ON D-K-MACKey Locally K-Convex Spaces

Miguel Caldera

Abstract:

D-K-Mackey locally K-convex spaces are introduced and a description of their topologies is obtained.

Introduction.

The non-Archimedean analogues of Mackey, d-barrelled and d-infrabarrelled locally convex spaces over \mathbb{R} or \mathbb{C} were introduced by J. Van Tiel [8] and the author ([2], [3]) respectively. In the present article we define the larger class of D-K-Mackey non-Archimedean locally convex spaces over a spherically complete field K, which is an extension of the classical definition of J. Rojo [6]. The main goal of this paper is to give several characterizations of such space by means of topologies. Their relation with other significant class of non-Archimedean locally convex spaces over K (briefly locally K-convex) are established.

\Rightarrow Departamento de Matemática Aplicada - IMUFF, R.J. Brasil.
Terminology and Notation.

We shall adopt the notation and terminology of [8], [9] and [3]. Some of the notations and terminology used in the sequel are as follows: K will denote a non-trivial spherically complete non-Archimedean valued field and (E,τ) a locally K-convex space endowed with the locally K-convex topology τ. As in [9], if A is a subset of E the pseudo-polar A^p (respectively pseudo-bipolar A^{pp}) of A is defined as $A^p = \{ g \in E'; |g(A)| < 1 \}$ (respectively $A^{pp} = \{ x \in E; |A^p(x)| < 1 \}$). We have $A = A^{pp}$ if and only A is K-convex and Closed ([9] Proposition 2).

In this paper E will always stand for a separated locally K-convex space over a spherically complete field K.

Definition 1. Let E be a locally K-convex space and E' its dual.

(i) (E,τ) is said to be K-Mackey if the topology τ coincides with $\tau_c(E,E')$, where $\tau_c(E,E')$ be the locally K-convex topology in E of uniform convergence on the collection of all K-convex bounded and c-compact subset of $(E', \sigma(E',E))$ and is the strongest (E,E')-compatible locally K-convex topology on E.

(ii) (E,τ) is said to be d-K-Mackey, if each $\sigma(E',E)$-bounded H of E' which is the countably union of equicontinuous subsets of E' and such that the K-convex hull of H is relatively c-compact for the topology $\sigma(E',E)$, is itself equicontinuous.

(See [7], for the concept and property of an c-compact subset).

Lemma 1. Let E be a locally K-convex space. Then the K-convex hull of a K-convex c-compact subset A of E is c-compact.

Proof. Since K is spherically complete, the set $B = \{ \lambda \in K; \lambda \leq 1 \}$ is c-compact ([8] Theorem 2.6). Therefore it is enough to see that the K-convex hull of A is the image of $B \times A$ under the mapping $(\lambda, x) \rightarrow \lambda x$.

Proposition 1. Let E be a locally K-convex space and E' its dual. Every K-convex subset of E' which is bounded and relatively c-compact for the topology $\sigma(E',E)$ is bounded for the topology $b(E',E)$.

Proof. Let M be a k-convex bounded and relatively c-compact of $(E',\sigma(E',E))$. By ([8] Theorem 2.5 and 2.7) and Lemma 1 the k-convex closed hull $N = \overline{C(M)}$ of the closure of M is a k-convex bounded and c-compact subset of $(E',\sigma(E',E))$. It's pseudo-polar N^p is a neighborhood of
zero in E for the topology $\tau_\mathcal{C} (E,E')$. Let B be an arbitrary bounded subset of E. Then B is also bounded for the topology $\tau_\mathcal{C} (E,E')$ ([1] p.70) and thus there exists $\lambda \in K^*$ such that $B \subseteq \lambda N^p$. But then $M \subseteq N = N^p \subseteq \lambda B^p$. Hence by the definition of the topology $b(E',E)$, the set M is $b(E',E)$-bounded.

