlation (A-DCC) model 
of Cappiello et al. (2006), among others.

As discussed by Caporin and McAleer (2014), two of the most studied topics in 
multivariate GARCH models are the curse of dimensionality and feasible model estimation. 
Both are related to the specification of Ht; the course of dimensionality has to do with 
the number of parameters needed to define the conditional variances and conditional 
correlations. As expected, in the face of a high dimensional problem, the quality of the 
estimation is affected. This occurs especially when we have to estimate a multivariate 
model for several small-sized time series.

In this paper, we seek to estimate multivariate models for small-sized time series. To 
do so, we used the Dynamic Conditional Correlation (DCC) and Integrated Dynamic 
Conditional Correlation (IDCC) models proposed by Engle (2002) and the scalar 
Asymmetric Dynamic Conditional Correlation (ADCC) model of Cappiello et  al. 
(2006). The main advantage of these models (referred to hereinafter as DCC-type 
models) compared to several other multivariate GARCH models lies in their parsimony 
in explaining the time varying correlation. For this reason, we choose these models for 
estimating the correlation dynamics of the mining stocks, IGBVL index and metal returns.

One of the main features of DCC-type models is that they allow for two-stage 
estimation of the conditional covariance matrix Ht. Thus, in the first stage, univariate 
volatility models are fitted for each of the assets, and estimates of hi,t are obtained for 
i = 1, ..., K; in the second stage, parameter estimates of the conditional correlation are 
obtained based on the asset returns transformed by their estimated standard deviations 
resulting from the first stage. The properties of the two-step estimators have been 
obtained by Engle and Sheppard (2001). The estimation can be also done in one step by 
maximizing the full likelihood; however, the two-step procedure enables mitigation of 
the problem of finding the minima in a highly dimensional and nonlinear optimization 
problem. We follow the usual path of estimating the model in two steps.

We model the volatility of the univariate time series returns, hi, t, by means of ARCH 
models (Engle, 1982) or GARCH models (Bollerslev, 1986). GARCH models are a 
typical choice for modeling volatility in metal returns, see for example Watkins and 
McAleer (2008). For instance, let rk,1, ..., rk,n be returns of the k-th time series and 
assume that these observations were generated by the model, 

 rk,t = μ + π (B)εk,t,  (4)
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 ε εk t k t k th, , , ,=   (5)

where for fixed k {εk,t} is a sequence of independent identically distributed random 
variables with mean zero and variance one. The filter π(B), where B is the backshift 
operator, accounts for correlation in the levels. Usually, financial returns are uncorrelated, 
then π(B) = 1, but in some cases a serial correlation is presented. In this paper, we 
find it convenient to filter some time series using the MA(1) filter π(B) = (1 + θ B) or 
the ARFIMA(0,d,1) filter π(B) = (1 - B)–d(1 + θ B). In addition, we assume that the  
volatility3 of the k-th time series, hk,t, evolves as an ARCH( p) model, 

 hk t i

p
i k t i, , ,= +

= −∑ω α ε
1

2   (6)

or as a GARCH(1,1) model, 

 hk,t = ω + α ε
 2
k, t –1 + b hk, t –1.  (7)

To reproduce heavy tails which are usually observed in financial time series returns, we 
assume that εt, k follows a Generalized Exponential Distribution (GED) with parameter 
v. This family includes the Gaussian distribution when v = 2 and smaller values of this 
parameter indicate heavy tails.

In models (6) and (7), the present volatility depends on previous shocks (related to α 
and αi) and previous volatility (related to b). For GARCH models, values of α + b near 
to 1 indicates high persistence in volatility.

Once the univariate volatility models are specified, we have to specify the dynamics 
between the K considered time series, i.e., the model for the conditional correlation 
between assets i and j at time t, denoted by ρi j, t. In DCC, IDCC and ADCC models, 
Ht is decomposed as 

 Ht = Dt Rt Dt,  (8)

where Dt is a K × K diagonal matrix with nonzero elements hi t, , i = 1, ..., K, i.e., 
D diag h ht t K t= …{ }1, ,, ,  and Rt is the correlation matrix conditional on Ft –1 with 

elements given by (2).
Defining the standardized vector 

 εt = Dt
–1(rt - μt).  (9)

In DCC models, conditional correlations are calculated by 

 ρ
δ

δ δij t
ij t

ii t jj t

i j K,
,

, ,

, , , ,= = …1   (10)

