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1. Introduction

In this paper K is a characteristic zero field and K[y]((x−1)) is the

algebra of Laurent series in x−1 with coefficients in K[y]. In a recent

article the following theorem was proved [3, Theorem 1.9].

Theorem 1.1. The Jacobian conjecture in dimension two is false if and

only if there exist

- P,Q ∈ K[x, y] and C,F ∈ K[y]((x−1)),

- n,m ∈ N such that n - m and m - n,

- νi ∈ K (i = 0, . . . ,m+ n− 2) with ν0 = 1,

such that

- C has the form

C = x+ C−1x
−1 + C−2x

−2 + · · · with each C−i ∈ K[y],

- gr(C) = 1 and gr(F ) = 2− n, where gr is the total degree,

- F+ = x1−ny, where F+ is the term of maximal degree in x of F ,

- Cn = P and Q =
∑m+n−2
i=0 νiC

m−i + F .

Furthermore, under these conditions (P,Q) is a counterexample to the

Jacobian conjecture. �

Motivated by this result, the authors consider the following slightly

more general situation. Let D be a K-algebra (in Theorem 1.1 we

take D = K[y]), n,m positive integers such that n - m and n - m,

(νi)0≤i≤n+m−2 a family of elements in K with ν0 = 1, and F1−n ∈ D (in

Theorem 1.1 we take F1−n = y). A Laurent series in x−1 of the form

C = x+ C−1x
−1 + C−2x

−2 + · · · with C−i ∈ D,
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is a solution of the system S(n,m, (νi), F1−n) if there are P,Q ∈ D[x]

and F ∈ D[[x−1]], such that

F = F1−nx
1−n + F−nx

−n + F−1−nx
−1−n + · · · ,

P = Cn, and Q =

m+n−2∑
i=0

νiC
m−i + F.

For example, if n = 2, then

P (x) =C2 = x2 + 2C−1 + 2C−2 x−1 + (C2
−1 + 2C−3) x−2

+ (2C−1C−2 + 2C−4) x−3 + (C2
−2 + 2C−1C−3 + 2C−5) x−4

+ (2C−2C−3 + 2C−1C−4 + 2C−6) x−5 + . . . ,

and the condition C2 ∈ K[x] translates into the following conditions on

C−k:

0 = (C2)−1 = 2C−2,

0 = (C2)−2 = C2
−1 + 2C−3,

0 = (C2)−3 = 2C−1C−2 + 2C−4,

0 = (C2)−4 = C2
−2 + 2C−1C−3 + 2C−5,

0 = (C2)−5 = 2C−2C−3 + 2C−1C−4 + 2C−6,

0 = (C2)−6 = C2
−3 + 2C−2C−4 + 2C−1C−5 + 2C−7,

0 = (C2)−7 = 2C−3C−4 + 2C−2C−5 + 2C−1C−6 + 2C−8,

0 = (C2)−8 = C2
−4 + 2C−3C−5 + 2C−2C−6 + 2C−1C−7 + 2C−9,

...

In general, the condition P (x) = Cn ∈ K[x] yields (Cn)−k = 0,

whereas Q(x) =
∑m+n−2
i=0 νiC

m−i + F ∈ K[x] handles us equations(∑m+n−2
i=0 νiC

m−i + F
)
−k

= 0, with F−k = 0 for k = 1, . . . , n− 2.

It is easy to see (e.g. [3, Remark 1.13]) that the first m + n − 2

coefficients determine the others, i.e., the coefficients C−1, . . . , C−m−n+2

determine univocally the coefficients C−k for k > m+ n− 2. Moreover,
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the F−k for k > n−1 depend only on F1−n and C. Consequently, having

a solution C to the system S(n,m, (νi), F1−n) is the same as having a

solution (C−1, . . . , C−m−n+2) to the system

Ek = (Cn)−k = 0, for k = 1, . . . ,m− 1,

Em−1+k =

(
m+n−2∑
i=0

νiC
m−i

)
−k

= 0, for k = 1, . . . , n− 2,

Em+n−2 =

(
m+n−2∑
i=0

νiC
m−i

)
1−n

+ F1−n = 0, (1.1)

with m+ n− 2 equations Ek = 0 and m+ n− 2 unknowns C−k.

