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Abstract
We present a simple test of spatial autocorrelation based on the skedastic structure of the spatial
series. Its distribution function is known for all sample sizes. Moreover, it is very simple to obtain,
specially in a case of small samples where the new GQsp test has great power, higher than other
alternatives existing in the literature.
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1. Introduction

One of the purposes of the analysis of spatial series is the detection of cross-sectional relations
among the observation of the series, as a previous step to build, for example, an econometric
model. This is what we call spatial autocorrelation. It is also well-known that spatial obser-
vations lack of a natural order, which difficult the analysis. The solution in the field of spatial
econometrics consists in the specification of the so-called weighting or contiguity matrix, W. The
purpose of this matrix is to reflect the network of cross-sectional dependencies, which is, per se,
a non-observable phenomenon. There is great flexibility in the definition of the weights (see, for
example, Griffith, 1996; Anselin, 2002) which can be symmetric or not, binary or continuous,
etc; the only restrictions are that they must be non-negative and the main diagonal of this ma-
trix should be made of zeros (a region does not interact with itself). Usually, these weights are
specified using the criterion of geographical proximity in the sense that, for example, a pair of
regions physically contiguous, or separated by a certain distance, are supposed to be neighbours,
able to interact. We can use 1 for these pairs of regions and 0 otherwise. The result will be a
binary symmetric matrix that may also be row-standardized so that each row sums to one; and
that is non symmetric in this case (see Harris et al., 2011, for a more extended discussion on
W).

The mechanisms of spatial dependence can be of different types (Cliff and Ord, 1981) but the
most popular are the autoregressive, SAR, and moving average, SMA, equations:

y = δWy + u Ð→ y = B−1
saru, (1)

y = u + δWu Ð→ y = Bsmau, (2)

where Bsar = (I − δW) and Bsma = (I + δW), y is the (n×1) vector of observations of the series,
u is a (n × 1) vector of error terms (that for simplicity we assume u ∼ N(0, σ2I)), and δ is a
parameter of spatial autocorrelation.

The assumption of independence implies, in both cases, that δ = 0, which is the null hy-
pothesis in most of the spatial autocorrelation tests that exist in the literature (Anselin and
Florax, 1995; Kelejian and Piras, 2017). Especially outstanding among this is the Moran’s I test
(Moran, 1950), whose characteristics (simplicity, reliability) gave him a prominent role among
practitioners. However, it is very difficult to obtain its distribution function in finite samples
(Sen, 1990; Tiefelsdorf and Boots, 1995; Tiefelsdorf, 2000), which forces to the researchers to use
the (asymptotic) normal approximation (Cliff and Ord, 1981; Kelejian and Prucha, 2001).

In this paper we present a new test of spatial autocorrelation, called GQsp in reference to
the traditional Golfeld-Quandt test of heteroskedasticity (Goldfeld and Quandt, 1965), whose
distribution function is known for all sample sizes and which appear to have better properties
than the Moran’s I.
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2. Heteroskedasticity and Spatial Autocorrelation

A peculiarity of the spatial framework to which this paper addresses is that series with a
spatial structure will not only show features of cross-sectional dependencies, but also of het-
eroskedasticity which is evident in the covariance matrix of the series in (1) and (2). However,
until now, the literature has mostly focused on the first aspect. In fact, Moran’s I tests if the
covariance between the series and its spatial lag is not statistically different from zero. The
information about the skedastic variances is not used at all.

Matrix W is known because it has been supplied by the user. Let us assume that W is a
binary symmetric matrix based, for example, in first order contiguity. This type of matrices
can be decomposed in the usual way using the matrices of eigenvectors, Q, and eigenvalues, Λ

which is diagonal, so that W = QΛQ′; both matrices are (n × n). In a way similar to Griffith
(1996, 2000), we may use the Q matrix to filter so that ỹ = Q′y. The result of this simple
transformation is that the spatial cross-correlation will be totally removed but the skedastic
nature will be appreciated more clearly. For example, in the case of the SAR series of (1) we
obtain:

y = B−1
saru Ð→ Q′y = (I − δΛ)−1Q′u Ð→ ỹ = ∆−1ũ, (3)

being ũ ∼ N(0, σ2I) because of the property of orthogonality of the eigenvectors, Q′Q = I. In
sum, ỹ ∼ N(0, σ2∆−2). It is clear that the filtered series is spatially independent. Moreover, the
skedastic function that rules its variances is V (yr) = σ2

(1−δηr)2
, being ηr the r-th eigenvalue of W.