3 In the literature hk,t or hk t,  are refered as volatility.
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where δi j, t are elements of matrix Dt, which evolves by following 

 Dt = S(1 - a - b) + aεt –1 ε
T
t –1 + bDt –1  (11)

and S is the unconditional correlation matrix of εt, E[εt εt
T]. Note that once the 

standardized vectors εt’s and S are determined, we need only two parameters (a and b) 
to calculate all the conditional correlations. In (11) the necessary and sufficient condition 
for second order stationarity is a + b < 1. However, when a + b = 1 we still obtain a strict 
stationary model. This version, defined as 

 Dt = (1 - λ)εt –1 ε
 T
t –1 + λDt –1  (12)

is called a Integrated Dynamic Conditional Correlation (IDCC) model.
Models (11) and (12) do not allow for asset-specific news or asymetries. To incorpo-

rate these features, Cappiello et al. (2006) propose the ADCC model with 

∆ ∆Τ Τ
t t t t t tS a b gS a g b= − −( ) − + + +− − − − −1 1 1 1 1 1

å ε ε η η ,  (13)

where S å = E[ηtηt
T], ηt = I[εt < 0] o εt , with “o” being the Hadamard product and I[.] a K × 1 

indicator function which takes on value one if the argument is true and zero otherwise. 
A necessary and sufficient condition to ensure that the conditional covariance matrix is 
positive definite is a + b + δ g < 1, where δ is the maximum eigenvalue of S –1/2 S å S –1/2. 
In applications, S and S å are estimated using moment estimators n t t

T
t

n−
=∑1 1
ε ε � and 

n t t
T

t

n−
=∑1 1
ηη ,  respectively.

Next we describe the estimation procedure of DCC-type models. Assuming that εt 
follows a multivariate normal distribution, then rt | Ft –1 ~ N(μt, Ht). Therefore the condi-
tional log-likelihood at time t is, 

 l K H r H rt t t t t t t= − ( ) − − − −( )−

2
2 1

2
1
2

1log logπ µ µ( ) ,Τ  (14)

and substituing (8) and (9) in (14), we obtain 

 l K D R Rt t t t t t= − ( ) − − − −

2
2 1

2
1
2

1log log logπ ε εΤ .  (15)

Parameters are estimated by maximum likelihood in two steps. In the first step 
the univariate volatility models are estimated, i.e., we obtain μ̂ i,t and ĥi,t for i = 1, ..., 
K  and  t = 1, ..., n. In the second step, we estimate the standardized vector εt (9) by 
ε̂ t = D̂t

–1(rt - μ̂ t) for t = 1, ..., n. Then, the parameters (θ ) responsible for the dynamics 
of the correlations (in Rt or equivalently in Dt) are obtained by maximizing 

l Rtt t
θ θ( ) = − −∑ ∑1

2
1
2

log ( ) ε̂ tT Rt(θ )–1 ε̂t. (16)



 Mauricio Zevallos y Carlos del Carpio Metal Returns, Stock Returns and Stock Market Volatility 109

The maximization is carried out using numerical routines. In this paper we 
implemented the Nelder and Mead (1965) optimization algorithm in an R program. 
For DCC models, sufficient conditions for the consistency and asymptotic normality 
of the estimators are based on Newey and McFadden (1994) results, see Engle and 
Sheppard (2001).

On the other hand, to assess if the estimated model captures the dependence 
structure, we use two diagnostics procedures. First, we evaluated whether the univariate 
standardized residuals {ε̂ i,1, ..., ε̂ i,n} and its squares present correlation structure using 
the Weighted Ljung-Box statistics of Fisher and Gallagher (2012). Second, to assess 
whether there is any remaining cross-correlation, we use the multivariate white noise 
test of Hosking(1980) on the multivariate residuals 

 zt = R̂t
–1/2 ε̂ i.  (17)

and its squares.

3. EMPIRICAL FINDINGS

In this section, we apply the methodology described in the previous section to the 
time series returns of Peruvian mining stocks, the IGBVL index, and metals. First we 
present the data and then we discuss the findings. Calculations are performed using the 
R package; for univariate modeling we use the rugarch package of Ghalanos (2014), and 
we write a program for the multivariate fits.