In order to understand the solution set of this system, it would

be very helpful to find a Groebner basis for the ideal generated by the

polynomials Ek in D[C−1, . . . , Cm+n−2]. In this paper we compute such

a Groebner basis of (1.1) in a very particular case: we assume n = 2,

m = 2r + 1 for some integer r > 0, and νi = 0 for i > 0. Moreover, we

consider D = C[y] and F1−n = y, as in Theorem 1.1.

2. Computation of a Groebner basis for I2r

Assume n = 2, m = 2r + 1 for some integer r > 0, and νi = 0 for i > 0.

Set also D = C[y] and F1−n = y.

Then the system (1.1) reads

Ei =

{
(C2)−i, i = 1, . . . , 2r

(C2r+1)−1 + y, i = 2r + 1,
(2.1)

where (C2)−i denotes the coefficient of x−i in the Laurent series C2.
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Explicitly, the polynomials Ei are given by

E1 = 2C−2,

E2 = 2C−3 + (C−1)2,

E3 = 2C−4 + 2C−2C−1, (2.2)

E4 = 2C−5 + 2C−3C−1 + (C−2)2,

E5 = 2C−6 + 2C−2C−3 + 2C−4C−1,

E6 = 2C−7 + 2C−5C−1 + 2C−4C−2 + (C−3)2,

...

E2r−1 = 2C−2r + 2C−2C−2r+3 + 2C−4C−2r+5 + · · ·+ 2C−2r+4C−3 +

2C−2r+2C−1,

E2r = 2C−2r−1 + 2C−2r+1C−1 + 2C−2r+2C−2 + · · ·+ C2
−r,

E2r+1 = (C2r+1)−1 + y.

Each Ei is a polynomial in the ring C[C−1, C−2, . . . , C−2r−1, y], and

the 2r + 1 polynomials generate the ideal

I = 〈E1, . . . , E2r, E2r+1〉.

Our goal is to find a Groebner basis for this I. However, in this

section we will only compute a Groebner basis (Ẽ1, Ẽ2, . . . , Ẽ2r−1, Ẽ2r)

for the ideal I2r = 〈E1, E2, . . . , E2r−1, E2r〉.
Note that for i = 1 . . . , 2r we have

Ei = 2C−i−1 +

i−1∑
k=1

C−kCk−i. (2.3)

We replace the odd numbered polynomials E1, E3, E5, E7, . . . , E2r−1

28 Pro Mathematica, 28, 55 (2014), 24-40
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by new polynomials Ẽ1, Ẽ3, Ẽ5, Ẽ7, . . . , Ẽ2r−1 defined by

Ẽ1 = C−2 =
1

2
E1,

Ẽ3 = C−4 =
1

2
E3 − Ẽ1C−1,

Ẽ5 = C−6 =
1

2
E5 − Ẽ1C−3 − Ẽ3C−1, (2.4)

Ẽ7 = C−8 =
1

2
E7 − Ẽ1C−5 − Ẽ3C−3 − Ẽ5C−1,

Ẽ9 = C−10 =
1

2
E9 − Ẽ1C−7 − Ẽ3C−5 − Ẽ5C−3 − Ẽ7C−1,

...

Ẽ2r−1 = C−2r =
1

2
E2r−1 −

r−1∑
i=1

Ẽ2i−1C−2(r−i)+1.

Remark 2.1. We have

〈E1, E3, . . . , E2r−1〉 = 〈Ẽ1, Ẽ3, . . . , Ẽ2r−1〉.

In fact, if we define Ĩoddk = 〈Ẽ1, Ẽ3, . . . , Ẽ2k−1〉, then (2.4) clearly implies

E2i+1 − 2Ẽ2i+1 ∈ Ĩoddi , (2.5)

and so we get 〈E1, E3, . . . , E2i+1〉 ⊂ 〈Ẽ1, Ẽ3, . . . , Ẽ2i+1〉 for i = 0, 1, . . . ,

r− 1. Using induction one sees that we also have 〈Ẽ1, Ẽ3, . . . , Ẽ2r−1〉 ⊂
〈E1, E3, . . . , E2r−1〉, as desired.