A similar result is obtained for the SMA case of (2):

y = Bsmau Ð→ Q′y = (I + δΛ)Q′u Ð→ ỹ = ∆ũ, (4)

where ỹ ∼ N(0, σ2∆2). The difference is that, now, the skedastic function is proportional to the
eigenvalues, V (yr) = (1 − δηr)2. What we propose is to use this information to develop a test
of spatial autocorrelation capable of exploiting the skedastic structure of the spatially filtered
series.

To progress in this direction we can use the well-known Golfeld-Quandt statistic (Goldfeld
and Quandt, 1965) with good properties as a heteroskedasticity test but, in this case, employed
as a test of spatial autocorrelation with the following null and alternative hypotheses:

H0 ∶ δ = 0

HA ∶ δ ≠ 0

⎫⎪⎪⎬⎪⎪⎭
(5)

For this it is only necessary to:

1. Order the values of the filtered series, ỹr, according to the values of the associated eigen-
values, ηr, with r = 1,2, . . . , n. The ordering may be ascending or descending, it does not
matter.

2. Remove the m central observations to increase the power of the test, so that we have two
sub-samples of equal size with n−m

2 observations in each one. The applied literature suggest
removing one third of the sample: m ≈ n

3 .
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3. Solve the LS estimation of the equation:

ỹr = τ̃r + ũr, (6)

in each sub-sample. τ̃r is an artificial variable obtained as τ̃ = Q′τ , being τ a (n×1) vector
of ones, whose purpose is to account for the existence of a constant term in the right-hand
side of equations (1)-(2). Let us call the respective sum of squares of each regression as
SSj , with j = 1,2. If we are sure that the original series is centered around zero, we can
avoid the LS estimation of (6) and obtain the sum of squares directly from ỹ.

4. Obtain the Golfeld-Quandt as usual:

GQsp =
SR1

SR2
∼ Fk1;k2 , (7)

where k1 and k2 are the respective degrees of freedom, under the null hypothesis of (5), of
both sum of squares. If the original variable was centered, it is immediate to obtain:

SRj = ∑
s∈j

ỹ2s = ∑
s∈j

σ2 ( ỹs
σ

)
2

∼ σ2χ2(n −m
2

). (8)

Given that, under the null hypothesis, there is no spatial correlation in the sample and
the two sub-samples formed in the second step are independent, the distribution function
of the GQsp statistic of (7) is F(

n−m
2

;n−m
2

)
. If the original series was not centered, the sum of

squares would have been obtained using the LS residual from the equation (6) and we would
have to discount one degree of freedom from the F distribution which is F

(
n−m
2

−1;n−m
2

−1).

Then, the rule of decision is:

Null Hypothesis: if F 1− ε
2 ≤ GQsp ≤ F

ε
2 ;

Alternative Hypothesis: if F 1− ε
2 > GQsp or F

ε
2 < GQsp,

being F ε the abscissa of the F distribution, with the corresponding degrees of freedom,
and with a probability mass of ε to its right.

Appendix A contains a more detailed discussion in relation to the sources of power for the
GQsp test. Next section continues with a Monte Carlo experiment.

3. A Monte Carlo Study

The GQsp statistic has been introduced in the previous section as a test of spatial autocorre-
lation for a given spatial series, but using the filtered series. In fact, the matrix of eigenvectors
applied to the original series removes the spatial autocorrelation structure strengthening the
skedastic feature in the filtered series. That is the reason to adapt the traditional Golfeld-Quandt
statistic to the problem of detecting spatial autocorrelation. We expect a good behaviour of the
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GQsp statistic in cases of small sample sizes. To assess the properties of this new test, we compare
its results against the well-known Moran’s I, one of the most popular test in this field.

The main characteristics of the experiment are the following:

a. Spatial autocorrelation processes: Two types of equations, SMA and SAR, have been used
in the study:

y = µτ + (I + δW)u, (9)

y = (I − δW)−1 (µτ + u), (10)

where τ is a (n×1) vector of ones and µ is a parameter that indicates if the series is centered
on zero or not.

b. Scale factor: We have simulated two cases for the parameter µ, that is µ = [0,1].

c. Spatial autocorrelation parameter: 50 different values of the parameter δ have been simu-
lated after dividing the interval [ 1

ϕ−Max
; 1
ϕ+Max

], being ϕ−Max and ϕ+Max the largest negative
and positive eigenvalues of W, respectively, plus the value zero to check for the size.

d. Sample size: We have tried with five different sample sizes n = 16,25,100,400,900, ranging
from very small to large sample sizes.

e. Error term: In a spatial setting, it is interesting to check for the robustness, in our case, of
these two test to the assumption of normality so we have simulated two cases of Normality,
us ∼ iidN(0, σ2), and Log-normality, us = exp(vs); vs ∼ iidN(0, σ2).

f. Variance of the error term: Three possible cases of interest have been simulated, according
to:

• Constant variance: V [us] = σ2; ∀s.