Proposition 2. Let (E,τ) be a locally k-convex space with topology τ. Then τ coincides with the topology of uniform convergence on the equicontinuous subsets of E'.

Proof. Let Θ the collection of all equicontinuous subsets of E' and τ_Θ be the locally k-convex topology on E of uniform convergence on Θ. If U is a k-convex τ-neighborhood of zero in E, then U^p is equicontinuous in E'. Hence $U = U^{pp}$ is a τ_Θ-neighborhood of zero in E. Thus τ_Θ is finer than the topology τ. Conversely, let H be a equicontinuous set in E', we can find a k-convex τ-neighborhood U of zero in E such that $|H(U)| < 1$. Then $H \subseteq U^p$. It follows that $H^p \supseteq U^{pp} = U$; i.e., H^p is a τ-neighborhood of zero in E. Thus τ is finer than the topology τ_Θ and the desired equality $\tau = \tau_\Theta$ is established.

Our next goal is to prove certain characterizations of d-k-Mackey spaces. In order to do so we shall the following.

Definition 2. Let E be a locally k-convex space and let Γ be the collection of all k-convex bounded relatively c-compact subset of $(E',\sigma(E',E))$, which is the countably union of equicontinuous subset of E'. Then the corresponding Γ-topology on E of uniform convergence on Γ will be denoted by $\Gamma_d(E,E')$.

Clearly $\sigma(E,E') \subseteq \tau_d(E,E') \subseteq \tau_\mathcal{C} (E,E') \subseteq b(E,E')$. Therefore, the topology $\tau_d(E,E')$ is (E,E')-compatible.

The following proposition prove that the given topology of a d-k-infrabarrelled space E ([3]), over a spherically complete field k is the $\tau_d(E,E')$ locally k-convex topology on E.

Proposition 3. If (E,τ) is d-k-infrabarrelled, then the topology τ coincides with the topology $\tau_d(E,E')$.

Proof. If is enough to apply Proposition 1.

Theorem 1. For a locally k-convex space (E,τ), the following conditions are equivalent:

(i) (E,τ) is d-k-Mackey.
(ii) $\tau = \tau_d(E,E')$.

47
Proof. (i)→(ii): \(\tau = \tau_\Theta \) (Proposition 2) where \(\tau_\Theta \) be the locally \(k \)-convex topology on \(E \) defined by the family \(\Theta = \{ H CE' \; \text{;} \; k \text{-convex equicontinuous} \} \). Since, every \(k \)-convex equicontinuous subset of \(E' \) is relatively \(c \)-compact for the topology \(\sigma(E,E') \) ([8] Theorem 4.4 (b)). Then \(\Theta \subseteq \Gamma \) (\(\Gamma \) as in definition 2). Hence \(\tau_\Theta \) is weaker than \(\tau_d(E,E') \). Let now \(H \in \Gamma \). By Lemma 1 and hypothesis, \(H \) is equicontinuous. Thus \(H \in \Theta \). Hence \(\tau_d(E,E') \) is weaker than \(\tau_\Theta \) and the desired equality \(\tau = \tau_d(E,E') \) is established.

(ii)→(i): Let \(H \in \sigma(E',E) \)-bounded of \(E' \) which is the countably union of equicontinuous subsets of \(E' \) and such that the \(k \)-convex hull \(C(H) \) of \(H \) is relatively \(c \)-compact for the topology \(\sigma(E',E) \). Then \(C(H) \) is a \(k \)-convex, bounded \(e \) relatively \(c \)-compact subset of \((E',\sigma(E',E)) \). Therefore its pseudo-polar \((C(H))^p \subseteq (H)^p \) is a neighborhood of zero in \(E \) for the topology \(\tau_d(E,E') \); i.e., by hipothesis a \(\tau \)-neighborhood of zero. Hence \(H \) is equicontinuous. This proves (i).

As a direct consequence of Theorem 1. We have:

Corollary 1. A \(k \)-Mackey space is always \(d-k \)-Mackey.