3.1. Data Description

Weekly closing prices are gathered for the stocks of three Peruvian mining companies 
(Buenaventura (BVN), Southern (SCCO), and Volcan (VOLCABC1)); for the IGBVL 
index; and for gold, copper, silver, zinc, and lead. The sample covers the period from 
January 2, 2004 to December 19, 2014. The data is obtained from the Bloomberg 
Professional database, which uses the London Metal Exchange (LME) as a source for 
metal prices. We work with weekly prices instead of daily prices to mitigate the lack of 
synchronicity between the BVL and the LME, and to overcome the missing data due to 
different holiday dates for international metal markets and BVL. Specifically, we used 
the Friday closing prices.
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Figure 1. Prices
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In Figure 1 we show the time series for stock prices, the index, and metals. Here it can 
be seen that all stocks and the IGBVL index increased markedly towards the middle of 
2007 and the beginning of 2008, and then fell rapidly after the Lehman Brothers crisis 
in 2008. This pattern also applies to all metal prices, except for Silver and Gold which 
tend to act as safe-haven assets at times of crisis. For these two metals, a near-constant 
upward trend can be seen, with a slight fall around the time of the Lehman Brothers 
bankruptcy. After this period, the prices increased up to historical maximums in 2011, 
and then decreased again. Interestingly, since the beginning of 2012, Buenaventura’s 
and Volcan’s prices have been falling, by the end of 2014 reaching similar (low) values to 
those recorded during the Lehman Brothers bankruptcy period. In addition, Southern 
and IGBVL prices also exhibit very similar behavior when comparing zinc with lead, 
and gold with silver.

Weekly returns were calculated as the difference in Friday log-prices, in percentage, 
resulting in 572 observations for each time series. In Table 1 we report some descriptive 
statistics for weekly returns. Mean returns are large for IGBVL4 and all stocks except for 
Buenaventura, when compared in relative terms to metal returns. The standard deviation 
is roughly the same for all stocks and much bigger than the corresponding value for the 

4 Previous studies about the stylized facts of IGBVL returns have been conducted by Zevallos (2008) using 
daily data, and by Humala and Rodriguez (2013) using daily, weekly and monthly data.
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IGBVL index. Skewness values are negative except for Buenaventura and Volcan, and 
IGBVL and Volcan have higher kurtosis than the remaining stocks and metals. Overall, 
skewness and kurtosis values evidence asymmetric unconditional distributions with 
heavy tails.

Table 1. Descriptive statistics of returns

 Mean Std Dev Skewness Kurtosis Min Max

Buenaventura -0.075 6.312 0.00 6.47 -28.77 38.87

Southern 0.219 6.485 -0.37 6.37 -34.42 28.84

Volcan 0.302 7.433 0.50 14.45 -51.08 56.39

IGBVL 0.307 3.963 -1.07 16.02 -34.60 19.31

Gold 0.185 2.685 -0.43 4.41 -9.77 12.64

Silver 0.173 4.872 -1.18 7.60 -29.59 14.24

Copper 0.176 4.188 -0.91 7.54 -25.20 13.52

Lead 0.159 5.515 -0.19 4.77 -18.78 23.98

Zinc 0.131 4.786 -0.26 4.08 -17.99 15.95

Gold-Silver 0.179 3.593 -0.91 5.69 -17.80 13.44

Lead-Zinc 0.145 4.662 -0.31 4.01 -15.60 19.00

Figure 2. Returns
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Figure 2 shows the time series returns for mining stocks, IGBVL index, and 
metals. These graphs show that mining stocks and IGBVL have undergone periods of 
high volatility in the subprime crisis and the period following the Lehman Brothers 
bankruptcy. Nevertheless, another source of volatility for Peruvian stock market returns 
could be associated with political expectations around elections, see for example Zevallos 
(2008) and Rodriguez and Vargas (2012). In 2006, the electoral period seems to have 
affected Southern, Volcan, IGBVL and, to a lesser extent, Buenventura, while in 2011 it 
seems to have affected IGBVL and Southern, and, to a lesser extent, Volcan. In the case 
of metal prices, high volatility can be observed around the times of the subprime crisis 
and the Lehman Brothers bankruptcy. In the case of gold, silver, copper and zinc, we 
also observe periods of high volatility in mid-2006 and mid-2011.

Table 2 shows the Pearson correlations between each pair of time series returns. 
It can be observed that each mining company is highly correlated with the metals that it 
primarily produces. For instance, Buenaventura, with Gold and Silver; Southern, with 
Copper; and Volcan, with Zinc and Lead. Among the mining companies, Buenaventura 
is more closely correlated with Southern than with Volcan. In addition, IGBVL and 
Volcan returns have an impressive correlation of 0.84.