• Random variance: V [us] = φ2s;φs ∼ U(0,1).

• Spatially structured heteroskedasticity: V [us] = σ2s ;σs = ∑s≠r bsrφr; φs ∼ U(0,1),
being bsr a sequence of non-negative weights with bss = 1, s = 1,2, . . . n, and brs = λωrs,
i.e., that recreate a SMA process.

g. Number of draws: The experiment consists of 1000 draws for each case.

In sum, the Monte Carlo implies two different processes (SMA and SAR equations), 2 different
scale factors, 5 sample sizes, 2 distribution functions, 3 types of variances and 51 different values
of the spatial autocorrelation coefficient; i.e., 6120 different configurations in total. Moreover,
the W matrix corresponds to a first order contiguity matrix (consequently, symmetric) on a
hexagonal lattice.
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3.1 Results of the MC

To facilitate the discussion, we group the results in four cases: Case I which is the standard
case of a SMA or SAR process with normal and homoskedastic disturbances; Case II corresponds
to Log-normal errors whereas; Cases III and IV have heteroskedastic disturbances, with random
and spatially structured variance. Moreover, we omit the results corresponding to large sample
sizes (i.e., n = 400,900) because the power is almost uniformly 100% without size problems.
Same applies for the scale factor where we did not notice any remarkable difference depending
on the value of µ. Thus, we concentrate on small/medium sample sizes (i.e., n = 16,25,100),
with a unitary factor of scale, µ = 1.

Table 1 shows the estimated sizes for the 4 cases and 2 processes. Overall, these results
confirm the tendency of the Moran’s I to underestimate the size of the test for samples of small
size. Case I corresponds to the standard case and the estimated size; for sample sizes of n = 16

and n = 25 is well below the statistical limits for a significance level of 5%. Only for a sample
of medium size, n = 100, this estimate produces acceptable values. Log-normality has a strong
impact on these results, reducing significantly these estimates. The situation repeats for the
case of heteroskedastic disturbances, although a random structure in the variance seem to have a
stronger impact than a spatially structured variance. The type of spatial process, whether SMA
or SAR, does not make any remarkable difference. In sum, only in 5 cases, up to a total of 24,
the estimated size pertains to the 5% significance interval for a theoretical value of 5%, which
amounts to a poor 21%. The average estimated size for the 24 cases is just 2.1%.

The percentage of correct estimates rises to 67% in the case of the GQsp test whereas the
average estimated size is 4.3%, inside the significance interval. All the estimates are correct
for Cases I and IV. Once again, the log-normal errors is the worst situation for this test, with
a strong tendency to underestimate the theoretical size. Moreover, there are hardly differences
depending on the spatial process, and a random variance has worst consequences than a spatially
structured variance. In sum, it is clear that GQsp has less problems to correctly estimate the
size, even in cases of very small sample sizes (n = 16).

Table 1
Estimated size for the main cases of interest.

Model I GQsp I GQsp I GQsp

Case I
SMA 0.001 0.053 0.013 0.043 0.043 0.044
SAR 0.013 0.043 0.022 0.057 0.046 0.046

Case II
SMA 0.011 0.030 0.009 0.035 0.019 0.030
SAR 0.011 0.029 0.008 0.034 0.022 0.044

Case III
SMA 0.009 0.036 0.007 0.029 0.032 0.045
SAR 0.013 0.043 0.013 0.034 0.043 0.054

Case IV
SMA 0.013 0.049 0.026 0.050 0.052 0.055
SAR 0.017 0.053 0.022 0.052 0.048 0.052

Notes: Figures in bold means that they are outside the corresponding 5%
significance interval for a theoretical size of 5%. This interval is [0.043; 0.057].
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Figures 1 to 4 show the estimated power, in vertical, for a sequence of values of the spatial
autocorrelation coefficient in the stability interval, horizontal axis, for all the cases considered in
the experiment.

(a) SMA processes, n = 16. (b) SAR processes, n = 16.

(c) SMA processes, n = 25. (d) SAR processes, n = 25.

(e) SMA processes, n = 100. (f) SAR processes, n = 100.

Figure 1. Estimated power for SMA and SAR processes. Case I: Ideal conditions.
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(a) SMA processes, n = 16. (b) SAR processes, n = 16.

