The Groebner basis of a polynomial system related to the Jacobian conjecture

Christian Valqui ${ }^{1,2,3}$, Marco Solorzano ${ }^{1}$

October, 2014
Abstract

We compute the Groebner basis of a system of polynomial equations related to the Jacobian conjecture using a recursive formula for the Catalan numbers.

MSC(2010): 14R15; 13F20, 11B99.

Keywords: Jacobian, Groebner basis, Catalan numbers.

[^0]The Groebner basis of a polynomial system related to the Jacobian conjecture

1. Introduction

In this paper K is a characteristic zero field and $K[y]\left(\left(x^{-1}\right)\right)$ is the algebra of Laurent series in x^{-1} with coefficients in $K[y]$. In a recent article the following theorem was proved [3, Theorem 1.9].

Theorem 1.1. The Jacobian conjecture in dimension two is false if and only if there exist

- $P, Q \in K[x, y]$ and $C, F \in K[y]\left(\left(x^{-1}\right)\right)$,
- $n, m \in \mathbb{N}$ such that $n \nmid m$ and $m \nmid n$,
- $\nu_{i} \in K(i=0, \ldots, m+n-2)$ with $\nu_{0}=1$,
such that
- C has the form

$$
C=x+C_{-1} x^{-1}+C_{-2} x^{-2}+\cdots \quad \text { with each } C_{-i} \in K[y]
$$

- $\operatorname{gr}(C)=1$ and $\operatorname{gr}(F)=2-n$, where $g r$ is the total degree,
- $F_{+}=x^{1-n} y$, where F_{+}is the term of maximal degree in x of F,
- $C^{n}=P$ and $Q=\sum_{i=0}^{m+n-2} \nu_{i} C^{m-i}+F$.

Furthermore, under these conditions (P, Q) is a counterexample to the Jacobian conjecture.

Motivated by this result, the authors consider the following slightly more general situation. Let D be a K-algebra (in Theorem 1.1 we take $D=K[y]), n, m$ positive integers such that $n \nmid m$ and $n \nmid m$, $\left(\nu_{i}\right)_{0 \leq i \leq n+m-2}$ a family of elements in K with $\nu_{0}=1$, and $F_{1-n} \in D$ (in Theorem 1.1 we take $F_{1-n}=y$). A Laurent series in x^{-1} of the form

$$
C=x+C_{-1} x^{-1}+C_{-2} x^{-2}+\cdots \quad \text { with } C_{-i} \in D
$$

is a solution of the system $S\left(n, m,\left(\nu_{i}\right), F_{1-n}\right)$ if there are $P, Q \in D[x]$ and $F \in D\left[\left[x^{-1}\right]\right]$, such that

$$
\begin{aligned}
& F=F_{1-n} x^{1-n}+F_{-n} x^{-n}+F_{-1-n} x^{-1-n}+\cdots \\
& P=C^{n}, \quad \text { and } \quad Q=\sum_{i=0}^{m+n-2} \nu_{i} C^{m-i}+F
\end{aligned}
$$

For example, if $n=2$, then

$$
\begin{aligned}
P(\mathbf{x})= & C^{2}=\mathbf{x}^{2}+2 C_{-1}+2 C_{-2} \mathbf{x}^{-1}+\left(C_{-1}^{2}+2 C_{-3}\right) \mathbf{x}^{-2} \\
& +\left(2 C_{-1} C_{-2}+2 C_{-4}\right) \mathbf{x}^{-3}+\left(C_{-2}^{2}+2 C_{-1} C_{-3}+2 C_{-5}\right) \mathbf{x}^{-4} \\
& +\left(2 C_{-2} C_{-3}+2 C_{-1} C_{-4}+2 C_{-6}\right) \mathbf{x}^{-5}+\ldots,
\end{aligned}
$$

and the condition $C^{2} \in K[x]$ translates into the following conditions on C_{-k} :