The next proposition deals with E2, E4, E6, . . . , E2r, the first r even

numbered polynomials.

Proposition 2.2. For all j ∈ N there exists λj such that for Ẽ2j =

C−2j−1 + λjC
j+1
−1 we have

C−2j−1 + λjC
j+1
−1 −

1

2
E2j ∈ Ĩ2j−1 = 〈Ẽ1, Ẽ2, . . . , Ẽ2j−2, Ẽ2j−1〉. (2.6)
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Moreover, if we set λ0 = −1, then for j > 0, λj is given by

λj =
1

2

(
j−1∑
k=0

λkλj−k−1

)
. (2.7)

Proof. We proceed by induction on j. For j = 0 we set Ẽ0 = 0. Then

we have

Ẽ0 ∈ Ĩ2j−1 for all j ≥ 1, and Ẽ0 = C−1 + λ0C−1. (2.8)

For j = 1, with λ1 =
1

2
calculated by (2.7), we have

C−3 +
1

2
C2
−1 −

1

2
E2 = 0 ∈ 〈Ẽ1〉,

as desired.

From (2.3) we have

E2j = 2C−2j−1 +

2j−1∑
k=1

C−kCk−2j

= 2C−2j−1 +

j−1∑
k=0

C−2k−1C2k+1−2j +

j−1∑
k=1

C−2kC2k−2j ,

which clearly implies
∑j−1
k=1 C−2kC2k−2j ∈ Ĩ2j−1. Therefore we get

C−2j−1 −
1

2
E2j ∈ −

1

2

(
j−1∑
k=0

C−2k−1C2k+1−2j

)
+ Ĩ2j−1. (2.9)

By the induction hypothesis and (2.8), for 0 ≤ k ≤ j − 1, there exist λk
and λj−k−1 such that

C−2k−1 = −λkCk+1
−1 +Ẽ2k and C2k+1−2j = −λj−k−1Cj−k−1 +Ẽ2(j−k−1);

and hence

C−2k−1C2k+1−2j ∈ λkλj−k−1Cj+1
−1 + Ĩ2j−1.
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From (2.9) we obtain

C−2j−1 −
1

2
E2j ∈ −

1

2

(
j−1∑
k=0

λkλj−k−1

)
Cj+1
−1 + Ĩ2j−1,

from which Relation (2.6) follows with λj = 1
2

(∑j−1
k=0 λkλj−k−1

)
, as

claimed.

Corollary 2.3. We have

〈E1, E2, . . . , E2r〉 = 〈Ẽ1, Ẽ2, . . . , Ẽ2r〉.

Proof. In fact, if we define Ĩk = 〈Ẽ1, Ẽ2, . . . , Ẽk〉, then (2.5) and Propo-

sition 2.2 imply

Ek+1 − 2Ẽk+1 ∈ Ĩk,

and so we get 〈E1, E2, . . . , Ek+1〉 ⊂ 〈Ẽ1, Ẽ2, . . . , Ẽk+1〉 for all k. Since we

have 〈E1〉 = 〈Ẽ1〉, using induction one also obtains 〈Ẽ1, Ẽ2, . . . , Ẽk〉 ⊂
〈E1, E2, . . . , Ek〉, as claimed.

The bottom line of this corollary is that we can replace the sys-

tem (2.2) with the following set of equations.

Ẽ1 = C−2 = 0,

Ẽ3 = C−4 = 0,

...

Ẽ2r−1 = C−2r = 0,

(2.10)
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Ẽ2 = C−3 + λ1C
2
−1 = 0,

Ẽ4 = C−5 + λ2C
3
−1 = 0,

...

Ẽ2r = C−2r−1 + λrC
r+1
−1 = 0,

Ẽ2r+1 = (C2r+1)−1 + y = 0.

Proposition 2.4. If we fix the lex order with C−2r−1 > C−2r > · · · >
C−3 > C−2 > C−1 > y, then G2r = (Ẽ1, Ẽ2, . . . , Ẽ2r−1, Ẽ2r) is a Groeb-

ner basis of the ideal

Ĩ2r = 〈Ẽ1, Ẽ2, . . . , Ẽ2r−1, Ẽ2r〉

Proof. We first compute the S-polynomials of G2r, and prove that they

satisfy S(Ẽi, Ẽj)
G2r

= 0 for 1 ≤ i, j ≤ 2r.

