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ABSTRACT

The application of different unit root statistics is by now a standard practice in empirical work. 
Even when it is a practical issue, these statistics have complex nonstandard distributions depending 
on functionals of certain stochastic processes, and their derivations represent a barrier even for 
many theoretical econometricians. These derivations are based on rigorous and fundamental 
statistical tools which are not (very) well known by standard econometricians. This paper aims to 
fill this gap by explaining in a simple way one of these fundamental tools: namely, the Functional 
Central Limit Theorem. To this end, this paper analyzes the foundations and applicability of two 
versions of the Functional Central Limit Theorem within the framework of a unit root with a 
structural break. Initial attention is focused on the probabilistic structure of the time series to 
be considered. Thereafter, attention is focused on the asymptotic theory for nonstationary time 
series proposed by Phillips (1987a), which is applied by Perron (1989) to study the effects of an 
(assumed) exogenous structural break on the power of the augmented Dickey-Fuller test and 
by Zivot and Andrews (1992) to criticize the exogeneity assumption and propose a method for 
estimating an endogenous breakpoint. A systematic method for dealing with efficiency issues 
is introduced by Perron and Rodriguez (2003), which extends the Generalized Least Squares 
detrending approach due to Elliot et al. (1996). An empirical application is provided.
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El Teorema del Límite Central Funcional con algunas aplicaciones a raíces unitarias 
con cambios estructurales

RESUMEN

Hoy en día es una práctica estándar de trabajo empírico la aplicación de diferentes estadísticos 
de contraste de raíz unitaria. A pesar de ser un aspecto práctico, estos estadísticos poseen 
distribuciones complejas y no estándar que dependen de funcionales de ciertos procesos 
estocásticos y sus derivaciones representan una barrera incluso para varios econometristas 
teóricos. Estas derivaciones están basadas en herramientas estadísticas fundamentales y rigurosas 
que no son (muy) bien conocidas por econometristas estándar. El presente artículo completa 
esta brecha al explicar en una forma simple una de estas herramientas fundamentales la cual es el 
Teorema del Límite Central Funcional. Por lo tanto, este documento analiza los fundamentos y la 
aplicabilidad de dos versiones del Teorema del Límite Central Funcional dentro del marco de una 
raíz unitaria con un quiebre estructural. La atención inicial se centra en la estructura probabilística 
de las series de tiempo propuesta por Phillips (1987a), la cual es aplicada por Perron (1989) para 
estudiar los efectos de un quiebre estructural (asumido) exógeno sobre la potencia de las pruebas 
Dickey-Fuller aumentadas y por Zivot y Andrews (1992) para criticar el supuesto de exogeneidad 
y proponer un método para estimar un punto de quiebre endógeno. Un método sistemático para 
tratar con aspectos de eficiencia es introducido por Perron y Rodríguez (2003), el cual extiende 
el enfoque de Mínimos Cuadrados Generalizados para eliminar los componentes determinísticos 
de Elliot et al. (1996). Se presenta además una aplicación empírica.
Palabras clave: Prueba de Raíz Unitaria, Quiebre Estructural, Teorema del Límite Central 
Funcional, Proceso Ornstein-Uhlenbeck.
JEL Codes: C12, C22

1. INTRODUCTION

The application of different unit root statistics is by now a standard practice in empirical 
work. In spite of being a practical issue, these statistics have complex nonstandard 
distributions that depend on the functionals1 of some stochastic processes, and their 
derivations represent a challenge even for many theoretical econometricians. These 
derivations are based on rigorous and fundamental statistical tools which are not (very) 
well known by standard econometricians. This paper aims to plug this gap by explaining 
in a simple way one of these fundamentals tools: the Functional Central Limit Theorem. 
To this end, this paper analyzes the foundations and applicability of two related versions 
of the Functional Central Limit Theorem within the framework of a unit root with a 
structural break.

1 A functional can be understood as a map that takes a real-valued function as the input argument and 
returns a real number. Naturally, this idea extends to the case of random real-valued functions.
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Four decades ago, the empirical study of key macroeconomic variables was done 
through the use of the ARMA models proposed by Box and Jenkins (1970). In this type 
of models, first and second moments depend upon time separation but do not depend on 
the time variable itself. Hence, these models are covariance stationary2, whose behavior 
reverts to a time invariant unconditional mean and where the associated methodology is 
based on the steps of identification, estimation and diagnostic3.

However, the assumptions underlying ARMA models are not suitable for modeling 
macroeconomic series, which usually exhibit an upward trend over time. Hence, any 
model that aims at representing macroeconomic data must include such a trend. One of 
the most popular approach to this task is the deterministic trend model: yt = m + dt + ut, 
t = 1,…, T, where m and d are constants, ut ~ N(0,su

2) and su
2 > 0. Since a stationary 

process is obtained after subtracting dt this process is called trend stationary. Notice also 
that each realization of ut only has a contemporaneous effect on yt.

An alternative approach considers the data generating process as autoregressive, 
containing a unit root: yt = m + ayt-1 + ut, where t = 1,…,T, m is a constant, a = 1, 
y0 is an initial condition, ut ~ N(0, su

2) and su
2 > 0. In this case, y y t ut ii

t
= + +

=
∑0 1

µ  
or, equivalently, the realization of any ui has a permanent effect on the level of yt and 
the appropriate procedure to obtain a stationary series is to work on first differences 
Dyt = yt - yt-1.

From an economic viewpoint, these two approaches require the identification of the 
type of processes representing macroeconomic data and to understand the long term 
effects of shocks. Also, based on a predictive perspective, this distinction is nontrivial 
since in the deterministic trend model the forecasting error has a constant variability 
whereas in the stochastic case this element has an increasing variability4.

Turning back to empirical concerns, the unit root framework allows us to consider 
a series {yt}

T
t=0 that obeys a first order autoregressive process yt = m + ayt-1 + ut, 

t = 1,…,T, where m and a are constants, y0 is an initial condition, ut ~ N(0, su
2) and 

su
2 > 0. A first conclusion to be arrived at is that the effect of shocks on the dependent 

variable is linked to the unrestricted value of a, an assertion that can be confirmed 

after manipulating the previous expression: y y ut
t t i

i

t t i

i

t

i= + +−

=

−

=
∑ ∑α µ α α0 1 1

. For 

m = 0, the process reduces to

    yt = ayt-1 + ut  (1)

and allows for testing

    H0: a = 1 against H1:|a|<1.  (2)

2 Hereafter, any reference to a stationary process will be understood on this basis.
3 See Enders (2004) for an applied approach to this methodology.
4 See Hamilton (1994) for further details.
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The study by White (1958) was the first to perform such a procedure: in order to test 
H0 against H1 with a sample of size T and the OLS estimator â for parameter a, under 
the null hypothesis, he calculated that

    T W r dW r
W r dr

W
W r dr2

1
1
2

1 10
1

0
1 2

2

0
1 2( )

( ) ( )
( )

( )
( )

.α̂ − ∫
∫

=
−

∫
  (3)

In the previous expression ( )T 2 (â -1) denotes a centered and standardized 

estimator for a , a random variable, and Þ denotes weak convergence of probability 
measures. This result was an application of a theorem due to Donsker (1951) and the 
asymptotic distribution was formulated in terms of functionals of a standard Wiener 
process W whose details and properties are to be examined. It is worth mentioning 
that this result is not independent of the correlation between the disturbance terms 
ut (assumed to be zero in this case for sake of simplicity) and the fact that there is no 
specification error when estimating a.

Another study in this line was that of Dickey and Fuller (1979), who assumed normal 
i.i.d. disturbances and developed several one-tailed tests with the following rejection rule: 
for a given confidence level, if the (properly transformed) centered estimator â -1 yields 
a value that is low relative to a critical value, then the unit root hypothesis is rejected. 
In order to understand the previous rule, consider equation (1) which is equivalent to

    Dyt = b0yt-1 + ut,  (4)

with b0=a-1. Therefore, a=1 holds true if and only if b0 = 0. In this context, the 
Dickey-Fuller (DF) test is simply the t statistic (used when testing for unit roots) for the 
significance of yt-1 in (4). When lagged values of Dyt are included in (4), the implied t 
statistic is known as the (lag) augmented Dickey-Fuller test or ADF test.

The analysis by Dickey and Fuller (1979) is done by considering three types of 
autoregressive models: without an intercept or (deterministic) trend, with an intercept 
but without a trend, and with both an intercept and a trend. In this particular study, 
assumptions allow the asymptotic distributions to be represented through moment 
generating functions. Monte Carlo simulations allow the authors to compare the power 
of these tests with those of (autocorrelation-based) Q statistics proposed by Box and 
Pierce (1970). Their main results are: firstly, Q statistics are systematically less powerful; 
secondly, the performance of Dickey-Fuller test is uniformly superior when there is no 
misspecification error5; and thirdly, there is evidence that Dickey-Fuller tests are biased 
towards not rejecting the null hypothesis for values of the autoregressive coefficient a 
arbitrarily close to 1.

5 For example, this occurs because the knowledge of the true value for the intercept (equal to zero) is being 
exploited.
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For our purposes, a simple way to illustrate the role of specification is provided by 
generating samples from the data generating process yt = yt-1 + ut, ut ~ N(0,1). The 
distribution of T(â -1) is plotted under three cases (see Figure 1): when there is no 
specification error, when the intercept is redundant and when both intercept and trend 
are redundant. It can be appreciated that the simulated distributions progressively move 
to the left and tabulated critical values tend to be higher (in absolute value) as far as 
redundant regressors are included. This makes the test biased towards not rejecting the 
null hypothesis and, in this sense, their power is reduced.

Figure 1. Asymptotic distributions for several specifications

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
-60 -40 -20 0 20

No intercept, no trend
Intercept, no trend
Intercept and trend

Distributions for test statistcs

0.25

0.2

0.15

0.1

0.05

0
-60 -40 -20 0 20

No intercept, no trend
Intercept, no trend
Intercept and trend

Distributions for test statistcs

Source: authors’ calculations.

So far, this brief review shows that, for the first half of the 1980s, unit root 
econometrics exhibited two well-defined limitations: vulnerability to misspecification 
and to local stationary alternatives, and that each of them implies an expected loss of 
power. Additionally, the recurrent use of normal i.i.d. disturbances considerably reduces 
the applicability of these approaches by applied researchers. Two important advances 
were produced during the second half of that decade. Firstly, Phillips (1987a) proposed 
an asymptotic theory under very general conditions for integrated processes, which 
meant that the subsequent discussion was to be conducted under firmly established 
foundations, and secondly, Perron (1989) identified the presence of a structural break as 
an element that also reduced the power of the augmented Dickey-Fuller tests.