Proof. Let \((E,\tau) \) be a \(k \)-Mackey space. We shall show that \(\tau \) is the topology \(\tau_d(E,E') \). Indeed. By definition 1(i) and remark of definition 2 implies that \(\tau_d(E,E') \leq \tau_C(E,E') = \tau \). On the other hand \(\tau = \tau_\Theta \leq \tau_d(E,E') \). Therefore \(\tau = \tau_d(E,E') \). This prove that \((E,\tau) \) is a \(d-k \)-Mackey space (Theorem 1).

Remark 1.

(i) It follows from Proposition 3 and Theorem 1 that every \(d-k \)-infrabarrelled space is a \(d-k \)-Mackey.

(ii) The following diagram helps to remember some of the relations proved in this and their relation with other classes:

\[
\begin{align*}
\text{k-barrelled} & \quad \xrightarrow{[2]} \quad \text{d-k-barrelled} \\
\text{k-infrabarrelled} & \quad \xrightarrow{[3]} \quad \text{d-k-infrabarrelled} \\
\text{k-Mackey} & \quad \xrightarrow{[\text{Corollary 1}]} \quad \text{d-k-Mackey}
\end{align*}
\]
Theorem 2. Let E and F be two separated locally k-convex spaces. Then every linear mapping $f: E \rightarrow F$ which is continuous for the topologies $\sigma(E,E')$ and $\tau_d(F,F')$, is also continuous for the topologies $\tau_d(E,E')$ and $\tau_d(F,F')$.

Proof. Let $V=H^p$ be a neighborhood of zero in F for the topology $\tau_d(F,F')$, where $H = \bigcup_{n \geq 1} H_n$ is a k-convex, bounded, relatively c-compact subset of $(F', \sigma(F', F))$ and H_n equicontinuous ($n \geq 1$). Since $f: F' \rightarrow E$ (f transpose of f) is continuous for the topology $\sigma(F', F)$ and $\sigma(E', E)$ ([1] p.101), the set $X=\{f(H)\}$ is a k-convex bounded relatively c-compact of $(E', \sigma(E', E))$ which is the countably union of $f(H_n)$ equicontinuous subsets and thus $U=X^p$ is a neighborhood of zero in E for the topology $\tau_d(E,E')$. Since $X=f(H)$, we have $f(U) \subseteq V$, that is $f(U) \subseteq V$, which proves that f is continuous for the topologies $\tau_d(E,E')$ and $\tau_d(F,F')$.

Corollary 2. Let (E, τ_E) and (F, τ_F) be locally k-convex spaces, (E, τ_E) d-k-

Mackey. Then every linear mapping $f: E \rightarrow F$ which is continuous for the topologies $\sigma(E,E')$ and $\sigma(F,F')$ is also continuous for the topologies τ_E and τ_F.

Proof. By the assumption and by Theorem 2 the mapping f is continuous for the topologies $\tau_E = \tau_d(E,E')$ and $\tau_d(F,F')$. But $\tau_d(F,F')$ is finer than τ_F. Then f is continuous for the topologies τ_E and τ_F.

Let us recall that the hypothesis of this corollary is satisfied if E is an d-k-infrabarrelled space (Proposition 3).

Theorem 3. For a locally k-convex space (E, τ_E) the following conditions are equivalent:

(i) (E, τ_E) is d-k-Mackey.

(ii) For every locally k-convex space (F, τ_F), each linear mapping $f: E \rightarrow F$ which is continuous for the topologies τ_E and $\sigma(F,F')$ is also continuous for the topologies τ_E and $\tau_d(F,F')$.