Consider first the S-polynomial of an even-numbered polynomial

and an odd-numbered polynomial, say Ẽ2s−1 and Ẽ2t, with 1 ≤ s, t ≤ r.
We have then

S(Ẽ2s−1, Ẽ2t) = C−2t−1C−2s − C−2s(C−2t−1 + λtC
t+1
−1 )

= −λtCt+1
−1 C−2s

= −λtCt+1
−1 Ẽ2s−1,

and so S(Ẽ2s−1, Ẽ2t)
G2r

= 0, for all 1 ≤ s, t ≤ r.
In case both i, j are odd, we take Ẽ2s−1, Ẽ2t−1, with 1 ≤ s, t ≤ r.

Then we have

S(Ẽ2s−1, Ẽ2t−1) = C−2tC−2s − C−2sC−2t = 0,

and trivially we get S(Ẽ2s−1, Ẽ2t−1)
G2r

= 0, for all 1 ≤ s, t ≤ r.
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In the last case, when i, j are even, consider Ẽ2s, Ẽ2t, with 1 ≤ s, t ≤
r. Then we have

S(Ẽ2s, Ẽ2t) = C−2t−1(C−2s−1 + λsC
s+1
−1 )− C−2s−1(C−2t−1 + λtC

t+1
−1 )

= λsC
s+1
−1 C−2t−1 − λtC

t+1
−1 C−2s−1.

Now we divide S(Ẽ2s, Ẽ2t) by G2r. If C−2t−1 > C−2s−1, then the leading

term is

lt(S(Ẽ2s, Ẽ2t)) = λsC
s+1
−1 C−2t−1,

and the first division step yields

S(Ẽ2s, Ẽ2t) = λsC
s+1
−1 Ẽ2t +R1,

with R1 = −λsλtCs+t+2
−1 − λtCt+1

−1 C−2s−1. By continuing the division

algorithm we obtain

R1 = −λtCt+1
−1 Ẽ2s + 0,

and hence S(Ẽ2s, Ẽ2t)
G2r

= 0 in this case. The case C−2s−1 > C−2t−1

is similar, so we get S(Ẽ2t, Ẽ2s)
G2r

= 0 for 1 ≤ s, t ≤ r.

From Corollary 2.3 and Proposition 2.4 we are able conclude that

(Ẽ1, Ẽ2, . . . , Ẽ2r−1, Ẽ2r) is a Groebner basis for 〈E1, E2, . . . , E2r−1, E2r〉.

3. A recursive formula for the Catalan num-

bers and a Groebner basis for the ideal

In this last section we will determine a Groebner basis for the ideal I

given by the complete system (2.1). In order to achieve this we need

to establish additional properties of the λj ’s which are closely related to

the ubiquitous Catalan numbers.
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Lemma 3.1. For all j ≥ 0 the equality

cj = (−1)j+12jλj (3.1)

holds, where cj are the Catalan numbers given by cj =
1

j + 1

(
2j

j

)
.

Proof. The Catalan numbers are uniquely determined (see e.g. [4, p.117

(5.6)]) by c0 = 1 and the recursive relation

cr =

r−1∑
j=0

cjcr−1−j .

Set dj = (−1)j+12jλj . Then d0 = 1, since λ0 = −1, and so equality (2.7)

gives us

dj =(−1)j+12jλj

=(−1)j+12j
1

2

(
j−1∑
k=0

λkλj−k−1

)

=

j−1∑
k=0

(
(−1)k+12kλk

) (
(−1)j−k2j−1−kλj−k−1

)
=

j−1∑
k=0

dkdj−1−k,

and hence dj = cj for all j, as desired.

Now we prove a recursive formula for the Catalan numbers.