The reader must also take into account that none of these two advances could have 
been devised without discussing the notion of weak convergence of probability measures. 
To understand the need for this concept, it is necessary to consider first the classical 
Central Limit Theorem which, under conditions that vary along different versions, 
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allows for the distribution of the centered and standardized sample mean to converge 
to those corresponding to a normal standard distribution. In an analogous fashion, 
this is a desirable property when dealing with dependent heterogeneously distributed 
disturbances that do not satisfy any of the normal i.i.d. assumptions in conventional 
autoregressive models. Indeed, this idea is summarized by several versions of the 
Functional Central Limit Theorem which, in a wider sense, states that the distribution 
of standardized partial sums converges to those of a functional of a standard Wiener 
process W. As described in Brzezniak and Zastawniak (1999), for a fixed value of 
r Î [0,1], the density fW(r) of the random variable W(r) is given by

f x
r
e xw r

x
r

( ) ( ) , .= ∈
−1

2

2

π


Therefore, in order to fully understand the advances in this literature, two requisites are 
needed. Firstly, one must formally understand both the mathematical and probabilistic 
structure of the data-generating processes in order to state the main (weak) convergence 
results. Secondly, and most importantly, one needs to recognize the importance of 
incorporating particular problems faced by researchers into the analysis, because their 
formalization leads to the development of new specific procedures and testing statistics. 
This task is frequently undertaken by employing creative alternative hypotheses, which 
help to identify current limitations.

This paper reviews a selection of theoretical advances in the unit root literature, 
starting from the second half of the 1980s and finishing with several contemporary 
developments. The presentation emphasizes both the relevance of the Functional Central 
Limit Theorem to the discussion as well as the econometric considerations behind novel 
approaches. Since the time series literature can consider the case of multiple structural 
breaks, attention is focused here only on a singular structural break. An applied survey 
that considers multiple breaks can be found in Glynn and Perera (2007).

This paper is organized as follows: Section 2 describes the probabilistic structure of 
the disturbance sequences involved, a building block for this literature. Section 3 details 
a general version of the Functional Central Limit Theorem that covers a wide range 
of disturbance processes. Section 4 presents the asymptotic theory for integrated time 
series proposed by Phillips (1987a). Section 5 generalizes the former framework in order 
to consider near-integrated processes, as made by Phillips (1987b). Section 6 studies 
linear processes and the class of modified or M tests proposed by Stock (1999), which 
is intended to be employed in later developments. Section 7 presents three econometric 
applications of the above theories in the context of unit root testing when structural 
change is present. Section 7.1 details the warning made by Perron (1989) about the 
effects of structural breaks on the power of Dickey-Fuller statistics and the methodology 
proposed for dealing with an (assumed) exogenous break. Section 7.2 covers the critique 
made by Zivot and Andrews (1992) to this exogeneity assumption and the new test 
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proposed by them, which involves estimating an endogenous structural break. Since none 
of the two previous studies deals with the power loss due to local-to-unity alternatives, 
Section 7.3 illustrates the results of Perron and Rodríguez (2003), who develop efficient 
(power increasing) unit root tests under structural break and extend the results obtained 
by Elliot et al. (1996) for linear processes. Section 8 shows some empirical applications. 
Section 9 concludes with a retrospective overview of the developments in statistical 
inference with integrated series and the role played by the theory of diffusion processes.

2. ASYMPTOTIC THEORY: THE STRUCTURE OF WEAKLY DEPENDENT 
AND HETEROGENEOUSLY DISTRIBUTED DISTURBANCES

Most of the econometric theory to be reviewed by us in this paper is related with extensions 
of the following autoregressive model: yt = ayt-1 + ut, t=1,2,…. The main objective 
here is to contrast the null hypothesis H0: a=1 when a sample of T observations {yt}

T
t=1 is 

available, and the previous section introduced this task in some detail. However, a major 
limitation is imposed by the assumption that the unobservable disturbance sequence 
{ut}

∞
t=1 is composed by i.i.d. normal random variables. Thus, the empirical applicability 

of several procedures would be heavily restricted and it becomes desirable to cover a case 
intended to be as general as possible. This case is formalized by considering a sequence 
of disturbance terms {ut}

∞
t=1 that are dependent and heterogeneously distributed6. A way 

to control the extent to which this dependence occurs, that permits convergence results to 
be derived, is to define a measure of dependence among the random variables contained 
in a sequence. For this measure to be well-defined it needs to be associated with a specific 
probabilistic structure. The conditions that bind the extent of dependence are called mixing 
conditions. Results expressed below follow both White (1984) and Herrndorf (1984).

Consider a probabilistic space (W, F, P), where W is the sample space containing 
all of the possible results for an experiment, F is a set of events of W (s-field) and 
P : F ® [0,1] is a probability measure (P(W)=1) over events contained in F. Next, 
consider a sequence of random variables {ut}

∞
t=1 (that is, ut: W ® R is a Borel-measurable 

real function for all t) on (W, F, P). Let m and n denote two positive integers and 
consider a track of disturbances {ut : n £ t £ n + m}. Since we will need to assign 
probabilities to events involving the random variables contained in such a track, and 
since such events need to be included into a family with a s-field structure, it becomes 
necessary to define the s-field generated by the random variables contained in the 
track as the smallest s-field that contains events for which each ut, t=n,…, n+m is 
measurable.

6 Typically, textbook treatment of time series analysis assumes a sequence of independent and identically 
distributed (i.i.d.) disturbances. Within our exposition, the independence assumption is relaxed by dealing 
with potentially dependent disturbances. Additionally, homogeneity of distributions corresponding to 
disturbances is relaxed by considering a wider family of distributions.
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Definition 1 Let B denote the Borel s-field on R. The Borel s-field generated by the 
random variables included in the track {ut : n £ t £ n+m}, Bn

n+n = s(ut : n £ t £ n+m), 
is the smallest s-field that contains

1. all the sets of the form × × ×=
−

=
+

= + +
∞

i
n

i n
n m

i i n mB1
1

1   with Bi Î B,
2. the complement Ac of each set A in Bn

n+m, and
3. the union È∞

i=1 Ai of each sequence {Ai} contained in Bn
n+m.

Intuitively, Bn
n+1 is the smallest collection of events that allows to assign probabilities 

to events, for example, of the form {w Î W : un (w) < a1 and un+1(w) < a2} Î F, where 
a1, a2 Î R.

The notion of mixing is needed to make explicit the fact that, although two arbitrary 
sets of random variables can exhibit dependence; this vanishes as time separation increases7.

Figure 2. Dependence and mixing coefficients
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1  . . . m m + k     . . .    n

second track

In order to illustrate the former idea, consider the track composed by the first n 
elements of {ut}

∞
t=1 and denote it by {ut}

n
t=1. Within this track, two non-overlapping 

subtracks can be identified: a first one starting at u1 and a second one ending at un. Let 
k³1 denote the difference between time indexes corresponding to the last element 
of the first subtrack (denoted by m³1) and the first element of the second subtrack 
(see Figure 2). Of course, the previous characterization does not completely determine 
both subtracks, but it allows for several cases. Indeed, the following definition of mixing 
coefficients employs the previous observations in order to quantify the dependence 
between random variables separated by k periods at least, given the first n elements of 
a sequence.

Definition 2 The mixing coefficients of the sequence {ut}
∞
t=1 are

φ
σ

σn

t

tk

P A B P A P B for k n
A u m

B u m k t( )

sup | ( ) ( ) ( ) |
( : )

( :=

∩ − ≤ −
∈ ≤

∈ + ≤ ≤

1
1

nn
m n k

for k n

)
1

0
≤ ≤ −

≥













7 Note that the idea of progressive lack of dependence includes ergodicity and asymptotic independence.
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Intuitively, given the first n ³ 1 elements of {ut}
∞
t=1, an(k) measures how far 

dependence among events contained in the s-fields H = s(ut: 1 £ t £ m) and 
G = s(ut: m + k £ t £ n) is situated from the independent case. k ³ 1 denotes time 
separation between these two sets of random variables (see Figure 2). If H and G were 
independent, then for any h Î H and g Î G, the condition P(g Ç h) = P(g)P(h) must 
hold true or, equivalently, it must be true that an(k) = 0.

Since mixing coefficients only takes into account a finite number of disturbances 
(i.e. the first n random variables), this notion is extended to consider the highest 
magnitude of dependence among random variables separated by at least k periods.

Definition 3 The strong mixing coefficient of the sequence {ut}
∞
t=1 is

a(k) = sup an(k), for k Î N.
 nÎN

Therefore, a(k) provides a measure of dependence. If a(k) = 0 for some k, events 
separated by k periods are independent. Also, if a(k) ® ∞ as k ® ∞, the sequence 
{ut}

∞
t=1 is said to be strong mixing, and the notion of asymptotic independence must 

be considered too. For future reference, it is useful to emphasize for a strong mixing 
sequence the velocity at which a(k) tends to zero or, equivalently, the rate of decay of 
a(k). This will be denoted by a(k) = O(k –v) for some v > 0.

3. THE FUNCTIONAL CENTRAL LIMIT THEOREM

3.1. The Skorohod topology

The logic behind the Functional Central Limit Theorem relies on the convergence of a 
sequence of standardized partial sums of disturbances ut. The limit for this new sequence 
is W, a standard Wiener process. Correspondingly, the elements of this sequence of 
partial sums are contained on D = D[0,1] which is the space of right-continuous 
functions whose left limit exists everywhere on the unit interval, also referred to as 
càdlàg8 functions.

The concept of convergence mentioned above must be understood as the weak 
convergence of a sequence of random functions. As will be shown, in order to guarantee 
the convergence results, it is sufficient to endow D with a metric d in such a way that 
(D,d) is a complete separable space, so that the limit of any convergent sequence of 
elements contained in D is also contained in D. The concepts and results discussed here 
are strongly based upon Billingsley (1968), although our presentation follows Davidson 
(1994). The following definition characterizes the properties of the functions to be 
considered hereafter.

8 In French: “continue à droite, limitée à gauche”.
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Definition 4 D[0,1] is the space of functions x: [0,1] ® R satisfying the following 
conditions:

1. limt®1+x(t) = x(r) for r Î (0,1],
2. limt®1-x(t) exists for r Î (0,1],
3. x(1) = limt®1-x(t).

Therefore, only first class discontinuities are admitted. A first candidate for a suitable 
metric for D is the uniform metric dU, defined as

dU(x,y)=supr|x(r) - y(r)|, x, y Î D.

The above metric states that two functions are arbitrarily close if the maximum 
difference between ordinates corresponding to the same abscissa is small. In that case, the 
metric space (C, dU)9 is complete but, since C Ì D, completeness does not necessarily 
generalize to (C, dU). In fact, it is not difficult to show that the limit of sequences of 
càdlàg functions does not necessarily lie on D under dU. Thus, (C, dU) is not a complete 
space and the strategy adopted by Billingsley (1968) consists in metrizing D as a separable 
complete space by introducing the Skorohod metric.

Definition 5 (Skorohod metric) Let L be the collection of all homeomorphisms10 
l: [0,1] ® [0,1] with l(0) = 0 and l(1) = 1. The Skorohod metric is defined as

dS(x,y) = inflÎL{e > 0: supr|l(r) - r|£ e and supr|x(r) - y(l(r))|£ e}.