Proof.:

(i) \rightarrow (ii): By ([1] p.103) the mapping f is continuous for the topology $\sigma(E,E')$ and $\sigma(F,F')$. By the Theorem 2 it is also continuous for $\tau_d(E,E')$ and $\tau_d(F,F')$. Finally since $\tau_E = \tau_d(E,E')$ (Theorem 1), f is continuous for τ_E and $\tau_d(F,F')$ (also, since $\tau_F \leq \tau_d(F,F')$ the mapping f is continuous for τ_E and τ_F).
(ii)→(i): Since $\sigma(E,E') \leq \tau_E$, the mapping canonical imbedding $j:E \to E$ is continuous for the topologies τ_E and $\sigma(E,E')$. By the assumption (ii) it is also continuous for the topologies τ_E and $\tau_d(E,E')$. Hence $\tau_d(E,E') \leq \tau_E$. Therefore $\tau_d(E,E') = \tau_E$.

d-k-Mackey spaces have remarkable stability properties which we list in the following Proposition and that reasoning as in [3] can be proved.

Proposition 4. Let (E,τ_E) and (F,τ_F) be two locally k-convex spaces.

(i) Let D a dense k-subspace of E. Then (E,τ_E) is d-k-Mackey if (D,τ_D) is d-k-Mackey.

(ii) Let f be a linear continuous, almost open (a fortiori, open) and surjective mapping from E into F. Then (F,τ_F) is d-k-Mackey if (E,τ_E) is d-k-Mackey.

(iii) If (E,τ_E) is a d-k-Mackey space and M a closed k-subspace of E. Then the quotient space E/M is a d-k-Mackey space.

(iv) Let \mathcal{E} be the family of all d-k-Mackey. Then \mathcal{E} is stable under the formation of arbitrary direct sums, inductive limits, and arbitrary products.

Finally we apply these notion of d-k-Mackey to the space of the continuous mappings.

We suppose that X is an ultraregular space, that is a separated topological space where every point has a filterbase of clopen neighborhoods. $C(X,E)$ the space of all continuous E-valued mappings on X, endowed with the compact-open topology. We call a topological space w-compact if every countable union of compact set is relatively compact.

Theorem 4. If $C(X,E)$ is a d-k-Mackey space, then $C(X,K)$ and E are d-k-Mackey spaces.

Proof. In ([4], Proposition 2.1 and 2.2) it has been show that $C(X,K)$ and E are closed complemented k-subspaces of $C(X,E)$. Therefore, there exist two separated quotients spaces of $C(X,E)$ which are isomorphous to $C(X,K)$ and E, respectively. Since by Proposition 4(iii) the property of being d-k-Mackey is invariable under separated quotient formation, $C(X,K)$ and E are d-k-Mackey.
Theorem 5. Let X be an ultraregular w-compact space and (E_n, τ_n) be a crescent sequence of locally k-convex spaces. If $(E, \tau) = \lim (E_n, \tau_n)$ then the inductive limit $\lim C(X, E_n)$ is a dense topological k-subspace of $C(X, E)$.

Proof. See ([4] Theorem 2.5).

Corollary 3. Let X be an ultraregular w-compact space and E be the inductive limit of E_n where $(E_n)_{n \in \mathbb{N}}$ is a crescent sequence of non-Archimedean normed spaces. Then $C(X, E)$ is an d-k-Mackey space.

Proof. By Theorem 5, the inductive limit of spaces $C(X, E_n)$ is a dense topological k-subspace in $C(X, E)$. Since E_n is non-Archimedean normed and by ([4] Theorem 4.8) can be proved that the space $C(X, E_n)$ is d-k-infrabarrelled. Hence and Remark 1(i) $C(X, E_n)$ is d-k-Mackey. By Proposition 4(iv), the inductive limit of spaces $C(X, E_n)$ is d-k-Mackey and by the same Proposition 4(i) it results that $C(X, E)$ is d-k-Mackey.

References

gmamccs@vmhpo.uff.br
Departamento de Matemática Aplicada - IMUFF
Universidad Federal Fluminense
Rua São Paulo s/n. CEP: 24210
Niterói, RJ - Brasil