(c) SMA processes, n = 25. (d) SAR processes, n = 25.

(e) SMA processes, n = 100. (f) SAR processes, n = 100.

Figure 2. Estimated power for SMA and SAR processes. Case II: Log-Normal distribution.
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(a) SMA processes, n = 16. (b) SAR processes, n = 16.

(c) SMA processes, n = 25. (d) SAR processes, n = 25.

(e) SMA processes, n = 100. (f) SAR processes, n = 100.

Figure 3. Estimated power for SMA and SAR processes. Case III: Random heteroskedasticity.
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(a) SMA processes, n = 16. (b) SAR processes, n = 16.

(c) SMA processes, n = 25. (d) SAR processes, n = 25.

(e) SMA processes, n = 100. (f) SAR processes, n = 100.

Figure 4. Estimated power for SMA and SAR processes. Case IV: Spatial heteroskedasticity.
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The conclusions are rather clear:

1. Most of the power functions are strongly asymmetrical, specially for small sample sizes
(n = 16) and SMA processes. The GQsp test has a good behaviour for the range of
negative values in the spatial autocorrelation coefficient, sometimes better than in the
range of positive values. This is not the case with the Moran’s I, whose performance for
the case of negative spatial autocorrelation is pretty disappointing.

2. Sample size has a beneficial impact in the behaviour of the two tests, so that both become
highly credible for medium sample sizes, n = 100, no matter the type of spatial process.
Results are also interesting for a sample size of n = 25, but only for SAR processes.

3. The estimated power function of the GQsp test is usually above that of the Moran’s I. The
major differences, greater than 50 points, occur for very small sample sizes, SMA processes
and negative spatial autocorrelation. Those differences reduce as the sample size increases
and also for SAR processes and positive spatial autocorrelation. The two power functions
become practically indistinguishable for a medium sample size, n = 100, no matter the type
of spatial process or the sign of the spatial autocorrelation.

4. The introduction of anomalies in the data generation process has clear impact in the power
functions of the two tests. These consequences are very strong for the case of small sample
sizes, n = 16, but it also seriously reduces the credibility of the two tests for medium-sized
samples where the power functions are more open.

5. The case of log-normality shown in Figure 2 is, probably, the worst. The power of both
tests is negligible for SMA processes and small sample sizes, n = 16, although its impact is
smaller for SAR processes. Sample size helps to improve these deficiencies. Moreover, we
should remind the acute size problems caused by log-normality, which makes the behavior
of tests even more irregular.

6. Something similar occurs due to heteroskedasticity, with strong anomalies at the extremes
of the stability interval especially for the case of small sample cases, n = 16 and SMA
processes. The negative impact is mitigated with the sample size, although the power
functions of both tests are more open, which denotes a worsening of the estimated power.
Note also that, in the two cases of random and spatially structured variance, the GQsp had
less problems with the estimated size than Moran’s I, which improves its reliability.

7. In sum, the GQsp is more robust to departures in the data generation process, either in
terms of heteroskedaticity or log-normality.
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4. Conclusions and Main Findings

This paper presents a new test of spatial autocorrelation, especially adequate for samples of
small size (by samples of small size we mean 25 observations or even less). We call it GQsp test,
because it is a reformulation of the classical Golfeld-Quandt test of heteroskedasticity (Goldfeld
and Quandt, 1965).

The key point to build the test is that a series with spatial autocorrelation, according to
SMA or SAR processes, comes also with a very well defined heteroskedastic structure in the
variance. The process is not immediate because, first, the series must be filtered by using
the matrix of eigenvectors associated to the W matrix; then, the filtered series is free from
spatial autocorrelation but maintains the skedastic nature depending on the roots of W. In
these conditions, is relatively simple to adapt the Golfeld-Quandt test.

The GQsp test needs to obtain previously the eigenvector matrix associated to W. However,
the cost of this additional calculus alleviates because of the framework for which we propose
the new test: the case of small sample sizes. The Monte Carlo solved in the paper confirms the
adequacy of the Golfeld-Quandt to the new situation where it is clearly superior to the popular
Moran’s I, both in what respects to size and power.
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Appendix A. Sources of Power for the GQsp Test

The filtered series used in the GQsp test, assuming normality and a zero constant in the
right-hand side of the equation can be written as:

ỹs ∼ N(0, σ2s), (A.1)

where σ2s = σ2(1 + δηr)2 in the SMA case and σ2s = σ2(1 − δηr)−2 for SAR processes. The
filtered series, ỹ has been ordered according to the eigenvalues (increasing or decreasing; it does
not matter) of W. We have excluded the m central observations, obtaining two sub-samples,
each one with K = n−m