$$
\begin{aligned}
& 0=\left(C^{2}\right)_{-1}=2 C_{-2}, \\
& 0=\left(C^{2}\right)_{-2}=C_{-1}^{2}+2 C_{-3}, \\
& 0=\left(C^{2}\right)_{-3}=2 C_{-1} C_{-2}+2 C_{-4}, \\
& 0=\left(C^{2}\right)_{-4}=C_{-2}^{2}+2 C_{-1} C_{-3}+2 C_{-5}, \\
& 0=\left(C^{2}\right)_{-5}=2 C_{-2} C_{-3}+2 C_{-1} C_{-4}+2 C_{-6}, \\
& 0=\left(C^{2}\right)_{-6}=C_{-3}^{2}+2 C_{-2} C_{-4}+2 C_{-1} C_{-5}+2 C_{-7}, \\
& 0=\left(C^{2}\right)_{-7}=2 C_{-3} C_{-4}+2 C_{-2} C_{-5}+2 C_{-1} C_{-6}+2 C_{-8}, \\
& 0=\left(C^{2}\right)_{-8}=C_{-4}^{2}+2 C_{-3} C_{-5}+2 C_{-2} C_{-6}+2 C_{-1} C_{-7}+2 C_{-9},
\end{aligned}
$$

In general, the condition $P(x)=C^{n} \in K[x]$ yields $\left(C^{n}\right)_{-k}=0$, whereas $Q(x)=\sum_{i=0}^{m+n-2} \nu_{i} C^{m-i}+F \in K[x]$ handles us equations $\left(\sum_{i=0}^{m+n-2} \nu_{i} C^{m-i}+F\right)_{-k}=0$, with $F_{-k}=0$ for $k=1, \ldots, n-2$.

It is easy to see (e.g. [3, Remark 1.13]) that the first $m+n-2$ coefficients determine the others, i.e., the coefficients $C_{-1}, \ldots, C_{-m-n+2}$ determine univocally the coefficients C_{-k} for $k>m+n-2$. Moreover,

The Groebner basis of a polynomial system related to the Jacobian conjecture
the F_{-k} for $k>n-1$ depend only on F_{1-n} and C. Consequently, having a solution C to the system $S\left(n, m,\left(\nu_{i}\right), F_{1-n}\right)$ is the same as having a solution ($C_{-1}, \ldots, C_{-m-n+2}$) to the system

$$
\begin{array}{rlr}
E_{k} & =\left(C^{n}\right)_{-k}=0, & \text { for } k=1, \ldots, m-1, \\
E_{m-1+k} & =\left(\sum_{i=0}^{m+n-2} \nu_{i} C^{m-i}\right)_{-k}=0, & \text { for } k=1, \ldots, n-2, \\
E_{m+n-2} & =\left(\sum_{i=0}^{m+n-2} \nu_{i} C^{m-i}\right)_{1-n}+F_{1-n}=0, & \tag{1.1}
\end{array}
$$

with $m+n-2$ equations $E_{k}=0$ and $m+n-2$ unknowns C_{-k}.
In order to understand the solution set of this system, it would be very helpful to find a Groebner basis for the ideal generated by the polynomials E_{k} in $D\left[C_{-1}, \ldots, C_{m+n-2}\right]$. In this paper we compute such a Groebner basis of (1.1) in a very particular case: we assume $n=2$, $m=2 r+1$ for some integer $r>0$, and $\nu_{i}=0$ for $i>0$. Moreover, we consider $D=C[y]$ and $F_{1-n}=y$, as in Theorem 1.1.

2. Computation of a Groebner basis for $I_{2 r}$

Assume $n=2, m=2 r+1$ for some integer $r>0$, and $\nu_{i}=0$ for $i>0$. Set also $D=\mathbb{C}[y]$ and $F_{1-n}=y$.

Then the system (1.1) reads

$$
E_{i}= \begin{cases}\left(C^{2}\right)_{-i}, & i=1, \ldots, 2 r \tag{2.1}\\ \left(C^{2 r+1}\right)_{-1}+y, & i=2 r+1\end{cases}
$$

where $\left(C^{2}\right)_{-i}$ denotes the coefficient of x^{-i} in the Laurent series C^{2}.