This metric is defined in order to overcome the following key limitation in the 
(C, dU) space: given two càdlàg functions x, y Î D, under the uniform metric x and y 
are arbitrarily near to each other only if the distance between the functions is uniformly 
small, whereas the Skorohod metric also takes into account the fact that the distance 
between the arguments of these functions is small.

The metric space (D, dS) induces a topological space. As usual, an open ball of radius 
r > 0 around x Î D is defined as B(x, r) = {y Î D: dS(x, y) < r}. Open balls like the 
previous one generate a topology on (D, dS) that is referred to as the Skorohod topology 
and denoted by TS. In this sense the topological space (D, TS) is a metrizable topological 
space.

However, D is not complete under dS yet. For this purpose, a new equivalent11 metric 
(the Billingsley metric) to dS is introduced in such a way that these two metrics induce 
the same topology in D, the Skorohod topology. The only difference now lies in the fact 
that the new metric space is complete.

9 C = C([0,1]) is the space of all continuous functions on the unit interval.
10 A homeomorphism (or bicontinuous function) is a continuous function that has a continuous inverse 
function.
11 Consider a set X and two metrics g1 and g2 defined on X. g1 and g2 are said to be topologically equivalent 
or equivalent if they generate the same metric topology on X.
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Definition 6 (Billingsley metric) Let L be the collection of all homeomorphisms l: 
[0,1] ® [0,1], with l(0) = 0 and l(1) = 1 satisfying 

λ
λ λ

=
−
−









<∞≠sup log

( ) ( )
.t s

t s
t s  

The Billingsley metric is 

dB(x,y) = inflÎL{e > 0: supr||l||£ e, supr|x(t) - y(l(t))|£ e}.

The next two results formalize the fact commented above.

Theorem 1 In D, metrics dB and dS are equivalent.

Proof. See Davidson (1994), Theorem 28.7, p. 464. ■

Theorem 2 The space (D, dB) is complete.

Proof. See Davidson (1994), Theorem 28.8, p. 464. ■

3.2. The main result (Herrndorf, 1984)

The main result to be considered in this section is a generalization of the Central Limit 
Theorem for the case of functional spaces such as D, known as the Functional Central 
Limit Theorem. In order to understand the theorem, the concepts previously defined 
are complemented with additional conditions for the disturbance sequence {ut}

∞
t=1 and, 

specifically, for the sequence of partial sums {ST}
∞
t=1 where S uT tt

T
=

=
∑

1
. First, the dis-

turbances are required to have zero mean and finite variance

    E(ut) = 0 and E(ut
2) < ¥, for t = 1,2,….  (5)

Second, the variance of partial sums must converge

    limT®¥E(T –1 ST
2) = s2 > 0, for some s > 0. (6)

Consider now the space D endowed with the Skorohod topology with Borel s-field 
B and define the random functions WT:W ® R by

W r
T

S r TT rT( ) , , , , ,= ∈[ ] =[ ]

1
0 1 1 2

σ


where ë×û denotes the integer part of its argument. Each WT is a measurable map from 
(W,F) into (D,B). The sequence {WT}

∞
t=1 is said to satisfy the invariance principle if it 

is weakly convergent to a standard Wiener process W on D. For the development of this 
result, let ||u||b be defined as

u E u
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As will be shown in the next section, the following version of the Functional Central 
Limit Theorem is the starting point for recent literature on unit roots. This result is due 
to Herrndorf (1984).

Theorem 3 (Herrndorf, 1984 Corollary 1 p. 142) Let b Î (2, ∞] and g = 2/b. 
If {ut}

∞
t=1 satisfies (5)-(6), 

α γ( )k
k

1

1

−

=

∞
<∞∑  and lim suptÎN||ut||b < ¥, 

then WT Þ W as T ® ¥.

Proof. See Herrndorf (1984), Corollary 1, p. 148. ■

4. ASYMPTOTICS FOR INTEGRATED PROCESSES (PHILLIPS, 1987A)

The two previous sections stated the probabilistic foundations for the econometric 
developments to be considered in the following lines. The first of these works is due to 
Phillips (1987a), who developed a rather general asymptotic theory for processes that 
contain a unit root.

4.1. Probabilistic structure of time series with a unit root

The first study to develop a general framework for testing unit roots was due to Phillips 
(1987a). This study established weak dependence conditions for the disturbance sequence 
in order to propose a new asymptotic theory and develop new testing statistics. Exposition 
here is focused on the first task because of its application in subsequent studies. One 
starts by considering a data generating process for a sequence {yt}

∞
t=1 that satisfies

    yt = ayt-1 + ut, t = 1,2,…,  (7) 

with

    a = 1.  (8)

Under such a representation yt = St + y0, where S ut ii

t
=

=
∑

1
 and y0 is a random 

initial state whose distribution is assumed to be known. Interest is placed here on the 
limiting distribution of standardized partial sums defined by

    W r T
S

j
T

r
j
T
j T

T
S r

T

Tr

T

( )
, , , ,

,
=

−
≤ < =

=










 

1 1
1

1
1

σ

σ

if

if



   (9)
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where s is a positive constant. Note that the sample paths WT(r) lie in D. It is worth 
emphasizing that Phillips (1987a) endows D with the uniform metric dU and this is done 
in order to show that each random function WT(r) lies on D. In addition, by adopting 
assumptions about the disturbances that are less restrictive than i.i.d., Phillips (1987a) 
showed that WT(r) weakly converges to a standard Wiener process W(r) through a direct 
application of the Functional Central Limit Theorem developed by Herrndorf (1984). 
Assumptions regarding {ut}

∞
t=1 are grouped in the following statement and are intended 

to be as general as possible.

Assumption 1 (Phillips, 1987a, p. 280) The disturbance sequence {ut}
∞
t=1 satisfies the 

following conditions:

1. E(ut) = 0 for t = 1,2,…,
2. supt E|ut|

b < ¥ for b > 2,
3. s2 = limT®¥ T –1 E(ST

2) exists and s2 > 0, with S uT tt

T
=

=
∑

1
, ,

4. {ut}
∞
t=1 is strong mixing, with strong mixing coefficients a(k) that satisfy

    α β( ) ./k
k

1 2

1

−

=

∞
<∞∑    (10)

As usual, condition 1 imposes a zero mean disturbance for every t. Condition 2 
bounds the probability of outliers: the higher b, the lower the probability of outliers. As 
long as such b > 2 exists, all of the lower absolute moments of each ut (including the 
second one) are finite. Condition 3 is conventional along central limit theory, concerning 
the convergence of the average variance of partial sums ST. Condition 4 bounds the 
temporal dependence among the disturbances contained in {ut}

∞
t=1, and the elements 

covered in previous sections allow it to be asserted that although dependence can exist 
between any pair of disturbances, it vanishes as time separation increases. Hence, 
any two random disturbances sufficiently distant along time are almost independent. 
Finally, the summability condition (10) is satisfied as long as the mixing decay rate is 
a(k) = O(k–v) for some v > 0 in such a way that -v(1 - 2/b) < 1 or, equivalently 
v > b/(b - 2).

It is interesting to notice that as T increases the constant sections conforming 
WT(r) Î D shrink, and their discontinuities become less perceptible (see Figure 3), 
reflecting how this sequence of random functions in D converges to a random function 
in C, the standard Wiener process. This property is exploited by Phillips (1987a) 
through two lemmas. The first lemma is the Functional Central Limit Theorem shown 
in Theorem 3. The second result is widely known as the Continuous Mapping Theorem 
and states conditions under which convergence to a Wiener process can be preserved 
(almost everywhere) along continuous transformations.
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Figure 3. Convergence of standardized sums
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 Source: authors’ calculations.

Lemma 4 (Phillips, 1987a, p. 281) If {ut}
∞
t=1 satisfies Assumption 1 then, as T ® ¥, 

WT Þ W a standard Wiener process on C.

Proof. See Herrndorf (1984), Corollary 1, p. 142. ■

Lemma 5 (Phillips, 1987a, p. 281) If WT Þ W(r) as T ® ¥ and h is a continuous 
functional on D almost everywhere (a.e.) then h(WT) Þ h(W) as T ® ¥.

Proof. See Billingsley (1968), Corollary 1, p. 31. ■

4.2. An asymptotic theory for econometricians

The importance of the two previous lemmas relies on the fact that they allow the 
derivation of convergence rules often employed by theoretical econometricians. These 
rules are summarized in the next theorem.

Theorem 6 (Phillips, 1987a, p. 282) If {ut}
∞
t=1 satisfies Assumption 1 and if

supt|ut|
b+e < ∞ for some e > 0.
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(where b > 2 is the same as that in Assumption 1), then as T ® ¥:

1. T y W r drtt

T
−

−=
⇒∑ ∫2

1
2 2

1

2
0

1
σ ( ) ,

2. T y y y Wt t t ut

T
−

− −=
− ⇒ −∑1 1 1

2 2 2 2

1
2 1( ) ( / )( ( ) / ),σ σ σ

3. T(â -1)⇒ − ∫1
2

1 2 2 2 2
0

1
( ( ) / ) ( ) ,W W r druσ σ

4. â ®p 1,

5. tâ ⇒ − { }∫( / )( ( ) / ) ( ) ,
/

σ σ σ σ2 1 2 2 2 2
0

1 1 2

u uW W r dr

where σ σu T t Tt

T

TT E u E T S2 1 2 2

1

1 2= =→∞
−

→∞=

−∑lim ( ), lim ( )  and W is a standard Wiener 
process on C.

Proof. See Phillips (1987a), Theorem 3.1 p. 296. ■

In the previous theorem, results 1 and 2 constitute derivation rules for limiting 
distributions. Result 3 is focused on the limiting distribution of the statistic 
T(â -1), which corrects the results of White (1958)12, among others. Result 4 states 
the consistency of the OLS estimator â  in the presence of a unit root and under the 
general case of dependent and heterogeneously distributed disturbances. Finally, result 
5 shows the asymptotic distribution of the t statistic used when testing for unit roots. 
It is worth mentioning that under (7) and (8) the t statistic does not follow a Student’s 
t distribution. Since W(1) follows a normal standard distribution, W(1)2 follows a chi-
squared distribution with one degree of freedom. However, the functional ò0

1W(r)2dr 
is a random variable with a rather complex distribution, which implies that usual 
distributions (normal, chi-squared, t and F) employed in the stationary case are not 
relevant for the subsequent analysis.

Following the previous considerations, Phillips (1987a) proposed (after developing 
consistent estimators for the parameters su

2 and s2) two new test statistics for the unit 
root hypothesis often referred to as the Z tests. Although it is important to remember that 
both (7) and (8) correspond only to the case of a unit root without drift or deterministic 
trend, the importance of this study lies on its providing us with a general theory on test 
statistics for the unit root hypothesis. Distributions considered here differ from those 
involved in the stationary case (|a|<1). Obviously, this methodology is well suited 
for extensions that include both drift and deterministic trend, derived by Phillips and 
Perron (1988), and constitute the starting point for the study of the unit root test under 
structural break that we develop in the following sections.

