ON THE CONSTANT OF HOMOTHEITY FOR COVERING A CONVEX SET WITH ITS SMALLER COPIES

Márton Naszódi1,2

December, 2009

Abstract

Let H_d denote the smallest integer n such that for every convex body K in \mathbb{R}^d there is a $0 < \lambda < 1$ such that K is covered by n translates of λK. In [2] the following problem was posed: Is there a $0 < \lambda_d < 1$ depending on d only with the property that every convex body K in \mathbb{R}^d is covered by H_d translates of $\lambda_d K$? We prove the affirmative answer to the question and hence show that the Gohberg-Markus-Boltyanski-Hadwiger Conjecture (according to which $H_d \leq 2^d$) holds if, and only if, a formally stronger version of it holds.

2000 Mathematics Subject Classification: 52A35, 52A20, 52C17.

Keywords: Illumination, Boltyanski-Hadwiger Conjecture, Convex sets.

1 Dept. of Geometry, Eötvös University, Hungary.

2 Supported by a Postdoctoral Fellowship of the Pacific Inst. Math. Sci.
1 Definitions and Results

A convex body in \mathbb{R}^d is a compact convex set K with non-empty interior. Its volume is denoted by $\text{vol}(K)$.

Definition 1.1. For $d \geq 1$ let H_d denote the smallest integer n such that for every convex body K in \mathbb{R}^d there is a $0 < \lambda < 1$ such that K is covered by n translates of λK. Furthermore, let \overline{H}_d denote the smallest integer m such that there is a $0 < \lambda_d < 1$ with the property that every convex body K in \mathbb{R}^d is covered by m translates of $\lambda_d K$.

Clearly, $H_d \leq \overline{H}_d$. The following question was raised in [2] (Problem 6 in Section 3.2): Is it true that $H_d = \overline{H}_d$?

We answer the question in the affirmative using a simple topological argument.

Theorem 1.2. $H_d = \overline{H}_d$.

The famous conjecture of Gohberg, Markus, Boltyanski and Hadwiger states that $H_d \leq 2^d$ (and only the cube requires 2^d smaller positive homothetic copies to be covered). For more information on the conjecture, refer to [1], [7] and [11]. In view of Theorem 1.2, the conjecture is true if, and only if, the following, formally stronger conjecture holds:

Conjecture 1.3. (Strong Gohberg-Markus-Boltyanski-Hadwiger Conjecture). For every $d \geq 1$ there is a $0 < \lambda_d < 1$ such that every convex body K in \mathbb{R}^d is covered by 2^d translates of $\lambda_d K$.

In Section 2 we prove the Theorem. We note that the proof provides no upper bound on λ_d in terms of d. In Section 3 we show an upper bound on the number of translates of λK required to cover K, improving a result of Januszewski and Lassak [5].
2 Proof of Theorem 1.2

We define the following function on the set of convex bodies:

\[\lambda(K) := \inf \{ \lambda > 0 : K \text{ is covered by } H_d \text{ translates of } \lambda K \} . \]

By [8], \(H_d \) is finite for every \(d \), so \(\lambda(.) \) is well defined.

Remark 2.1. Clearly, \(\lambda(.) \) is affine invariant; that is, if \(T \) is an invertible affine transformation of \(\mathbb{R}^d \) then \(\lambda(K) = \lambda(TK) \). Moreover, \(0 < \lambda(K) < 1 \).

We recall the definition of the (multiplicative) Banach-Mazur distance of two convex bodies \(L \) and \(K \) in \(\mathbb{R}^d \):

\[
d_{BM}(L,K) = \inf \{ \lambda > 0 : L - a \subseteq T(K - b) \subseteq \lambda(L - a) \}
\quad \text{for some } a, b \in \mathbb{R}, T \in GL(\mathbb{R}^d) \} \tag{2.1}
\]

The following proposition states that \(\lambda(.) \) is upper semi-continuous. Similar statements have been proved before, cf. Lemma 2, in [3].

Proposition 2.2. For every convex body \(K \) and \(\varepsilon > 0 \) there is a \(\delta > 0 \) with the property that for any convex body \(L \), if \(d_{BM}(L,K) < 1 + \delta \) then \(\lambda(L) < \lambda(K) + \varepsilon \).

Proof. Let \(\lambda := \lambda(K) + \frac{\varepsilon}{2} \). Then there is a set \(\Lambda \subset \mathbb{R}^d \) with card \(\Lambda \leq H_d \) such that \(K \subseteq \Lambda + \lambda K \). Now, let \(\delta > 0 \) be such that

\[
1 + \delta < \frac{\lambda + \frac{\varepsilon}{2}}{\lambda} \tag{2.2}
\]

Assume that \(d_{BM}(L,K) < 1 + \delta \); that is,

\[
L - a \subseteq K \subseteq (1 + \delta)(L - a), \tag{2.3}
\]
where \(\overline{K} \) is an affine image (under an invertible affine transformation) of \(K \). Clearly, we may assume that \(\overline{K} = K \).

It follows that \(L - a \subseteq \Lambda + (1 + \delta)\lambda(L - a) \), and hence, \(\lambda(L) \leq (1 + \delta)\lambda \leq \lambda(k) + \varepsilon \).