Christian Valqui, Marco Solorzano

Explicitly, the polynomials E_{i} are given by

$$
\begin{aligned}
& E_{1}=2 C_{-2}, \\
& E_{2}=2 C_{-3}+\left(C_{-1}\right)^{2}, \\
& E_{3}=2 C_{-4}+2 C_{-2} C_{-1}, \\
& E_{4}=2 C_{-5}+2 C_{-3} C_{-1}+\left(C_{-2}\right)^{2}, \\
& E_{5}=2 C_{-6}+2 C_{-2} C_{-3}+2 C_{-4} C_{-1}, \\
& E_{6}=2 C_{-7}+2 C_{-5} C_{-1}+2 C_{-4} C_{-2}+\left(C_{-3}\right)^{2}, \\
& \vdots \\
& E_{2 r-1}=2 C_{-2 r}+2 C_{-2} C_{-2 r+3}+2 C_{-4} C_{-2 r+5}+\cdots+2 C_{-2 r+4} C_{-3}+ \\
& E_{2 r}=2 C_{-2 r+2} C_{-1}, \\
& E_{2 r+1}+2 C_{-2 r+1} C_{-1}+2 C_{-2 r+2} C_{-2}+\cdots+C_{-r}^{2}, \\
& E_{2 r+1}=\left(C^{2 r+1}\right)_{-1}+y .
\end{aligned}
$$

Each E_{i} is a polynomial in the ring $\mathbb{C}\left[C_{-1}, C_{-2}, \ldots, C_{-2 r-1}, y\right]$, and the $2 r+1$ polynomials generate the ideal

$$
I=\left\langle E_{1}, \ldots, E_{2 r}, E_{2 r+1}\right\rangle .
$$

Our goal is to find a Groebner basis for this I. However, in this section we will only compute a Groebner basis $\left(\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r-1}, \widetilde{E}_{2 r}\right)$ for the ideal $I_{2 r}=\left\langle E_{1}, E_{2}, \ldots, E_{2 r-1}, E_{2 r}\right\rangle$.

Note that for $i=1 \ldots, 2 r$ we have

$$
\begin{equation*}
E_{i}=2 C_{-i-1}+\sum_{k=1}^{i-1} C_{-k} C_{k-i} . \tag{2.3}
\end{equation*}
$$

We replace the odd numbered polynomials $E_{1}, E_{3}, E_{5}, E_{7}, \ldots, E_{2 r-1}$

The Groebner basis of a polynomial system related to the Jacobian conjecture by new polynomials $\widetilde{E}_{1}, \widetilde{E}_{3}, \widetilde{E}_{5}, \widetilde{E}_{7}, \ldots, \widetilde{E}_{2 r-1}$ defined by

$$
\begin{aligned}
\widetilde{E}_{1} & =C_{-2}=\frac{1}{2} E_{1} \\
\widetilde{E}_{3} & =C_{-4}=\frac{1}{2} E_{3}-\widetilde{E}_{1} C_{-1} \\
\widetilde{E}_{5} & =C_{-6}=\frac{1}{2} E_{5}-\widetilde{E}_{1} C_{-3}-\widetilde{E}_{3} C_{-1} \\
\widetilde{E}_{7} & =C_{-8}=\frac{1}{2} E_{7}-\widetilde{E}_{1} C_{-5}-\widetilde{E}_{3} C_{-3}-\widetilde{E}_{5} C_{-1} \\
\widetilde{E}_{9} & =C_{-10}=\frac{1}{2} E_{9}-\widetilde{E}_{1} C_{-7}-\widetilde{E}_{3} C_{-5}-\widetilde{E}_{5} C_{-3}-\widetilde{E}_{7} C_{-1} \\
& \vdots \\
\widetilde{E}_{2 r-1} & =C_{-2 r}=\frac{1}{2} E_{2 r-1}-\sum_{i=1}^{r-1} \widetilde{E}_{2 i-1} C_{-2(r-i)+1}
\end{aligned}
$$

Remark 2.1. We have

$$
\left\langle E_{1}, E_{3}, \ldots, E_{2 r-1}\right\rangle=\left\langle\widetilde{E}_{1}, \widetilde{E}_{3}, \ldots, \widetilde{E}_{2 r-1}\right\rangle
$$