12 See equation (3).



122 Economía Vol. XXXVI, N° 71, 2013 / ISSN 0254-4415

5. ASYMPTOTICS FOR NEAR-INTEGRATED PROCESSES (PHILLIPS, 1987B)

For later discussion of the asymptotic power of unit root tests against alternative hypotheses 
that consider autoregressive coefficients close but not equal to one, it will be useful 
to consider generalizations of integrated processes often referred to as near-integrated 
processes and studied in detail by Phillips (1987b). The focus is on the time series {yt}

∞
t=1 

which is assumed to be generated according to the following model

    yt = ayt-1+ut, t = 1,2,….  (11)

    a = ec/T, -¥< c < ¥.  (12)

In the above model, initial condition y0 is allowed to be any random variable whose 
distribution is fixed and independent of T. The constant c is interpreted as a non-
centrality parameter that quantifies deviations from the unit root null hypothesis that 
holds true when c = 0:
    H0: a = 1.  (13)

Under (13), {yt}
∞
t=0 is an integrated process of order 1 or an I(1) process. Additionally, 

any c ¹ 0 in (12) represents a local alternative to H0. For future reference, the next 
definition formally establishes this distinction.

Definition 7 A time series {yt}
∞
t=1 that is generated by (11) and (12) with c ¹ 0 is called 

near-integrated. When c = 0 (i.e. a = 1) in (12), {yt}
∞
t=1 is also called integrated.

The main objective of the present section is to present an asymptotic theory for these 
types of processes. Naturally, results and properties are indexed by the parameter c.

5.1. Probabilistic Structure of Time Series with a Near-to-Unit Root

For a wide applicability of this asymptotic theory, some general assumptions concerning 
the disturbance sequence {ut}

∞
t=0 are necessary. For this reason, the following mixing 

conditions about the behaviour of the disturbances {ut}
∞
t=0 (hereby now familiar) are 

adopted and summarized in the next statement.

Assumption 2 (Phillips, 1987b, p. 537) The disturbance sequence {ut}
∞
t=1 satisfies

1. E(ut)= 0 for t = 1,2,…,
2. supt E|ut|

b+e < ¥ for some b > 2 and e > 0.

3. s2 = limT®¥ T –1 E(ST
2) exists and s2 > 0 with S uT tt

T
=

=
∑

1
,

4. {ut}
∞
t=1 is strong mixing, with strong mixing coefficients a(k) that satisfy

    α β( ) ./k
k

1 2

1

−

=

∞
<∞∑   (14)

Notice that Assumptions 1 and 2 are quite similar and the only difference relies 
on the existence of e > 0 in such a way that the existence of supt E|ut|

b+e holds true. 
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On the other hand, it will be useful to represent the stochastic limit theory by means of 
an extensive use of certain diffusion process, which can be interpreted as the continuous 
time version of an AR(1) process.

Definition 8 (Ornstein-Uhlenbeck process) An Ornstein-Uhlenbeck process is a 
functional Wc of the form W r e dW sc

r s cr
( ) ( )( )= −∫0  that satisfies the stochastic differential 

equation
    dWc(r) = cWc(r)dr + dW(r), Wc(0) = 0.  (15)

Equation (15) is called the Ornstein-Uhlenbeck or Langevin equation. It is a 
particular case of the following differential equation in term of a continuous-time 
stochastic process X(t)

    dX(t) = b(t, X(t))dt + s(t, X(t))dW(t),  (16)

where b(t, X(t)), s(t, X(t)) Î R and W(t) is a Wiener process with t Î [0, ¥) (Oksendal, 
2000). Equation (15) can also be written as

W r W r c e W s dsc
r s cr

( ) ( ) ( )( )= + −∫0
and the effect of the non-centrality parameter c becomes even more evident.

5.2. More asymptotic theories for econometricians

If the value of the parameter c was fixed, it would be natural to expect, based on (12), 
that a ® 1 as T ® ¥. However, within this framework the speed of convergence of  
towards 1 is controlled at O(T –1). Equivalently, such a speed is not so fast that the effect 
of c on the main results in Section 4 does not vanish13. This observation leads to the 
following derivation of rules and properties for regression-based statistics.

Lemma 7 (Phillips, 1987b, p. 539) If {yt} is a near-integrated time series generated 
by (11) and (12) then, as T ® ¥:

1. T y W rTr c
− ⇒1 2/

[ ] ( ),σ

2. T y W r drt ct

T
−

=
⇒ ∫∑3 2

0

1

1

/ ( ) ,σ

3. T y W r drt ct

T
−

=
⇒ ∫∑2 2 2 2

0

1

1
σ ( ) , ,

4. T y u W r dW rt t c ut

T
−

−=
⇒ + −∫∑1 1

2 2 2
0

1

1

1
2

σ σ σ( ) ( ) ( ),  with su is defined by 

σu T tt

T
T E u= →∞
−

=
∑lim ( ).1 2

1

Proof. See Phillips (1987b), Lemma 1, p. 539. ■

13 Since c = T ln(a).

a ® 
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Theorem 8 (Phillips, 1987b, p. 540) If {yt}
∞
t=0 is a near-integrated time series 

generated by (11) and (12) then, as T ® ¥:

1. T(â - a)⇒ + −








{ }∫ ∫W r dW r W r drc u c0

1 2 2 2

0

11
2
1( ) ( ) ( / ) ( ) ,σ σ

2. â ®p 1, s2®
p su

2, with s2 = T –1
t

T

=
∑

1
(yt - â yt-1)

2,

3. t W r dW r W r dru c u cα σ σ σ σ⇒ + −








{ }



∫ ∫( / ) ( ) ( ) ( / ) ( )

0

1 2 2 2

0

11
2
1

11 2/

.

Proof. See Phillips (1987b), Theorem 1, p. 540. ■

Up to this point, the theory presented can be employed in the analysis of the power of 
unit root tests under local alternatives. For a non-centrality parameter c arbitrarily close to 
0 it is easy to show that ec/T»1+c/T and this is the approach usually adopted in unit root 
testing. A brief illustration of this procedure can be found, for example, in Phillips (1988).

6. LINEAR PROCESSES AND MODIFIED UNIT ROOT TESTS

6.1. Motivation

Although the reader must have noticed that mixing conditions are intended to be 
powerful tools that allow the derivation of weak convergence results for a wide range 
of processes, Phillips and Solo (1992) pointed out that, since much of the time series 
analysis is concerned with parametric models that fall into the linear process class, 
mixing conditions present a major drawback. The reason is quite simple: not all linear 
processes are strong mixing. In spite of this, they proposed a turnback to linear processes 
as the main focus for developing time series asymptotics.

Under the class of linear models, Phillips and Solo (1992) make extensive use of 
the algebraic Beveridge-Nelson decomposition (see Appendix A) to demonstrate the 
Functional Central Limit Theorem once provided with a disturbance sequence {et}

∞
t=0  

that is a A (see Appendix B), strongly uniformly integrable (see Appendix C) with 
dominating random variables {Zt}

∞
t=0 in such a way that E(Zt

2+h)<¥ for some h > 0, 
as well as T

t

T
−

=
∑1

1
E(et

2|Ft-1) ®
a.s. se

0 > 0, where Ft denotes the s-field generated by 
{et, et-1,…}. Given the latter notation it is now possible to establish the following:

Theorem 9 (Phillips and Solo, 1992) Suppose that {ut}
∞
t=0 is the linear process 

described by

ut = 
j=

∞

∑
0
 cj et-j = C(L)et, C(L) = 

j=

∞

∑
0
 cj Lj

with 0 <C(1) º 
j=

∞

∑
0
 cj <¥ and 

j=

∞

∑
0
 cj

2<¥. If 
j=

∞

∑
1
 j|cj|<¥, then 
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1
1

1T
u C W rtt

rT
⇒

=

 

∑ σε ( ) ( ).

Proof. See Phillips and Solo (1992) Theorem 3.4 p. 983. ■

Although the latter Functional Central Limit Theorem is less general than the 
versions previously presented, it has been used frequently in subsequent work, especially 
along the developments by Stock (1999).

6.2. The M class of Integration Tests (Stock, 1999)

Stock (1999) proposed a new class of statistics that directly test the implication that 
an integrated process has a growing variance having an order of probability14 of 
T –1/2(Op(T –1/2)). Since the remainder of this paper deals with this class of tests under 
several frameworks, the general class is examined in some detail. First, suppose the 
following data generating process for {yt}

∞
t=1:

y ut t ii

t
= +

=
∑δ β( ) ,

1

for t = 1,…,T. That is, under the null hypothesis the series {yt}
∞
t=1 can be written as the 

sum of a purely deterministic component dt(b) (with the finite dimensional vector b 
estimated by b̂) and an integrated or I(1) component that is the partial sum of weakly 
stationary or I(0) terms. Let the long term variance of ut be denoted by s2 = 2psu(0), 
where su(0) is the spectral density of ut at frequency zero; then, for r Î [0,1] we define 
the following functionals:

S r
T

uT ii

rT
( ) ,=

=

 

∑1
1

 and 

D rT rT( , ) ( ),β δ β=  

which are both càdlàg versions of the components of the discrete time process. Our 
goal is to apply the Functional Central Limit Theorem. Such functionals are assumed to 
satisfy the following:

Assumption 3 (Stock, 1999 p. 137) The following two conditions hold:

1. ST Þ sW, where 0 < s2 < + ¥, and

14 Let {yt} denote a sequence of random variables and let {at} denote a sequence of positive 
non-stochastic real numbers. Then yt = Op(at) if for each e > 0 there exists M > 0 such that 
P(|yt|/at > M) < e.
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2. Ö̀T {Dt(., b̂) - Dt(., b)} Þ sD, where D Î D[0,1] has a distribution that does not 
depend on b or on s, the nuisance parameters describing the distribution of {ut}.

In line with the proposal of Phillips and Solo (1992), Stock (1999) focuses on linear 
processes

ut = C(L)et,

j=

∞

∑
1
 j|cj| < ¥,

C(1) ¹ 0

where et is a martingale difference sequence (m.d.s.) with

    E[et|Ft-1] = 0, and  (17)

    supt E[et
2+∙|Ft-1] < + ¥ for some ∙ > 0.  (18)

As usual, condition (17) imposes zero-mean disturbances, whereas condition (18) 
bounds the probability of outliers in a similar fashion to condition 2 presented in 
Assumption 1. Also, although the deterministic component dt(b) is designed to potentially 
contain polynomial and further general trends, we consider the following three cases:

1. No deterministic trend: dt(b) = 0. In this case there is no need for detrending. 
For the sake of completeness, let the “detrended” series be yt

0 º yt.
2. Constant: dt(b) = b0. In this case b0 is estimated by b̂0 = y̅ = T

t

T
−

=
∑1

1
 yt and 

the demeaned series is yt
m º yt - y̅.