2 observations. Moreover, we have obtained the sum of squares in each
sub-sample, SRj = ∑s∈j ỹ2s ; j = 1,2, and finally build the GQsp statistic, GQsp = SR1

SR2
, whose

distribution under the null hypothesis that H0 ∶ δ = 0 is a central F(K,K).
Under the alternative hypothesis HA ∶ δ ≠ 0, the statistic GQsp continues to be a centered F

distribution but the distribution function are not (K,K), which confers power to the statistic.
Let us assume a SMA process like that in (1), then is immediate to obtain:

SRj = ∑
s∈j

ỹ2s Ð→ E[SRj] = σ2∑
s∈j

(1 + δηs)2. (A.2)

The negative eigenvalues will always appear in the first sub-sample, contributing to SR1,
whereas the positive ηs will appear in the second sub-sample (recall that the sum of the eigen-
values of W is zero, so there will be both positive and negative). For the case of δ < 0, the terms
(1 + δηs) in the first sub-sample will be predominantly greater than one, (1 + δηs) > 1, whereas
the opposite will occur in the second sub-sample where this terms will be, predominantly, smaller
than one, 0 < (1+ δηs) < 1. Note also that this sequence of terms are non-negative, (1+ δηs) ≥ 0,
and that they sum to n, ∑s=ns=1(1 + δηs) = n. So, for δ < 0 it will happen that:

E [SR1] > σ2K and E [SR2] < σ2K. (A.3)

In this case, we expect quotients for the GQsp statistic substantially greater than one, far
away from the expected value of the statistic under the null hypothesis of no correlation which
is one. Table A.1 presents the four cases depending on the type of process and the sign of the
spatial autocorrelation coefficient.

Table A.1
Possible cases for the GQsp statistic.

SMA case SAR case

δ < 0 SR1 >Kσ
2 SR2 <Kσ

2 GQsp > 1 SR1 >Kσ
2 SR2 <Kσ

2 GQsp < 1

δ > 0 SR1 <Kσ
2 SR2 >Kσ

2 GQsp < 1 SR1 <Kσ
2 SR2 >Kσ

2 GQsp < 1
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Given that E[ỹs] = 0, the F distribution for the GQsp statistic will have a non-centrality
parameter of zero. If, however E[ỹs] ≠ 0, the distribution of the statistic of (7) will present a
non-centrality parameter which can be avoided just by centering the variable, ỹs − ỹ, in which
case the degrees of freedom of the F distribution are (K − 1;K − 1) or by using the LS residuals
of a previous regression on k exogenous variables, in which case the degrees of freedom of the F
distribution are (K − k;K − k) as it is traditional in the Golfeld-Quandt literature.

In any case, the sequence of observations included in each sum of squares are independent
both under the null and under the alternative hypotheses, which allows us to obtain the power
function of the GQsp statistic by solving the probability:

Pr [q1−ε ≥ GQsp∣δ ≠ 0] ∪ Pr [GQsp ≥ qε∣δ ≠ 0] , (A.4)

being qα the abscissa of the F distribution, with the corresponding degrees of freedom, with a
probability mass of α to its right. In the case of a SMA series, the second probability can be
written as:

Pr [GQsp ≥ qε∣δ ≠ 0] = Pr [SR1/k∗1
SR2/k∗2

≥ k
∗

2

k∗1
qε∣δ ≠ 0] = Pr [F(k∗1 ,k

∗

2)
≥ q∗ε ∣δ ≠ 0] , (A.5)

where k∗i = σ2∑s∈j(1 + δηs)2; i = 1,2 are the degrees of freedom of the respective sum of squares
under the alternative hypothesis and q∗ε =

k∗2
k∗1
qε. Similarly, the first probability of (A.4) leads us

to:

Pr [q1−ε ≥ GQsp] = Pr [q∗1−ε ≥ F(k∗1 ,k
∗

2)
∣δ ≠ 0] . (A.6)

All the elements in (A.5) and (A.6) are known by the user (they depend on the weighting
matrix and the F distribution) so the probabilities can be easily computed. Note that the
behaviour of the GQsp depends crucially on the weighting matrix W selected by the user, through
its eigenvalues, ηs; s = 1,2, . . . n.

Finally, our experience with the GQsp test tends to confirm the suggestion of Harvey and
Phillips (1974) of removing one third of the central observations in order to guarantee an adequate
equilibrium between power and reliability for the Golfeld-Quandt test.
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