In fact, if we define $\widetilde{I}_{k}^{\text {odd }}=\left\langle\widetilde{E}_{1}, \widetilde{E}_{3}, \ldots, \widetilde{E}_{2 k-1}\right\rangle$, then (2.4) clearly implies

$$
\begin{equation*}
E_{2 i+1}-2 \widetilde{E}_{2 i+1} \in \widetilde{I}_{i}^{\text {odd }} \tag{2.5}
\end{equation*}
$$

and so we get $\left\langle E_{1}, E_{3}, \ldots, E_{2 i+1}\right\rangle \subset\left\langle\widetilde{E}_{1}, \widetilde{E}_{3}, \ldots, \widetilde{E}_{2 i+1}\right\rangle$ for $i=0,1, \ldots$, $r-1$. Using induction one sees that we also have $\left\langle\widetilde{E}_{1}, \widetilde{E}_{3}, \ldots, \widetilde{E}_{2 r-1}\right\rangle \subset$ $\left\langle E_{1}, E_{3}, \ldots, E_{2 r-1}\right\rangle$, as desired.

The next proposition deals with $E_{2}, E_{4}, E_{6}, \ldots, E_{2 r}$, the first r even numbered polynomials.

Proposition 2.2. For all $j \in \mathbb{N}$ there exists λ_{j} such that for $\widetilde{E}_{2 j}=$ $C_{-2 j-1}+\lambda_{j} C_{-1}^{j+1}$ we have

$$
\begin{equation*}
C_{-2 j-1}+\lambda_{j} C_{-1}^{j+1}-\frac{1}{2} E_{2 j} \in \widetilde{I}_{2 j-1}=\left\langle\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 j-2}, \widetilde{E}_{2 j-1}\right\rangle \tag{2.6}
\end{equation*}
$$

Pro Mathematica, 28, 55 (2014), 24-40

Christian Valqui, Marco Solorzano

Moreover, if we set $\lambda_{0}=-1$, then for $j>0, \lambda_{j}$ is given by

$$
\begin{equation*}
\lambda_{j}=\frac{1}{2}\left(\sum_{k=0}^{j-1} \lambda_{k} \lambda_{j-k-1}\right) . \tag{2.7}
\end{equation*}
$$

Proof. We proceed by induction on j. For $j=0$ we set $\widetilde{E}_{0}=0$. Then we have

$$
\begin{equation*}
\widetilde{E}_{0} \in \widetilde{I}_{2 j-1} \quad \text { for all } j \geq 1, \quad \text { and } \quad \widetilde{E}_{0}=C_{-1}+\lambda_{0} C_{-1} \tag{2.8}
\end{equation*}
$$

For $j=1$, with $\lambda_{1}=\frac{1}{2}$ calculated by (2.7), we have

$$
C_{-3}+\frac{1}{2} C_{-1}^{2}-\frac{1}{2} E_{2}=0 \in\left\langle\widetilde{E}_{1}\right\rangle,
$$

as desired.
From (2.3) we have

$$
\begin{aligned}
E_{2 j} & =2 C_{-2 j-1}+\sum_{k=1}^{2 j-1} C_{-k} C_{k-2 j} \\
& =2 C_{-2 j-1}+\sum_{k=0}^{j-1} C_{-2 k-1} C_{2 k+1-2 j}+\sum_{k=1}^{j-1} C_{-2 k} C_{2 k-2 j},
\end{aligned}
$$

which clearly implies $\sum_{k=1}^{j-1} C_{-2 k} C_{2 k-2 j} \in \widetilde{I}_{2 j-1}$. Therefore we get

$$
\begin{equation*}
C_{-2 j-1}-\frac{1}{2} E_{2 j} \in-\frac{1}{2}\left(\sum_{k=0}^{j-1} C_{-2 k-1} C_{2 k+1-2 j}\right)+\widetilde{I}_{2 j-1} . \tag{2.9}
\end{equation*}
$$

By the induction hypothesis and (2.8), for $0 \leq k \leq j-1$, there exist λ_{k} and λ_{j-k-1} such that
$C_{-2 k-1}=-\lambda_{k} C_{-1}^{k+1}+\widetilde{E}_{2 k} \quad$ and $\quad C_{2 k+1-2 j}=-\lambda_{j-k-1} C_{-1}^{j-k}+\widetilde{E}_{2(j-k-1)} ;$ and hence

$$
C_{-2 k-1} C_{2 k+1-2 j} \in \lambda_{k} \lambda_{j-k-1} C_{-1}^{j+1}+\widetilde{I}_{2 j-1} .
$$

The Groebner basis of a polynomial system related to the Jacobian conjecture

From (2.9) we obtain

$$
C_{-2 j-1}-\frac{1}{2} E_{2 j} \in-\frac{1}{2}\left(\sum_{k=0}^{j-1} \lambda_{k} \lambda_{j-k-1}\right) C_{-1}^{j+1}+\widetilde{I}_{2 j-1}
$$

from which Relation (2.6) follows with $\lambda_{j}=\frac{1}{2}\left(\sum_{k=0}^{j-1} \lambda_{k} \lambda_{j-k-1}\right)$, as claimed.