Table 2. Unconditional correlations

 Southern Volcan IGBVL Gold Silver Copper Lead Zinc Gold-Silver Lead-Zinc

Buenaventura 0.50 0.29 0.44 0.61 0.56 0.34 0.23 0.26 0.61 0.27

Southern 0.45 0.59 0.31 0.45 0.61 0.46 0.48 0.42 0.52

Volcan 0.84 0.15 0.24 0.44 0.35 0.36 0.22 0.39

IGBVL 0.26 0.36 0.53 0.38 0.41 0.34 0.43

Gold 0.79 0.34 0.25 0.31 0.91 0.31

Silver 0.45 0.34 0.42 0.97 0.42

Copper 0.64 0.71 0.43 0.74

Lead 0.64 0.33 0.92

Zinc 0.40 0.89

Gold-Silver 0.40

Given that Gold and Silver prices evolve in a similar way, and their returns are highly 
correlated, we consider it pertinent to build a two-asset basket, Gold-Silver, with equal 
weights for both metals. In the same way and for the same reasons, we create a basket 
known as Lead-Zinc. In Tables 1 and 2, we have included, respectively, the descriptive 
statistics of the basket’s time series and the correlations among the time series considered. 
In Table 2 in particular, it can be observed that Buenaventura’s correlation with Gold-
Silver is higher than the correlation with each individual metal. We find the same result 
when we compare the correlation between Volcan and Lead-Zinc vs. the correlations 
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with each individual metal. Hereinafter, we center our attention on the Gold-Silver and 
Lead-Zinc baskets rather than the individual Gold, Silver, Lead and Zinc time series.

3.2. Estimation of Volatilities and Linkages

For each time series several univariate ARCH-type models with GED errors were fitted. 
In Table 3 we present the parameter estimates of the best univariate volatility fits (among 
ARCH, GARCH, EGARCH and TGARCH specifications) in terms of significance of 
coefficients, diagnostics or information criteria. In all cases, the coefficient μ in (4) was 
estimated by the respective mean shown in Table 1. However, for some time series we need 
to filter the data to account for serial correlation in the levels. For instance, we fitted an 
ARMA(1,1) model for Volcan with estimates φ̂ = 0.933(0.041), θ̂ = -0.878(0.053) and an 
ARFIMA(0,d,1) model for IGBVL with estimates θ̂ = -0.058(0.051), d̂ = 0.188(0.045), 
where the standard errors are given in parenthesis. Thus, these parameter level estimates 
are highly significant, excepting the estimate for θ in the IGBVL fit.

Table 3. Univariate volatility parameter estimates

 Buenaventura Southern Volcan IGBVL Gold-Silver Copper Lead-Zinc

Model ARCH(5) GARCH(1,1) GARCH(1,1) GARCH(1,1) ARCH(5) GARCH(1,1) GARCH(1,1)

ω 21.2132 1.2233 3.4740 1.4950 7.2950 0.2899 0.0068
(3.1231) (0.7847) (2.0390) (0.7777) (1.2346) (0.2155) (0.0569)

α1 0.0434 0.0928 0.1913 0.2631 0.0806 0.1143 0.0498
(0.0391) (0.0284) (0.0662) (0.0996) (0.0588) (0.0328) (0.0135)

α2 0.1083 0
(0.0518) (0.0836)

α3 0.0000 0.0312
(0.0549) (0.0555)

α4 0.0305 0.1692
(0.0453) (0.0829)

α5 0.2299 0.1688
(0.0660) (0.0701)

b1 0.8748 0.7377 0.6427 0.8728 0.9492
(0.0405) (0.0931) (0.1269) (0.0376) (0.0136)

v 1.54 1.55 1.14 1.19 1.45 1.42 1.84
(0.13) (0.13) (0.09) (0.09) (0.11) (0.11) (0.16)

BL[m] 0.82[2] 0.62[2] 0.28[2] 0.48[2] 0.73[2] 0.35[2] 0.57[2]
0.78[2] 0.41[5] 0.52[5] 0.79[5] 0.73[5] 0.46[5] 0.73[5]

BL2[m] 0.52[14] 0.65[5] 0.15[5] 0.95[5] 0.47[14] 0.78[5] 0.58[5]
0.49[24] 0.28[9] 0.36[9] 0.98[9] 0.37[24] 0.39[9] 0.42[9]