3. Linear trend: dt(b) = b0 + b1(t/T). If (b0, b1) is estimated by the OLS estimator 
(b̂0, b̂1) then the detrended series is yt

¿ º yt - b̂0 -b̂1(t/T) . Normalization of 
the known part of the deterministic component is done for its continuous time 
analogous to lie in the interval [0,1].

The three former cases are enough for subsequent analysis. Since the limiting 
representation in Assumption 3 depends on the nuisance parameter s2, it is assumed 
that there exists a consistent estimator ŝ2 for s2.

Assumption 4 (Stock, 1999 p. 137) Under the null hypothesis ŝ2 ®
p
 s2.

The elements for the development of the new class of tests are based on both the 
Functional Central Limit Theorem and the Continuous Mapping Theorem. For each 
of the cases considered, we define ST

d as the scaled stochastic process formed using the 
respective detrended series:

S r
TT

d ( )
ˆ

=
1

2σ
y drT
d
  =, , ,0 µ ¿,

for r Î [0,1]. If Assumptions 3 and 4 hold, then

    ST
d Þ Sd = W - D ̃, , for certain D ̃ Î D[0,1].  (19)
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For the three functional forms of the deterministic component, the following 
theorem shows the specific form that D ̃ adopts.

Theorem 10 (Stock, 1999 p. 137) Suppose that Assumptions 3 and 4 hold.

1. If dt(b) = 0, then

ST
0(r) = S r

TT
d ( )

ˆ
=

1
2σ
 y 0

rT ÞW(r).

2. If dt(b) = b0, then

ST
m = S r

TT
d ( )

ˆ
=

1
2σ
 y m

rT Þ Sm(r) = W(r) - W
0

1
ò (s)ds.

3. If dt(b) = b0 + b1(t/T), then

ST
¿(r)= S r

TT
d ( )

ˆ
=

1
2σ
 y ¿

rT  Þ S ¿(r) = W(r) - (4 - 6r) W
0

1
ò (s)ds - (6 + 12r) W

0

1
ò sW(s)ds.

Proof. See Stock (1999), Theorem 1 p. 139. ■

This latter result is one of the cornerstones for the class of tests proposed. Also, it 
follows from the Continuous Mapping Theorem that if (19) holds and g is a continuous 
function g: D[0,1] ® R, then

    g(ST
d) Þ g(Sd). (20)

Let Md = {m: D[0,1] ® R} be the collection of functionals that satisfy the following 
conditions:

1. m is continuous,
2. there exists cv, |cv|<+¥, in such a way that P[m(Sd) £ cv] = v for all v Î (0,1) 

and
3. m(0) < cv for all v Î (0,1).

The class of tests M d referred only to continuous functionals of ST
d and it grouped test 

statistics for the null hypothesis that yt is I(1) against the alternative that it is I(0). Since 
ST

d represents any of the three detrended series mentioned, under the null hypothesis 
m(ST

d) has an asymptotic distribution with critical values that depend on the functional 
m, whereas under a fixed alternative yt is I(0), which suggests the construction of one 
tailed test of level v of the form:

reject H0: yt ~ I(1) if m(ST
d) £ cv.

This approach, as Stock (1999) asserted, suggests working backwards from the 
desired asymptotic representation to the actual test statistic. The fact that the form of 
the functional m does not depend on the type of detrending emphasizes that the steps 
of eliminating the deterministic components and testing for a unit root are distinct; 
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detrending a series when it is not required does not affect the size of the tests (although 
it can affect power) since D ̃ does not depend on b. In contrast, failing to detrend a 
series that contains a trend typically leads to a loss of consistency and an incorrect 
asymptotic size.

In summary, always detrending a series before hypothesis testing does not affect 
the size and thus is a desirable property. Once the size is guaranteed to be fixed, power 
increasing procedures can be performed. The next two subsections illustrate the main idea 
behind the following: if a given VT test statistic has a limiting distribution characterized 
as the functional m of certain diffusion process Sd, that is

VT Þ m(Sd),

this asymptotic distribution can also be written as the that which limits a respective 
modified test statistic for detrended data m(ST

d):

m(ST
d) Þ m(Sd),

In such a way that VT and its modified version m(ST
d) are asymptotically equivalent.

6.3. The Modified Sargan-Bhargava Test

One of the test statistics to be covered along section 7.3 is that by Sargan and Bhargava 
(1983) for the model

    yt
t s

ss

t
= + −

=
∑β α ε0 1

,   (21)

where et ~ N(0, s2), t = 1,…,T and (a, b0, s2) is a vector of unknown parameters. The 
authors proposed the following Durbin-Watson statistic for a regression of yt against a 
constant

SB
y

y

tt

T

tt

Tµ µ
= =

=

∑
∑

( )

( )
,

∆ 2

2

2

1

where yt
m º yt - y̅. For the case where there exists a linear deterministic trend, Bhargava 

(1986) considered the following extension:

    y tt
t s

ss

t
= + + −

=
∑β β α ε0 1 1

,   (22)

where et ~ N(0, s2), t = 1,…,T, and (a, b0, b1, s2) is a vector of unknown parameters. 
A similar test was proposed:

SB¿ = 
( )

( )
,

∆y

y

tt

T

tt

T

2

2

2

1

=

=

∑
∑ ¿
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where yt
m º yt - b ̃0 - b ̃1 (t /T),

b ̃0 = y̅ - 
1
2

1
1 1

T
T

y yT
+
−

−
( )

( ),

b ̃1 = 
T
T

y yT( )
( ).

-
-

1 1

For both tests SBm and SB¿, Stock (1999) derived their limiting distribution

    T SB
y

S r drd
t

d− ⇒ ∫1
2

2
0

1σ
var( )

( ) ,
∆

 for d = m, ¿.  (23)

After noticing in (21) and (22) that s2 = var(Dyt), (23) can be rewritten as

T SB S r drd
d− ⇒∫1 2

0

1
( ) ,  for d = m, ¿ .

Now, note that the functional

mSB( f ) = W
0

1
ò  f(r)2 dr 

is also involved in the limiting distribution of the following functional in D[0,1]

1 2

1T
yt
d

t

T
( ) .

=
∑

This latter statistic will be referred to as the modified Sargan-Bhargava, or MSB test.

6.4. A Modified Z test

For a model that contains a constant deterministic component, Phillips (1987a) and 
Phillips and Perron (1988) proposed the following test statistic:

    Za = T(â - 1) - 
1
2

2 2

2
1

2

1

ˆ ˆ
,

σ σ−
−

−=
∑

u

tt

T
T y

  (24)

where

   â  = y y yt tt

T

tt

T
µ µ µ

−= −=
∑ ∑12 1

2

2
( ) ,  (25)

   ût = yt
m- â ym

t-1,   (26)

   ŝ2 = T –1
t

T

=
∑

2
 ût

2 + 2 j

l

=
∑

1 T
–1 

t j

l

= +
∑

2
 ûtût-j and  (27)

   ŝu
2 = T –1 

t

T

=
∑

1
 (yt - â yt-1)

2.   (28)
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Since y y y yt t T tt

T

−=
= −∑ 1

2 2

1
1 2∆ ∆( / )( ),  the test Za in (24) can be rewritten as

Z
S

T S t T
TT

Tt

Tα =
−

−
−

=

−
−

∑
1
2

1 1 1
2

2

1 2

1

1
2( )

( / )
(â -1)

and, provided that â -1®
p 0, its asymptotic distribution is

Z
W
W r dr

α ⇒
−

∫
1
2

1 12

2
0

1
( )

( )
.

This latter expression suggests the use of the following functional:

m f
f
f s ds

Zα( )
( )

( )
,=

−

∫
1
2

1 12

2
0

1

as shown by Stock (1999). For the study of Perron and Rodriguez (2003) to be covered 
in section 7.3, the modified Za test will be referred to as the MZa test.

7. ECONOMETRIC APPLICATIONS

7.1. Exogenous Structural Break (Perron, 1989)

The previous sections have established the foundations for studying the inference in 
the case of nonstationary time series. Henceforth we extend the analysis to the case in 
which a structural break is present. This literature starts with the identification of key 
limitations concerning ADF tests.

After the work of Dickey and Fuller (1979), several empirical studies were done in 
order to test for the existence of unit roots along macroeconomic variables. Most of these 
empirical results favored such a hypothesis and the perception that macroeconomic 
variables were characterized by stochastic trends became popular. One of the most 
influential studies in this empirical literature was conducted by Nelson and Plosser 
(1982), who studied fourteen macroeconomic variables for the US economy. Under 
the stochastic trend perspective, a series that exhibits an upward sloping behavior 
and an abrupt reduction (see Figure 4a) is interpreted as the consequence of an 
atypical realization of ut (situated on the left tail of its distribution) for the process 
yt = m + yt-1 + ut. However, the same behaviour can be interpreted as the trend 
stationary process yt = mt + dt + ut whose intercept changes its value from, say, m1 to 
m2 < m1 (see Figure 4b).
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Figure 4. Shifts under stochastic and deterministic trend frameworks
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Indeed, Perron (1989) switched emphasis to this latter interpretation and asserted that

“… most macroeconomic variables are trend stationary if one allows a single change in 
the intercept of the trend function after 1929 and a single change in the slope of the 
trend function after 1973” (Perron, 1989, p. 1962-63).

Perron (1989) considered atypical events as interventions on the deterministic 
component of the model, and this allowed him to distinguish what can be explained 
by the disturbance term from what cannot. Additionally, the date of this intervention is 
assumed to be known by the researcher. Because there are two competing interpretations 
mentioned above for time series with an abrupt shift, the models considered by Perron 
(1989) are summarized in Table 1.
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Table 1. Null and alternative hypotheses considered by Perron (1989)

Null hypothesis Alternative hypothesis

Model A Model A
yt = m + yt-1 + qD(TB) + ut yt = m1 + (m2 - m1)DUT + dt + ut

Model B Model B
yt = m1 + yt-1 + (m2 - m1)DUt + ut yt = m + d1 t + (d2 - d1)DTt

* + ut

Model C Model C
yt = m1 + yt-1 + qD(TB)t 

+ (m2 - m1)DUt + ut

yt = m1 + d1 t (m2 - m1)DUt 
+ (d2 - d1) DTt + ut

where
D(TB)t = 1 if t = TB + 1, 0 otherwise
DUt = 1 if t > TB, 0 otherwise

where
DTt

*= t - TB if t > TB, 0 otherwise
DTt = t if t > TB, 0 otherwise

In Table 1, q, m, m1, m2, d, d1 and d2 are parameters, and A(L)ut = B(L)et where 
et ~ i. i.d.(0, se

2). A(L) and B(L) are pth and qth order polynomials. That is, {ut} is an 
ARM A(p,q) process with p and q possibly unknown. This assumption allows {yt} to 
represent the general processes. In this sense, different specifications allow for different 
models:

1. Under the null hypothesis, model A contains a dummy variable that equals 1 
only immediately after TB (a one time change of the intercept), whereas under the 
alternative hypothesis the series is trend stationary with a permanent shift in the 
intercept of the trend function after TB (see Figure 5).