Corollary 2.3. We have

$$
\left\langle E_{1}, E_{2}, \ldots, E_{2 r}\right\rangle=\left\langle\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r}\right\rangle .
$$

Proof. In fact, if we define $\widetilde{I}_{k}=\left\langle\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{k}\right\rangle$, then (2.5) and Proposition 2.2 imply

$$
E_{k+1}-2 \widetilde{E}_{k+1} \in \widetilde{I}_{k}
$$

and so we get $\left\langle E_{1}, E_{2}, \ldots, E_{k+1}\right\rangle \subset\left\langle\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{k+1}\right\rangle$ for all k. Since we have $\left\langle E_{1}\right\rangle=\left\langle\widetilde{E}_{1}\right\rangle$, using induction one also obtains $\left\langle\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{k}\right\rangle \subset$ $\left\langle E_{1}, E_{2}, \ldots, E_{k}\right\rangle$, as claimed.

The bottom line of this corollary is that we can replace the system (2.2) with the following set of equations.

$$
\begin{align*}
\widetilde{E}_{1} & =C_{-2}=0 \\
\widetilde{E}_{3} & =C_{-4}=0 \\
& \vdots \\
\widetilde{E}_{2 r-1} & =C_{-2 r}=0 \tag{2.10}
\end{align*}
$$

$$
\begin{aligned}
\widetilde{E}_{2} & =C_{-3}+\lambda_{1} C_{-1}^{2}=0 \\
\widetilde{E}_{4} & =C_{-5}+\lambda_{2} C_{-1}^{3}=0 \\
& \vdots \\
\widetilde{E}_{2 r} & =C_{-2 r-1}+\lambda_{r} C_{-1}^{r+1}=0, \\
\widetilde{E}_{2 r+1} & =\left(C^{2 r+1}\right)_{-1}+y=0 .
\end{aligned}
$$

Proposition 2.4. If we fix the lex order with $C_{-2 r-1}>C_{-2 r}>\cdots>$ $C_{-3}>C_{-2}>C_{-1}>y$, then $G_{2 r}=\left(\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r-1}, \widetilde{E}_{2 r}\right)$ is a Groebner basis of the ideal

$$
\widetilde{I}_{2 r}=\left\langle\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r-1}, \widetilde{E}_{2 r}\right\rangle
$$

Proof. We first compute the S-polynomials of $G_{2 r}$, and prove that they satisfy ${\overline{S\left(\widetilde{E}_{i}, \widetilde{E}_{j}\right)}}^{G_{2 r}}=0$ for $1 \leq i, j \leq 2 r$.

Consider first the S-polynomial of an even-numbered polynomial and an odd-numbered polynomial, say $\widetilde{E}_{2 s-1}$ and $\widetilde{E}_{2 t}$, with $1 \leq s, t \leq r$. We have then

$$
\begin{aligned}
S\left(\widetilde{E}_{2 s-1}, \widetilde{E}_{2 t}\right) & =C_{-2 t-1} C_{-2 s}-C_{-2 s}\left(C_{-2 t-1}+\lambda_{t} C_{-1}^{t+1}\right) \\
& =-\lambda_{t} C_{-1}^{t+1} C_{-2 s} \\
& =-\lambda_{t} C_{-1}^{t+1} \widetilde{E}_{2 s-1}
\end{aligned}
$$

In case both i, j are odd, we take $\widetilde{E}_{2 s-1}, \widetilde{E}_{2 t-1}$, with $1 \leq s, t \leq r$. Then we have

$$
S\left(\widetilde{E}_{2 s-1}, \widetilde{E}_{2 t-1}\right)=C_{-2 t} C_{-2 s}-C_{-2 s} C_{-2 t}=0
$$

and trivially we get ${\overline{S\left(\widetilde{E}_{2 s-1}, \widetilde{E}_{2 t-1}\right)}}^{G_{2 r}}=0$, for all $1 \leq s, t \leq r$.