Proposition 3.2. The Catalan numbers satisfy the following formula

(2r + 1)
cr
22r

=

r∑
j=0

(−1)j
(
r

j

)
cj
22j

. (3.2)

Consequently, λr satisfies

(2r + 1)(−1)r+1λr =

r∑
j=0

(
r

j

)
2r−j(−λj). (3.3)
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Proof. Replacing cj in (3.2), and using (3.1) yields (3.3). Hence, it

suffices to prove only (3.2). For that, we replace cj by 1
j+1

(
2j
j

)
on the

righthand side of (3.2) and use the equalities(
−1/2

j

)
=

(−1)j

22j

(
2j

j

)
and

(
r + 1/2

r

)
=

(2r + 1)

22r

(
2r

r

)
.

Then we have

r∑
j=0

(−1)j
(
r

j

)
cj
22j

=

r∑
j=0

(−1)j

22j

(
2j

j

)
· 1

(j + 1)

(
r

j

)

=

r∑
j=0

(
−1/2

j

)
1

r + 1

(
r + 1

j + 1

)

=
1

(r + 1)

r∑
j=0

(
−1/2

j

)
·
(
r + 1

r − j

)

=
1

(r + 1)

(
r + 1/2

r

)
=

1

(r + 1)

(2r + 1)

22r

(
2r

r

)
= (2r + 1)

cr
22r

.

The second equality follows from
1

j + 1

(
r

j

)
=

1

(r + 1)

(
r + 1

j + 1

)
and

the fourth from

(
α+ β

r

)
=

r∑
j=0

(
α

j

)(
β

r − j

)
, relations valid for all

α, β ∈ C. The last equality is known as the Chu–Vandermonde identity

or Vandermonde convolution [1, p. 44, 13c′].

Proposition 3.3. Let I2r = 〈E1, E2, . . . , E2r〉. Then we have

(C2r+1)−1 ∈ µrCr+1
−1 + I2r,

for µr =
2r + 1

(r + 1)2r

(
2r

r

)
.

Pro Mathematica, 28, 55 (2014), 24-40 35



Christian Valqui, Marco Solorzano

Proof. By definition we have

(C2r+1)−1 = [(C2)rC]−1 =

2r∑
j=−2

[(C2)r]jC−j−1,

since C−j−1 = 0 for j < −2 and [(C2)r]j = 0 for j > 2r.

But we also have [(C2)r]j =
∑
i1+···+ir=j(C

2)i1 . . . (C
2)ir . We claim

that if i1 + · · ·+ ir = j, then ik ≥ −2r for k = 1, . . . , r. In fact, as ij ≤ 2,

then so we have

i1 + · · ·+ ik−1 + ik+1 + · · ·+ ir ≤ 2(r − 1),

and j = ik + (i1 + · · · + ik−1 + ik+1 + · · · + ir) ≤ 2(r − 1) + ik as well.

Therefore we get ik ≥ j − 2r + 2 ≥ −2r, since j ≥ −2.

By definition we have Ei = (C2)−i for i = 1, . . . , 2r. Consequently

we obtain

(C2)i1 . . . (C
2)ir ∈ I2r, if some ik is negative.

It follows that

[(C2)r]j ∈
∑

i1+···+ir=j
ik≥0

(C2)i1 . . . (C
2)ir + I2r = [(x2 + 2C−1)r]j + I2r

holds, since C2 = x2+2C−1+(C2)−1x
−1+(C2)−2x

−2+(C2)−3x
−3+. . . .

But we also have

(x2 + 2C−1)r =

r∑
k=0

(
r

k

)
(2C−1)r−kx2k,

and so

[(x2 + 2C−1)r]j =

{ (
r
k

)
(2C−1)r−k if j = 2k

0, if j = 2k + 1.

We arrive at

(C2r+1)−1 ∈
r∑

k=0

(
r

k

)
(2C−1)r−kC−2k−1 + I2r.
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Note that by Proposition 2.2 we have

C−2k−1 = Ẽ2k − λkCk+1
−1 ∈ −λkC

k+1
−1 + I2r,

so we obtain

(C2r+1)−1 ∈
r∑

k=0

(
r

k

)
(2C−1)r−k(−λkCk+1

−1 ) + I2r

=

(
r∑

k=0

(
r

k

)
2r−k(−λk)

)
(C−1)r+1 + I2r,

and the formula for µr follows now from (3.1) and (3.3).