2. For model B, under the null hypothesis, a permanent change in the intercept is 
allowed after TB; whereas under the alternative hypothesis only a permanent shift 
is allowed in the slope of the deterministic component.

3. Finally, model C allows both the two shifting types simultaneously: a shift in level 
accompanied by a shift in slope.

In this way, Perron (1989) introduced a third interpretation to the discussion (see 
Figure 5) in order to identify limitations present in already known testing statistics.

A first attempt to discriminate between the two approaches included in Figure 4 
could be through the use of DF tests. However, by using numerical experiments, Perron 
(1989) examined the performance of this class of tests under the alternative hypothesis. 
Specifically, Monte Carlo simulations revealed that when the data generating process 
was described as being by model A under the alternative, DF tests tended to detect a 
spurious unit root that did not vanish, even asymptotically. Therefore, a power loss was 
expected. Perron (1989, Theorem 1) derived this property also at the theoretical level, 
and he adopted Phillips’s (1987a) assumptions concerning the innovation sequence {ut} 
in order for his results to be as general as possible.
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Figure 5. The “Crash” model
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Assumption 5 (Perron, 1989, p. 1371) Disturbance sequence {ut}
∞
t=1 satisfies

1. E(ut) = 0 for all t;
2. supt E|ut|

b+e < ¥ for some b > 2 and e > 0;
3. s2 = limT®¥ T –1 E(ST

2) exists and s2 > 0, where ST = 
t

T

=
∑

1
ut;

4. {ut}
∞
t=1 is strong mixing with strong mixing coefficients a(k) that satisfy

α β( ) .k
k

1 2

1

−

=

∞
<∞∑

As expected, the Functional Central Limit Theorem by Herrndorf (1984) can still 
be employed in this case. Specifically, Assumption 2 allows for the generalization of the 
asymptotic theory included in Theorem 6 (Perron 1989, Lemma A.3), now under the 
presence of a l Î (0,1) breakfraction. The next subsection presents the strategy adopted 
and the main results.
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7.1.1. Structure of the Model and Main Findings

Because of the caveats when using DF tests, the strategy adopted by Perron (1989) 
consisted of developing a unit root test under a structural break. That is, the null 
hypothesis specified the model as an autoregressive model that simultaneously contained 
both a unit root and a sudden shift (either on slope, intercept or both).

The two test statistics of interest were generalizations of the Z-tests proposed by 
Phillips (1987a). The intuition behind it was simple: since the researcher was assumed 
to know the l breakfraction, this effect must be removed from the data. Thus, let {ỹt

i} 
denote the detrended data under model i (i = A, B, C). Furthermore, let a ̃i be the least 
squares estimator of a ̃i in the following regression:

    ỹt
i = a ̃i ỹ i

t-1 + ẽt. (29)

where i = A, B, C; t = 1,2,…,T. If the null hypothesis were in fact true, the value 
of a ̃i should lie sufficiently close to one or, equivalently, the bias a ̃i - 1 must lie close 
to zero. Formally, the next theorem presents the asymptotic distribution of both the 
standardized bias T(ãi - 1) and the t statistic ta ̃i along several specifications.

Theorem 11 (Perron, 1989, p. 1373) Let the process {yt} be generated under the null 
hypothesis of model i (i = A, B, C), with the innovation sequence {ut} satisfying Assumption 
5. Let Þ denote weak convergence in distribution and l = TB/T for all T. Then, as T ® ¥:

a) T(ãi - 1) Þ Hi /Ki;  a) ta ̃i (s/su)Hi /(giKi)
1/2;

where

HA = gA D1 - D5 y1 - D6 y2;  KA = gA D2 - D4 y2 - D3 y1 ;
HB = gB D1 + D5 y3 + D8 y4;  KB = gB D2 + D7 y4 + D3 y3 ;
HC = gC D9 + D13 y5 - D14 y6; KC = gC D10 - D12 y6 + D11 y5 ;

with

y1 = 6D4 + 12D3; y2 = 6D3 + (1 - l)–1 l–1D4;

y3 = (1 + 2l) (1 - l)–1
 D7 - (1 + 3l) D3;

y4 = (1 + 2l) (1 - l)–1
 D3 - (1 - l)–3 D7;

y5 = D12 - D11; y6 = y5 + (1 - l)2 D12 /l
3;

Proof. See Perron (1989), Theorem 2 p. 1393, and Appendix D for an extended 
definition of coefficients. ■

The reader must take into account that the previous limiting distributions depend, 
besides l, on the nuisance parameters s2 and su

2. The finding of consistent estimators for 
the variance of innovations su

2 and the long run variance of partial sums s2 constitutes 
an empirical issue. In the case of weakly stationary innovations, s2 = 2p f(0) where f(0) 



 Juan Carlos Aquino y Gabriel Rodríguez Understanding the Functional Central Limit Theorems... 135

is the spectral density of {ut} evaluated at the zero frequency. Even more, Perron (1989) 
mentioned that when the sequence {ut} was independent and identically distributed, 
s2 = su

2, and in that case the limiting distributions were invariant with respect to the 
nuisance parameters, except l.

With these theoretical results and the tabulation of critical values through Monte 
Carlo simulations, evidence was found against the unit root hypothesis for the series 
studied by Nelson and Plosser (1982). Thus, the relevance of the results by Perron 
(1989) lies in the analysis of the performance of ADF tests when misspecification was 
present. As will be shown below, misspecification becomes crucial for the identification 
of desirable properties of new tests to be proposed. On the other hand, these results 
generalized the tests by Phillips (1987a) and the inference procedure assumed knowledge 
of both the existence of structural break and the breakfraction value. Subsequent studies 
progressively avoided these two assumptions and included desirable properties.

7.2. Endogenous Structural Break (Zivot and Andrews, 1992)

7.2.1. A Simple Reason for Relaxing Exogeneity

Before the formal analysis corresponding to this section, it is important to illustrate 
the main argument held by Zivot and Andrews (1992) against Perron (1989) through 
the following example. First, consider two sample paths as described in Figure 6. From 
Perron’s perspective, applied researchers will choose a breakfraction near to 0.25 for the 
first sample path, whereas they are more likely to choose a breakfraction near to 0.75 
for the second one. Thus, the breakfraction is no longer exogenous since the previous 
selections are based on an a priori inspection of data, which incorporates an implicit 
selection rule behind it. This fact is going to be exploited formally and will lead to the 
use of the Functional Central Limit Theorem under somewhat different conditions.

Figure 6. Sample paths under different breakfractions
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 Source: authors’ calculations.



136 Economía Vol. XXXVI, N° 71, 2013 / ISSN 0254-4415

7.2.2. The Approach

The first of the abovementioned two assumptions is avoided by Zivot and Andrews 
(1992). They consider not an exogenous breakfraction, but an endogenous one that has 
to be estimated. As they assert:

“If one takes the view that these events are endogenous, then the correct unit root 
testing procedure would have to account for the fact that that the breakpoints in 
Perron’s regressions are data dependent. The null hypothesis of interest in these cases is a 
unit root process with drift that excludes any structural change. The relevant alternative 
hypothesis is still a trend stationary process that allows for a one time break in the trend 
function. Under the alternative, however, we assume that we do not know exactly when 
the breakpoint occurs” (Zivot and Andrews, 1992, p. 252).

As noticed, attention is turned back to the competing approaches shown in Figure 4 
and formalized in Table 2. Additionally, while the tests developed by Perron (1989) are 
conditional on a given breakfraction l Î (0,1), Zivot and Andrews (1992) attempted to 
transform these tests into unconditional ones by designing an estimation method for l.

Table 2. Null and alternative hypotheses considered by Zivot and Andrews (1992).

Null hypothesis Alternative hypothesis

Model A Model A
yt = m + yt-1 + ut yt = m1 + (m2 - m1)DUt + dt + ut

Model B Model B
yt = m + yt-1 + ut yt = m + d1 t + (d2 - d1)DTt

* + ut

Model C Model C
yt = m + yt-1 + ut yt = m1 + d1 t + (m2 - m1)DUt + (d2 - d1) DTt + ut

where
DUt = 1 if t > TB, 0 otherwise
DTt = t if t > TB, 0 otherwise

where
DTt

* = t - TB if t > TB, 0 otherwise

It is important to mention that conventional wisdom in applied econometrics 
considers the Zivot-Andrews tests as unit root tests under structural break. By 
definition, this is not true since the null hypothesis considers only a unit root and no 
other deterministic component. On the other hand, in line with the structural change 
literature under an unknown changepoint, Zivot and Andrews (1992) suggested to 
choose the l breakfraction that gave the least favorable result for the null hypothesis 
H0: ai = 1 (i = A, B, C) using the one sided t statistic tâ(l) when small values of the 
statistic lead to the rejection of the null. Let l̂i

inf denote such a value for model i, then 
tâ[l

i
inf] º inflÎL tâ i  (l) where L is a specified closed subset of (0,1). For models A, B and 

C, t statistics are obtained from the following regression equations:
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 yt = m̂ A + q̂ A DUt(l̂) + b̂ A t + â A yt-1 + 
j

k

=
∑

1
 ĉj

A Dyt-1 + êt,  (30)

 yt = m̂ B + b̂ B t + ĝ BDTt
*(l̂) + â B yt-1 + 

j

k

=
∑

1
 ĉj

B Dyt-1 + êt, and  (31)

 yt = m̂ C + q̂ C DUt(l̂) + b̂ C t + ĝ CDTt
*(l̂) + â C yt-1 + 

j

k

=
∑

1
 ĉj

C Dyt-1 + êt,  (32)

respectively, where parameter estimates are denoted with a hat and êt is the residual term. 
In (30)-(32), DUt(l) = 1 if t > T l and 0 otherwise, while DTt

* = t - T l if t > T l and 
0 otherwise. The number of extra lags k is included here to potentially take into account 
the correlation between disturbances and l̂ denotes the estimated value of l. In order 
to make the results as simple as possible, the authors considered first the case where 
k = 0 (no correlation among disturbances). In contrast with the work of Perron (1989), 
when correlation between disturbances is present, it is restricted to being of the ARMA 
structure. It is worth mentioning that this structure is a particular case of mixing processes 
and that this implies that the Functional Central Limit Theorem can still be applied.

For unit root testing, intuition relies on the following reasoning: if H0 were in fact 
true, then the minimum t statistic should not significantly differ from zero, whereas if 
H1 were true then H0 should be rejected and an estimated value for l would be provided 
for the alternative trend stationary specification. When l is estimated, the critical values 
in Perron (1989) cannot be employed for unit root testing. Consider an estimated l 
with minimum t statistic. Then, the decision rule can be summarized as

reject H0 if inflÎL tâ i  (l) < ∙i
inf,v, i = A, B, C,

where ∙i
inf,v denotes the asymptotic critical value of inflÎL tâ i  (l) for a size equal to v. By 

definition, critical values are larger than (in absolute value) to those calculated on the 
basis of an arbitrary l. Thus, the tests built by Perron (1989) are biased towards rejecting 
the null. In order to formally establish this distinction, distributions for the statistics 
inflÎL tâ i  (i = A, B, C) are needed.