ª [a] BL[m] and BL2[m] are the p-values of Fisher and Gallagher’s (2012) Weighted Ljung-Box statistic with m lags for standardized and 
squared residuals, respectively. Standard errors in parenthesis.
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In Table 3 we observe that coefficients v are highly significant, as are the estimates of 
α and b in the GARCH fits, and ω estimates are significant at 10% or less using one-
sided alternative hypothesis, except for the Lead-Zinc case. Additionally, some of the 
αi estimates in ARCH fits are not significant. In all GARCH(1,1) estimations we find 
volatility with high persistence, and the estimated values of v show that the distribution 
of the shocks has heavy tails. The p-values of Fisher and Gallagher’s (2012) Weighted 
Ljung-Box statistics reveal no remaining correlation structure in levels and volatility.

Figure 3. Volatilities in black lines and absolute returns in grey
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For each time series, the estimated volatility and the absolute returns are shown in 
Figure 3. Here we can see that the estimated volatilities are capable of reproducing the 
variability of returns. Furthermore, the volatility of Southern and its principal product, 
Copper, evolve in very similar ways. In addition, Volcan is more volatile than the other 
two mining companies and exhibits an estimated volatility which mimics the IGBVL 
volatility.
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Table 4. Descriptive statistics of volatilities

 Mean Std Dev Skewness Kurtosis Min Max

Buenaventura 5.961 1.436 3.6 24.24 4.63 19.48

Southern 6.113 1.967 2.6 11.93 3.9 16.67

Volcan 6.560 3.104 3.35 17.43 3.85 27.12

IGBVL 3.561 1.685 3.85 24.34 2.13 17.46

Copper 3.953 1.596 1.82 7.35 1.83 11.76

Gold-Silver 3.524 0.817 2.68 12.16 2.72 8.02

Lead-Zinc 4.462 1.452 0.15 2.47 1.83 8.01

Table 5. Correlations between volatilities

 Southern Volcan IGBVL Copper Gold-Siver Lead-Zinc

Buenaventura 0.58 0.46 0.49 0.41 0.40 0.31

Southern 0.58 0.61 0.84 0.38 0.69

Volcan 0.85 0.47 0.35 0.45

IGBVL 0.54 0.43 0.47

Copper 0.41 0.76

Gold-Silver 0.37

In Table 4 we present some descriptive measures for the estimated volatilities. From 
the mean values we conclude that the stocks exhibit more mean volatility than the 
metals. The standard deviation indicates that Volcan and Southern present the highest 
values, and Gold-Silver the lowest. The variability of the volatility is higher for Volcan, 
Southern and Buenaventura compared to the precious metal basket.

To measure the strength of the linkages between the volatilities, we calculate the 
Pearson correlation between volatilities as in Cappiello et  al (2006)5. These values, 
consigned in Table 5, show that there are important linkages between the volatilities of 
the considered time series. Among them, very strong linkages can be noted between the 
volatilities of Southern with Copper; Copper with Lead-Zinc; and Volcan with IGBVL.

In Figure 4, we show the conditional correlation estimates using the EWMA method 
for two mining stocks. In (a) we show the correlations between Buenaventura and Gold 
and Buenaventura and Silver. Notably, since the end of 2005 both correlation time series 
present almost the same values. The same occurs in (b) when comparing the correlations 
between Volcan and Lead with Volcan and Zinc, especially starting from 2009. These 
facts underline the pertinence of working with the Gold-Silver and Lead-Zinc baskets 
instead of the individual metals.

5 We used σt instead of σt
2.
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Figure 4. Estimated conditional correlation by EWMA. (a) Buenaventura vs Gold 
(line) and Buenaventura vs Silver (dash). (b) Volcan and Zinc (line) and Volcan vs 

Lead (dash).
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The main aim of this paper is to estimate the linkages between metals and Peruvian 
mining stocks. Therefore, for each mining company we select the primary production 
metals and then model some of these together with the IGBVL. Specifically, we esti-
mate the linkages in the following cases: Southern, and Copper; Buenaventura, and 
Gold-Silver; Volcan, and Lead-Zinc; Volcan, and Silver; IGBVL, and Gold-Silver; and 
IGBVL, and Copper. In addition, to gain insight into the relationship between the 
selected Peruvian mining stocks, we considered the cases of Buenaventura and Southern, 
Buenaventura and Volcan, and Southern and Volcan.