Corollary 3.4. For Ẽ2r+1 = µr(C−1)r+1 + y we have

〈E1, E2, . . . , E2r−1, E2r, E2r+1〉 = 〈Ẽ1, Ẽ2, . . . , Ẽ2r−1, Ẽ2r, Ẽ2r+1〉.

Proof. By Proposition 3.3 we have E2r+1−Ẽ2r+1 = (C2r+1)−1−µrCr+1
−1 ∈

I2r. The result follows now from Corollary 2.3.

Now we can state our main result.

Theorem 3.5. If we fix the lex order with C−2r−1 > C−2r > · · · >
C−3 > C−2 > C−1 > y, then G2r+1 = (Ẽ1, Ẽ2, . . . , Ẽ2r, Ẽ2r+1) is a

Groebner basis for the ideal

I = 〈E1, E2, . . . , E2r−1, E2r, E2r+1〉.

Proof. By Corollary 3.4 it suffices to prove that the division of the S-

polynomials S(Ẽi, Ẽj) by G2r+1 is zero. If i, j ≤ 2r, then the division

algorithm yields the same quotients and remainders as in Proposition 2.4,

since the remainders become zero before one has to divide by Ẽ2r+1.

Note that lt(Ẽ2r+1) = µr(C−1)r+1, since µr 6= 0. It remains to divide

the S-polynomials S(Ẽi, Ẽ2r+1) by G2r+1. We first consider the case

i = 2t− 1 for some t = 1, . . . , r. We get

S(Ẽ2t−1, Ẽ2r+1) =
C−2tC

r+1
−1

C−2t
(C−2t)−

C−2tC
r+1
−1

µrC
r+1
−1

(µrC
r+1
−1 + y)

= − 1

µr
yC−2t,
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for all t = 1, . . . , r. The first division step yields S(Ẽ2t−1, Ẽ2r+1) =

− 1
µr
yẼ2t−1, hence we obtain S(Ẽ2t−1, Ẽ2r+1)

G2r+1

= 0, for all t =

1, . . . , r.

Now for the S-polynomials of Ẽ2t and Ẽ2r+1, for some t = 1, . . . , r,

we have

S(Ẽ2t, Ẽ2r+1) =
C−2t−1C

r+1
−1

C−2t−1
(C−2t−1 + λtC

t+1
−1 )−

C−2t−1C
r+1
−1

µrC
r+1
−1

(µrC
r+1
−1 + y)

= λtC
r+t+2
−1 − 1

µr
C−2t−1y.

with leading term

lt(S(Ẽ2t, Ẽ2r+1)) = − 1

µr
C−2t−1y.

We divide S(Ẽ2t, Ẽ2r+1) by G2r+1, and the first division step gives us

S(Ẽ2t, Ẽ2r+1) = − 1

µr
yẼ2t +R1

with R1 = λtC
r+t+2
−1 + λt

µr
yCt+1
−1 . Finally we take note of the equality

R1 = λt

µr
Ct+1
−1 Ẽ2r+1, in order to obtain S(Ẽ2t, Ẽ2r+1)

G2r+1

= 0, for all

t = 1, . . . , r. This concludes the proof.

In brief, we give the Groebner basisG2r+1 = (Ẽ1, Ẽ2, . . . , Ẽ2r, Ẽ2r+1)

of I explicitly as
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Ẽ1 = C−2,

Ẽ3 = C−4,

...

Ẽ2r−1 = C−2r,

Ẽ2 = C−3 + λ1C
2
−1,

Ẽ4 = C−5 + λ2C
3
−1,

...

Ẽ2r = C−2r−1 + λrC
r+1
−1 ,

Ẽ2r+1 = µr(C−1)r+1 + y.

with

µr =
2r + 1

(r + 1)2r

(
2r

r

)
and λj =

(−1)j+1

(j + 1)2j

(
2j

j

)
.
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Resumen

En este art́ıculo calculamos la base de Groebner de un sistema polinomial

de ecuaciones relacionada con la conjetura del jacobiano utilizando una

formula recursiva para los números de Catalan.
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