7.2.3. Asymptotic Distribution Theory

In order to obtain the limiting distribution for their proposed statistic, Zivot and Andrews 
(1992) made use of the framework suggested by Ouliaris, Park and Phillips (1989), which 
allowed for a compact form for their results. It is worth mentioning that this framework 
was also used by Perron (1989) when the objective was to develop a generalization for 
his main theorem on the case of disturbances that express autocorrelation. Attention is 
here focused on i.i.d. disturbances. The following two definitions are necessary for the 
understanding of the main theorem.

Definition 9 L2[0,1] is the Hilbert space of square integrable functions on [0,1] with 

inner product f g fg, ≡∫0
1

 for f, g Î L2[0,1].
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Definition 10 W i(l, r) is the stochastic process on [0,1] that is the projection residual in 
L2[0,1] of a Wiener process projected onto the subspace generated by the following:

1. for i = A: 1, r, du(l, r);
2. for i = B: 1, r, dt*(l, r); and
3. for i = C: 1, r, du(l, r), dt*(l, r)

where du(l, r) = 1 if r > l, 0 otherwise and dt*(l, r) = r - l if r > l and 0 otherwise.

Asymptotic distribution is presented in the next theorem15.

Theorem 12 (Zivot and Andrews, 1992, Theorem 1 p. 256) Let {yt} be generated 
under the null hypothesis and let the disturbances {ut} be i.i.d., mean 0, and variance s2 
random variables with 0 < s2 < ¥. Let tâ i

(l) denote the t statistic for testing ai = 1 computed 
from either (30), (31) or (32) with k = 0 for Models i = A, B and C, respectively. Let L be 
a closed subset of (0,1). Then,

inflÎL tâ i  (l) Þ inflÎL W r dr W r dW ri i( , ) ( , ) ( )
/

λ λ2
0

1 1 2

0

1
∫ ∫











−

for i = A, B and C, where Þ denotes convergence in distribution.

Proof. See Zivot and Andrews (1992), Appendix A, p. 266. ■

It is worth mentioning that when a correlation of the ARMA type is allowed, the 
previous result can be extended in order to obtain an autoregressive estimate of the spectral 
density of et at the zero frequency. This empirical issue is addressed by authors with the 
help of an assumption similar to assumption 2 in Phillips (1987a). That is, the probability 
of outliers is controlled and such an assumption was also adopted in subsequent work.

7.3. Efficient Unit Root Testing under Structural Break 
(Perron and Rodríguez, 2003)

Based on the elements contained in the previous sections, one can identify two features 
along the unit root literature:

1. Deterministic trend and size. Most of the earlier unit root tests under less restrictive 
assumptions were extensions of augmented Dickey-Fuller tests and therefore 
their asymptotic distributions depended on whether or not a deterministic 
component had been added to the regression equation. According to Stock (1999) 
this problem could be solved by first detrending the series and next performing 
(robust) modified unit root tests in such a way that size is not affected.

15 Although independent, the derivation presented here occurs in a similar fashion to those reported by 
Banerjee et al. (1992).
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2. Structural break and power. Perron (1989) illustrated how deterministic trends 
that contained a break could induce spurious unit roots in Dickey-Fuller tests. 
Following Stock (1999), a trend with structural break could be incorporated in 
the detrending process. Since it is guaranteed that size will not be affected, it 
becomes desirable to increase the power of the tests against local alternatives. Such 
a procedure can be done by following the near-integrated time series approach 
proposed by Phillips (1987b) and developed by Elliot et al. (1996) for the case of 
no structural break. Therefore, an extension is called for.

Within this framework, Perron and Rodríguez (2003) extended the modified or M 
tests (analyzed in detail by Ng and Perron, 2001) to the case in which a structural break 
in the trend function exists.

7.3.1. Data Generating Process

The observed series {yt}
T
t=0 is assumed to be generated according to

    yt = y¢zt + ut,  (33)

    ut = aut-1 + vt, and  (34)

for t = 1,…,T. Perron and Rodríguez (2003) considered two models for testing the 
presence of structural change, summarized in Table 3. A model with structural change 
in the intercept is not considered, since its limiting distribution is the same as those 
corresponding to both intercept and slope. For disturbances, the authors, following 
Phillips and Solo (1992), adopted the following specification:

Table 3. Deterministic components considered by Perron and Rodríguez (2003)

Structural change in slope Structural change in trend and slope

Model A Model B

y¢zt = b1 t + b2 DTt
* y¢zt = m1 + m2 DUt + b1 t + b2 DTt

*

where
 DTt

* = t - TB if t > TB, 0 otherwise
where
DUt = 1 if t > TB, 0 otherwise

Assumption 6 (Perron and Rodríguez, 2003 p. 3) The following conditions must hold:

1. u0 = 0, and
2. The noise function is vt = 

i=

∞

∑
0
gi et-i where 

i=

∞

∑
0
i|gi| < ¥ and where {et} 

is an m.d.s. The process {vt} has a non-normalized spectral density at frequency 
zero given by s2 = se

2 g(1)2, where se
2 = limT®¥ T –1 

t=

∞

∑
1
E(eT

2). Furthermore, 
T v W rtt

rT
−

=

 
⇒∑1 2

1

/ ( ),σ  where Þ denotes weak convergence in distribution and 
W(r) is the standard Wiener process defined on C[0,1] the space of continuous functions 
on the interval [0,1].
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7.3.2. GLS Detrending and M tests

First, denote the transformed data by

ỹt
a̅ = (y0, (1 - a̅L)yt), z̃t

a̅ = (z0, (1 - a̅L)zt), t = 0,…,T,

and let ŷ be the estimator that minimizes (35)

    S*(y, a̅, l) = 
t

T

=
∑

0
(ỹt

a̅ - y¢ z̃t
a̅)2. (35)

The data is transformed in order to make the results dependent on the parameter a̅. 
The goal here is to derive an optimal unit root test against a local alternative hypothesis. 
In this sense, later a computed value for a̅ will be necessary. Based on Phillips (1987b), 
both null and alternative hypotheses can be summarized by means of a near-integrated 
process. In (34), the autoregressive coefficient can be written as 

α= +1
c
T
.

Then, under the null c = 0, whereas under the alternative c < 0 and the power 
function can be explicitly obtained. The M tests, studied in section 6, are defined by

    MZ
T y

T y
GLS T

tt

Tα λ
σ

( )
ˆ

,=
−−

−
−=

∑
1
2

1 2 2

2
1

2

1

�

�
  (36)

    MSBGLS(l) = (T –2 
t

T

=
∑

1
 ỹ 2t-1 / ŝ  

2)1/2, and  (37)

    MZ
T y

T y
t
GLS T

tt

T( )
ˆ

( ˆ )
,

/
λ

σ

σ
=

−−

−
−=

∑
1
2

1 2 2

2 2
1

2 1 2

1

�

�
  (38)

with local detrended data defined by ỹt = yt - y¢zt where ŷ minimizes (35). The term 
ŝ  

2 is an autoregressive estimate of the spectral density at frequency zero of vt, defined as
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where b̂j and {v̂ tk} are obtained from the following auxiliary ADF regression

    Dỹt = b0 ỹt-1 + 
j

k

=
∑

1
bj Dỹt-j + vtk.  (39)
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7.3.3. Asymptotic Distributions

The next theorem presents the limiting distribution of the testing statistics for fixed 
values of c, c̅ and l.

Theorem 13 (Perron and Rodriguez, 2003 p. 7) Let {yt}
T
t=0 be generated by model 

(33) with a = 1 + c/T, MZa
GLS, MSBGLS and MZt

GLS be defined by (36)-(38), with data 
obtained from local GLS detrending (ỹt) at a̅ = 1 + c̅ /T, and ADFGLS be the t statistic for 
testing b0 = 0 in the regression (39). Also, ŝ  

2 is a consistent estimate of s2. For models A and B
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wc(r) the Ornstein-Uhlenbeck process as the solution to the stochastic differential equation

   dWc(r) = cWc(r)dr + dW(r) with Wc(r) = 0.

Also, b3 and b4 are defined by
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Proof. See Perron and Rodríguez (2003), Theorem 1, p. 22. ■
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7.3.4. A Feasible Point Optimal Test with Known Breakdate

As Phillips (1988) pointed out, the discriminatory power of unit root tests is low against local 
alternatives near but not equal to unity because under both hypotheses the distributions 
are quite similar. The main idea behind efficiency relies on the increase of power or, 
equivalently, the probability of rejecting a false alternative hypothesis. As mentioned 
by Elliot et al. (1996), if the data distribution were known then the Neyman-Pearson 
Lemma would suggest the optimal point alternative against any other point alternative 
hypothesis, and in such circumstances a power envelope could be derived16.

However, although within this framework a uniformly most powerful (UMP) test is 
not attainable, it is possible to define an optimal test for a = 1 against the alternative 
a = a̅ . Moreover, if vt were i.i.d., then such a test would be given by the likelihood ratio 
statistic which, under the normality assumption, equals the following difference

L(l) º S(a̅ , l) - S(1, l),

where S(a̅ , l) and S(1, l) are the sums of squares from GLS, detrending under both 
a = a̅ and a = 1, respectively. Under the assumption of a known l breakfraction, 
different values for a̅  lead to a family of point optimal tests and a Gaussian envelope for 
testing a = 1. Furthermore, in order to allow for correlation between errors vt, Elliot 
et al. (1996) proposed a feasible optimal point test PT

GLS defined by

    P c c
S S

T
GLS ( , , )

( , ) ( , )
ˆ ,λ

α λ α λ
σ

=
− 1

2   (40)

where its distribution is derived in the following theorem:

Theorem 14 (Perron and Rodriguez, 2003 p. 7) Let {yt} be generated by (33) with 
a = 1 + c /T. Let PT

GLS  be defined by (40) with data obtained from local GLS detrending 
(ỹt) at a̅ = 1 + c̅ /T. Also, let ŝ 2 be a consistent estimate of s2. The limit distribution of the 
PT

GLS under Models A and B is given by

P c c M c M c c

c W r dW r c cc W

T
GLS

c c

( , , ) ( , , ) ( , , )

( ) ( ) ( )

λ λ λ⇒ −

− + −∫
0

2 2
0

1 2
0

11 2∫ − ≡( ) ( , , )r dr c H c cPT
GLS

λ
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16 As Elliot et al. (1996) mentioned, the Gaussian power envelope is upper bound to the asymptotic 
power function for tests of the unit root hypothesis when the data are generated by yt = dt + ut and 
ut = aut-1 + vt but under ideal conditions. Namely, the process {vt} has a moving average representation 
involving independent standard normal random variables, the initial condition u0 is 0 and the deterministic 
component dt is known. Such unrealistic assumptions are made in order to employ the Neyman-Pearson theory.
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and B(c̅ , l) is a symmetric matrix with entries

c c c c
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Proof. See Perron and Rodríguez (2003), Theorem 2, p. 34. ■

The reader must remember that any test statistic is also a random variable, and 
rejecting the unit root hypothesis is an event in which the test statistic lies below a certain 
critical value. Since the distribution for the tests was derived both under the null and the 
alternative hypothesis, the (asymptotic) power function can be explicit by means of the 
probability of rejecting the null under the alternative. Such a function is given by

π λ λ λ( , ) ( , , ) ( , ) ,c P H c c b cP PT
GLS

T
GLS

≡ <  ,

where the critical value b cPT
GLS

( , )l  is determined by the probability of Type I error

P H c b c vP PT
GLS

T
GLS

( , , ) ( , ) ,0 λ λ< = ,

and v is the size of the test. Therefore, different values of l generate different power 
functions.