Let \(\mathcal{K}_d^a \) denote the set of affine equivalence classes of convex bodies in \(\mathbb{R}^d \) equipped with the topology induced by the metric \(d_{BM} \). In [6] it is shown that \(\mathcal{K}_d^a \) is a compact space. (Note that Macbeath uses a different metric on \(\mathcal{K}_d^a \) however, that metric induces the same topology as \(d_{BM} \), cf. [4].)

It follows from Remark 2.1 and Proposition 2.2 that \(\lambda(.) \) is an upper semicontinuous function on a compact space. Hence, it attains its maximum, which (by Remark 2.1) is less than one. This proves Theorem 1.2.

3 Quantitative Results

Januszewski and Lassak [5] proved that for every \(k + l > d^d \), any convex body \(K \subset \mathbb{R}^d \) is covered by \(k \) translates of \(\lambda K \) and \(l \) translates of \(-\lambda K \), where \(\lambda = 1 - \frac{1}{(d+1)d^d} \). The following argument shows that one may obtain a better estimate on the number of translates of \(\lambda K \) required to cover \(K \), using results of Rogers [8], Rogers and Shephard [9], and Rogers and Zhong [10].

Let \(K, L \) be convex bodies in \(\mathbb{R}^d \). Let \(N(K, L) \) denote the covering number of \(K \) and \(L \); that is, the smallest number of translates of \(L \) required to cover \(K \). In [10] it is shown that

\[
N(K, L) \leq \frac{\text{vol}(K - L)}{\text{vol}(L)} \Theta(L),
\]

where \(\Theta(L) \) is the covering density of \(L \). By [8], \(\Theta(L) \leq d \log d + \)
On the Constant of Homothety for Covering a Convex Set with its Smaller Copies

\[\log \log d + 5d \] for every convex body \(L \) in \(\mathbb{R}^d \). It follows that for any \(0 < \lambda < 1 \) we have

\[
N(K, \lambda K) \leq \lambda^{-d} \frac{\text{vol}(K - K)}{\text{vol} K} (d \log d + \log \log d + 5d)
\]

\[
\leq \lambda^{-d} \left(\frac{2d}{d} \right) (d \log d + \log \log d + 5d) \tag{3.1}
\]

The last inequality follows from the Rogers-Shephard Inequality [9]. Similarly,

\[
N(K, -\lambda K) \leq \lambda^{-d} \frac{\text{vol}(K + K)}{\text{vol} K} (d \log d + \log \log d + 5d)
\]

\[
= \lambda^{-d} 2^d (d \log d + \log \log d + 5d) \tag{3.2}
\]

By substituting \(\lambda = \frac{1}{2} \) into (3.1) and (3.2), we obtain the following:

Remark 3.1. The number of translates of \(\frac{1}{2} K \) that cover \(K \) is of order not greater than \(8d \sqrt{d} \log d \); and the number of translates of \(-\frac{1}{2} K \) that cover \(K \) is of order not greater than \(4d^2 \log d \).

Definition 3.2. Let \(0 < \lambda < 1 \), and \(d \geq 1 \). We denote by \(H_d(\lambda) \) the smallest integer \(n \) such that every convex body \(K \) in \(\mathbb{R}^d \) is covered by \(n \) translates of \(\lambda K \).

It follows from Remark 3.1 that \(\overline{H}_d \left(\frac{1}{2} \right) \) is finite for every \(d \). A natural strengthening of the question we discussed in this note is the following:

Question 3.3. Is there a universal constant \(0 < \lambda < 1 \) such that for every dimension \(d \), \(H_d \) is equal to \(\overline{H}_d(\lambda) \)?

Acknowledgements. I would like to thank Nicole Tomczak-Jaegermann for her support during my post-doctoral years at the University of Alberta, as well as the University and the Pacific Institute for the Mathematical Sciences for their support. I am grateful to Omar Rivasplata for the translation of the abstract.
References

Resumen

Llamemos \(H_d \) al menor entero positivo \(n \) con la propiedad de que para todo cuerpo convexo \(K \) en \(\mathbb{R}^d \) hay una constante \(0 < \lambda < 1 \) tal que \(K \) se cubre por medio de \(n \) traslaciones de \(\lambda K \). En el libro *Research problems in discrete geometry*, de Brass, Moser y Pach, el siguiente problema fue propuesto: ¿Es posible encontrar una constante \(0 < \lambda_d < 1 \), que dependa solo de la dimensión \(d \), tal que todo cuerpo convexo \(K \) en \(\mathbb{R}^d \) es cubierto por \(H_d \) traslaciones de \(\lambda_d K \)? Demostraremos que la respuesta a esta pregunta es afirmativa, y por tanto que la conjetura de Gohberg-Markus-Boltyanski-Hadwiger (la cual postula que \(H_d \leq 2^d \)) se cumple si, y solo si, se satisface una versión formalmente más fuerte de la misma.

Palabras Clave: Iluminación, Conjetura de Boltyanski-Hadwiger, Conjuntos convexos, Cubrimiento de conjuntos convexos.

Márton Naszódi
Dept. of Geometry, Eötvös University.
Pázmány Péter Sétány 1 /C,
Budapest, Hungary 1117
nmarci@math.elte.hu

Pro Mathematica, 24, 47-48 (2010), 113-119, ISSN 1012-3938