For each of the considered bivariate time series, the conditional correlation was esti-
mated by the EWMA method using DCC-type models (ADCC, DCC and IDCC). We 
only fitted bivariate DCC-type models instead of trivariate or high dimensional models 
because we have small-sized time series and DCC-type models impose the same evolu-
tion for the bivariate conditional correlation, and assuming that this can be restrictive 
to explain the dynamics.
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Table 6. Conditional Correlation Model fits

Time series Model λ a b H H 2

Southern, Copper IDCC 0.9831 0.23 0.00
(0.0075) 0.19 0.00

Buenaventura, Gold-Silver DCC 0.0672 0.7975 0.56 0.13
(0.0281) (0.0970) 0.64 0.69

Volcan, Lead-Zinc IDCC 0.9865 0.18 0.16
(0.0050) 0.25 0.46

Volcan, Silver IDCC 0.9896 0.49 0.56
(0.0071) 0.24 0.97

IGBVL, Gold-Silver DCC 0.0731 0.8459 0.70 0.99
(0.0348) (0.1156) 0.08 0.17

IGBVL, Copper DCC 0.0150 0.8622 0.58 0.10
(0.0177) (0.0986) 0.23 0.51

Buenaventura, Southern IDCC 0.9803 0.22 0.39
(0.0062) 0.49 0.12

Buenaventura, Volcan IDCC 0.9892 0.94 0.47
(0.0067) 0.85 0.47

Southern, Volcan DCC 0.0031 0.8934 0.04 0.04
(0.0236) (0.4812) 0.07 0.26

a Estimates of DCC and IDCC models with standard errors in parenthesis. In columns H and H2 the p-values of 
Hosking’s (1980) multivariate white noise test are presented, where the first and second entries correspond to 5 and 15 
lags, respectively. H refers to the residuals (17) and H2 refers to the squared residuals.

In Table 6 we present the parameter estimates of the best DCC-type fits in terms 
of significance of coefficients, and diagnostics or information criteria. For the IDCC 
models all λ estimates are highly significant. For the DCC models the estimates of a and 
b are significant at 5% (using a one-sided alternative hypothesis) except for the estimate 
of a for the Southern-Volcan case, which is not significant at any reasonable level. Since 
the a + b and λ estimated values are very close to one, time-varying correlations exibit 
high persistence. Furthermore, in all fits the p-values of the multivariate Hosking (1980) 
test for the residuals (16) and its squares indicate no remaining correlation, except for 
the squares in the Southern-Copper case and for the levels in the Southern-Volcan case. 
Given the poor results obtained in the Southern-Volcan DCC fit, we do not consider it 
in the subsequent discussion.
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Figure 5. Time-varying correlations; EWMA conditional correlations in grey and 
(I) DCC correlations in black. The vertical dashed lines correspond to April 2006, 

August 2008 and April 2011.
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In Figure 5 we show the estimated conditional correlations using the DCC-type 
models (in black) and the EWMA method (in grey). As expected, we observe a time-
varying behavior for conditional correlations. In general, the DCC-type conditional 
correlations are smoothed estimates of the EWMA, which looks more volatile.

From Figure 5 the following can be observed. First, in the case of stocks and the index 
vs. metals, we observe that the estimated correlations between Southern vs. Copper 
and Buenaventura vs. Gold-Silver show relatively high values. Similar in size to a lesser 
extent are those of IGBVL vs. Copper and IGBVL vs. Gold-Silver. Furthermore, Volcan 
vs. Silver and Volcan vs. Lead-Zinc show smaller relative values for many periods.

In the case of Southern vs. Copper, a considerable increase in correlations is observed 
after the bankruptcy of Lehman Brothers, which is then followed by a decrease in 2012. 
A possible hypothesis to explain the increase is the financial crisis of 2008, which would 
also explain the subsequent decrease once the economy started to improve. In the case 
of Buenaventura vs. Gold-Silver we can distinguish two periods of different correlations 
levels. The first one up to the 2011 with high values and low volatility, and a second 
period starting in 2012 with lower values but higher volatility. This, as stated earlier, 
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could be hypothesized due to the trend of using gold and silver as safe havens during 
financial crises.

In the case of Volcan vs. Lead-Zinc, we can distinguish two different trends: one 
of increasing correlations up to 2010, and then another of decrease back to the levels 
seen at the start of the observed period. In the case of Volcan vs. Silver, correlations 
fluctuate around a somewhat constant value. In both cases, observed correlation values 
are consistently low for the entire observed period.