7.3.5. A Feasible Point Optimal Test with Unknown Breakdate and the Power Envelope

The previous subsections refer to the case in which the breakfraction l is known. In 
practice, however, this parameter is required to be estimated by applied researchers. For 
this reason the feasible version of the statistic in (40) is given by

    P c c S ST
GLS
,* [ , ] [ , ]

( , ) inf ( , ) inf ( , ) ˆ .= −{ }
∈ − ∈ −λ ε ε λ ε ε

α λ α λ σ
1 1

21   (41)

The principle behind (41) is the same as in (40). The main difference relies on the 
trimming parameter e introduced. This latter parameter is usually set to 0.15 in order 
to bind critical values, a situation that arises in the context of tests for structural change. 
Using Theorem 14, the following result is obtained:
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Accordingly, the asymptotic Gaussian power envelope is given by
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where the critical value is b cPT
GLS
,* ( )  so that P H c b c vP PT

GLS
T
GLS

,* ,*( , ) ( ) .0 <



=  It must be 

pointed out that Elliot et al (1996) recommended a value for c̅ so that p*(c) = 0.5. 
Using Monte Carlo simulations, Perron and Rodriguez (2003) found that c̅ = - 22.5.

It must be emphasized that, within this literature, the idea behind power increasing 
unit root tests is related to the extent to which power functions lie close to the Gaussian 
power envelope (the benchmark case). When l is known, only one set of simulations is 
performed in order to obtain the power function corresponding to that value. When l 
is unknown, however, several sets of simulations are performed (one for each value of l 
in [e, 1 - e]).

Table 4. Empirical Application

Series

(1)
ADF 

statistic

(2)
Perron statistic

(3)
Zivot-Andrews 

statistic

(4)
Perron-Rodríguez 

statistic

C + T C BT C BT BT BT

1. GDP -1.638 -0.119 -2.077 -4.447 -4.707** -5.405 *** -3.226

(1980:I-2011:II) [1990:III] [1990:III] [1988:III] [1988:III] [1988:III] [1990:II]

2. Absorption -1.471 -0.502 -2.129 -4.048 -3.992 -3.164 -3.184

(1980:I-2011:II) [1990:III] [1990:III] [1988:III] [1988:III] [1990:I] [1990:I]

3. Consumption -1.521 -1.638 -2.326 -5.368** -5.347*** -3.258 -3.340

(1980:I-2011:II) [1990:III] [1990:III] [1988:III] [1988:III] [2004:II] [2004:II]

4. CPI -0.955 -4.273** -1.712 -4.386 -3.921 -2.910 -3.149

(1994:I-2011:II) [2000:IV] [2000:IV] [2001:II] [2007:IV] [1994:I] [1994:I]

5. Exchange Rate -0.756 -4.039** -4.738*** -5.687*** -4.967*** -2.060 -2.163

(1991:I-2011:II) [2005:I] [2005:I] [1997:III] [2006:II] [2002:IV] [2002:IV]

6. Unemployment -9.615*** -10.089*** -10.225*** -10.684*** -11.245*** -3.163 -3.936 *

(Jan2001-Jun2011) [Dec2000] [Dec2005] [Nov2005] [Sep2005] [Sep2005] [Set2005]

7. Real Exchange Rate -3.397 -3.805*** -3.391 -4.672* -4.659** -3.300 -3.274

(Jan1994-Jun2011) [Sep1998] [Sep1998] [Oct2005] [Oct2005] [Feb2006] [Feb2006]

8. Exports Price Index -1.221 -2.043 -1.764 -3.013 -3.379 -2.979 -2.909

(Jan1991-Jun2011) [Dec2008] [Dec2008] [Jun1997] [Aug2008] [Jan2004] [Ene2004]

9. Imports Price Index -1.194 -1.715 -1.713 -2.707 -4.390* -3.851 ** -3.772 *

(Jan1991-Jun2011) [Dec2008] [Dec2008] [Nov2006] [Nov2000] [May2003] [May2003]

Notes: Variables that exhibited a seasonal pattern were adjusted with the programs TRAMO and SEATS in automatic 
mode. Excepting unemployment, all variables are expressed in logs; for augmented Dickey-Fuller statistics in column (1), 
(*), (**) and (***) indicate that the null hypothesis is rejected at the 10%,5% and 1% level of significance, respectively; 
for column (2), exogenous (fixed) break date is reported with in square brackets. C stands for "Crash" model where as BT 
stands for "Breaking Trend" model; for column(3), estimated break dates are reported with in square brackets. C stands 
for "Crash" model where as BT stands for "Breaking Trend" model; for column (4), estimated break dates are reported 
with in square brackets. The modified AIC is employed as in Perron and Rodriguez (2003).
Source: authors' calculations.
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8. EMPIRICAL APPLICATIONS

A set of nine macroeconomic variables have been selected for the Peruvian economy: 
gross domestic product (GDP), absorption, consumption, consumer price index (CPI), 
nominal exchange rate (domestic currency by Dollar), unemployment rate, real exchange 
rate, export price index and import price index. Frequencies of data vary according to 
availability and the covered sample period appears below the name of each variable. 
Table 4 presents results of application of four different unit root statistics. The first is 
the standard augmented Dickey-Fuller (ADF) statistic without structural change. The 
second statistic is the ADF proposed by Perron (1989) with an exogenous breakpoint. 
The third one is the ADF proposed by Zivot and Andrews (1992) based on the infimum 
method of selecting the break point. In the two columns, two models are estimated: the 
crash and the breaking trend models denoted by C and BT, respectively. The remaining 
column is based on Perron and Rodríguez (2003) using the breaking trend model. 
Statistics in Column (4) are based on the infimum method to select the break point 
using the MZt

GLS and ADFGLS statistics, respectively. The lag length has been selected 
using the MAIC proposed by Perron and Ng (2001).

The results indicate the different results that may be obtained from the application 
of the different unit root statistics with or without structural change. Therefore, the 
results also show the difficulties of obtaining a unique answer regarding the stationarity 
or nonstationarity of the variables. Overall, we obtain mixed evidence for or against the 
stationarity of the analyzed variables. Mostly, no rejection of the null hypothesis of a 
unit root is found for the consumption, the CPI or the export price index. On the other 
hand, mostly rejection of the null hypothesis is found for the unemployment rate, the 
import price index, and the nominal exchange rate. Mixed evidence is found for the 
GDP and the real exchange rate.

9. CONCLUSIONS

The application of different unit root statistics is by now a standard practice in 
empirical work. Even when it is a practical issue, these statistics have complex non-
standard distributions depending on the functionals of certain stochastic processes, and 
their derivations represent a barrier even for many theoretical econometricians. These 
derivations are based on rigorous and fundamental statistical tools which are not (very) 
well known for standard econometricians. This paper aims to fix this gap by explaining 
in a simple way one of these fundamental tools: namely, the Functional Central Limit 
Theorem. Therefore, this paper analyzes the foundations and applicability of two versions 
of the Functional Central Limit Theorem within the framework of a unit root with a 
structural break. As shown, unit root tests can be described as functionals of stochastic 
processes such as the standard Wiener process and the Ornstein-Uhlenbeck process.
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Therefore, a general framework involving mixing conditions (Phillips 1987a) 
generalizes the results obtained under the assumption of normal i.i.d. disturbances 
(Dickey and Fuller 1979). Also, the analysis of modified tests (Stock 1999) allows 
separation of unit root test sizes from the specific form of the deterministic component, 
a problem not solved in earlier works. Tools developed also allow the analytical 
tractability of several problems within this literature: the presence of structural breaks 
and the low power against local alternatives. For the issue of structural breaks (Perron 
1989), first detrending in the series has shown itself to be a robust procedure, so 
that asymptotic size is not affected (Stock 1999). For the issue of increasing power, 
asymptotic distribution can be derived by means of Ornstein-Uhlenbeck processes, both 
under the null and local alternatives (Phillips 1987b), while a power function can be 
derived and maximized. When the two issues are combined, the result is an efficient test 
(Perron & Rodriguez 2003).

APPENDIX

A. BEVERIDGE NELSON DECOMPOSITION

Based on Phillips and Solo (1992), let the operator C(L) = 
j=

∞

∑
0
cj Lj be a lag 

polynomial. Then 
C(L) = C(1) - (1 - L)C̃(L), 

where 

C̃(L) = 
j=

∞

∑
0
c̃j Lj, c̃ = 

k j=

∞

∑ ck. 

If p ³ 1, then, 

j=

∞

∑
1
j p|cj|

p < ¥ implies 
j=

∞

∑
0
|c̃j|

p < ¥ and |C(1)|< ¥.

If p < 1, then 

j=

∞

∑
1
|cj|

p < ¥ implies 
j=

∞

∑
0
|c̃j|

p < ¥.

B. MARTINGALE DIFFERENCE SEQUENCE

Let {xt} and {yt} denote two stochastic processes. Then {yt} is a martingale difference 
sequence with respect to {xt} if its expectation, conditional to past values of {xt}, is zero. 
Formally, 

E[yt|xt-1, xt-2,…]=0, for all t. 

When the expectation of {yt}, conditional to its own past values, is zero then {yt} is said 
to be a martingale difference sequence, or m.d.s.
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C. STRONGLY UNIFORM INTEGRABILITY

Let {Zt}
¥
t=1 be a sequence of random variables adapted to the filtration {Ft}

¥
t=1. For 

Phillips and Solo (1992), {Zt} is said to be strongly uniformly integrable (s.u.i.) if there 
exists a dominating random variable Z for which E(|Z|)<¥ and 

P(|Zt|³x)  £ cP(|Z|³x) 

for each x ³ 0, t ³ 1 and for some constant c.

D. SOME THEOREMS OF UNIT ROOT WITH STRUCTURAL CHANGE

Functionals in Perron (1989), Theorem 2 p. 1393 are defined as follows:
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and W is a standard Wiener process on C.
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