In the case of IGBVL and Gold-Silver, considerable variability in the estimated 
correlations is observed, with steep rises during the second half of 2008 and 2011. The 
same is true of the correlation values estimated using EWMA for IGBVL vs. Copper.

When analyzing the time-varying correlations between pairs of mining companies, 
we note that given the behavior of EWMA estimated values the correlations between 
stocks have had periods of ups and downs but at different levels, and according to the 
DCC-type estimates, overall, the correlation between Buenaventura and Southern are 
bigger than that between Buenaventura and Volcan.
Based on our findings, we are of the opinion that further research could help to 
understand the effect of some (historical) events on the correlations. In the period 
considered in this paper we can identify at least three major events that appear to 
affect the correlations: the Global Crisis, which started around the time of the Lehman-
Brothers bankruptcy in August 2008, and the 2006 and 2011 presidential elections 
in Peru. Based on the scope of the influence of these events, we consider the impact 
of the Global Crisis in all the considered cases, and the impact of the presidential 
election in the case of bivariate mining stocks only. Specifically, we are interested in 
the increase in correlation associated with these events. The increase in correlation 
can occur immediately after the event or after a short delay. In Figure 5 we show 
vertical lines corresponding to August 2008 (the start of the Global Crisis), and April 
of both 2006 and 2011 (first round of the respective presidential elections). As can 
be observed in Figure 5, the election of 2011 seems to increase the correlation in the 
three mining stock cases considered, for Buenaventura vs. Southern, Buenaventura 
vs. Volcan, and Southern vs Volcan. However, in the election of 2006 an increase 
in correlation is only noted for the Buenaventura vs. Southern case. As regards the 
impact of Lehman-Brothers bankruptcy, an increase of correlations is detected for all 
the considered cases except for Volcan vs. Silver and Southern vs. Volcan.
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4. CONCLUSIONS

The main objective of this study was to examine the comovements between metal 
and mining stock returns in Peru’s BVL, as well as the comovements between metal 
and its principal stock market index. Multivariate GARCH models with time-varying 
correlations and the EWMA method were estimated to capture a broad range of possible 
relationships.

We found evidence of five important aspects. First, weekly return volatilities of 
Peruvian mining stocks are sensitive to both past shocks and volatility. This means that 
both shocks and volatilities are not completely absorbed at the time they occur, but 
instead tend to have a long-lasting effect on future mining stock returns and volatilities 
that usually take some time to dissipate.

Second, we found that the volatility of the principal mining stocks mimics the beha-
vior of metal volatilities.

Third, we confirm the pertinence of using metal baskets like Gold-Silver and Lead-
Zinc to capture the conditional correlations for Buenaventura with Gold and Silver, 
and Volcan with Lead and Zinc, respectively. In a similar fashion, we also confirm the 
pertinence of using weekly data to capture long-term trends, as weekly data mitigates 
the problem of a lack of synchronicity due to holidays, and also allows us to obtain a 
much smoother estimate of correlation than with daily returns.

Fourth, we observe important correlations in the case of stocks and indexes vs. 
metals, with some of them showing relatively high values as in the case of Southern vs. 
Copper, and Buenaventura vs. Gold-Silver. In additional, for some of these correlations 
we observe a considerable increase in values after certain events, such as, for example, 
the  Lehman Brothers bankruptcy.

Fifth, when analyzing the linkages in each pair of the mining stocks we found impor-
tant time-varying correlations that exhibit ups and downs. Moreover, the analysis of the 
correlation among mining stocks indicates that the presidential election of 2011 appears 
to increase the correlation in the three mining stock cases considered: Buenaventura vs. 
Southern, Buenaventura vs. Volcan, and Southern vs Volcan. However, in the election of 
2006, we only note the increase in correlation for the Buenaventura vs. Southern case.

Finally, in this paper we have studied the linkages between metal returns and Peru-
vian mining stocks and the index. The results of this study constitute an exploratory 
analysis, where patterns and shifts in long-term relationships have been identified. As 
far as we known, this is the first study on the estimation of comovements between metal 
returns and Peruvian mining stocks and the index. Therefore, we believe these results 
can be used for further research, with hypotheses that seek to explain the movements 
in these relationships. The likelihood of such hypotheses warrants further study on the 
economic fundamentals behind them.
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