The Groebner basis of a polynomial system related to the Jacobian conjecture

In the last case, when i, j are even, consider $\widetilde{E}_{2 s}, \widetilde{E}_{2 t}$, with $1 \leq s, t \leq$ r. Then we have

$$
\begin{aligned}
S\left(\widetilde{E}_{2 s}, \widetilde{E}_{2 t}\right) & =C_{-2 t-1}\left(C_{-2 s-1}+\lambda_{s} C_{-1}^{s+1}\right)-C_{-2 s-1}\left(C_{-2 t-1}+\lambda_{t} C_{-1}^{t+1}\right) \\
& =\lambda_{s} C_{-1}^{s+1} C_{-2 t-1}-\lambda_{t} C_{-1}^{t+1} C_{-2 s-1}
\end{aligned}
$$

Now we divide $S\left(\widetilde{E}_{2 s}, \widetilde{E}_{2 t}\right)$ by $G_{2 r}$. If $C_{-2 t-1}>C_{-2 s-1}$, then the leading term is

$$
l t\left(S\left(\widetilde{E}_{2 s}, \widetilde{E}_{2 t}\right)\right)=\lambda_{s} C_{-1}^{s+1} C_{-2 t-1}
$$

and the first division step yields

$$
S\left(\widetilde{E}_{2 s}, \widetilde{E}_{2 t}\right)=\lambda_{s} C_{-1}^{s+1} \widetilde{E}_{2 t}+R_{1}
$$

with $R_{1}=-\lambda_{s} \lambda_{t} C_{-1}^{s+t+2}-\lambda_{t} C_{-1}^{t+1} C_{-2 s-1}$. By continuing the division algorithm we obtain

$$
R_{1}=-\lambda_{t} C_{-1}^{t+1} \widetilde{E}_{2 s}+0
$$

and hence $\overline{S\left(\widetilde{E}_{2 s}, \widetilde{E}_{2 t}\right)}{ }^{G_{2 r}}=0$ in this case. The case $C_{-2 s-1}>C_{-2 t-1}$ is similar, so we get ${\overline{S\left(\widetilde{E}_{2 t}, \widetilde{E}_{2 s}\right)}}^{G_{2 r}}=0$ for $1 \leq s, t \leq r$.

From Corollary 2.3 and Proposition 2.4 we are able conclude that $\left(\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r-1}, \widetilde{E}_{2 r}\right)$ is a Groebner basis for $\left\langle E_{1}, E_{2}, \ldots, E_{2 r-1}, E_{2 r}\right\rangle$.

3. A recursive formula for the Catalan numbers and a Groebner basis for the ideal

In this last section we will determine a Groebner basis for the ideal I given by the complete system (2.1). In order to achieve this we need to establish additional properties of the λ_{j} 's which are closely related to the ubiquitous Catalan numbers.

Christian Valqui, Marco Solorzano

Lemma 3.1. For all $j \geq 0$ the equality

$$
\begin{equation*}
c_{j}=(-1)^{j+1} 2^{j} \lambda_{j} \tag{3.1}
\end{equation*}
$$

holds, where c_{j} are the Catalan numbers given by $c_{j}=\frac{1}{j+1}\binom{2 j}{j}$.
Proof. The Catalan numbers are uniquely determined (see e.g. [4, p. 117 (5.6)]) by $c_{0}=1$ and the recursive relation

$$
c_{r}=\sum_{j=0}^{r-1} c_{j} c_{r-1-j}
$$

Set $d_{j}=(-1)^{j+1} 2^{j} \lambda_{j}$. Then $d_{0}=1$, since $\lambda_{0}=-1$, and so equality (2.7) gives us

$$
\begin{aligned}
d_{j} & =(-1)^{j+1} 2^{j} \lambda_{j} \\
& =(-1)^{j+1} 2^{j} \frac{1}{2}\left(\sum_{k=0}^{j-1} \lambda_{k} \lambda_{j-k-1}\right) \\
& =\sum_{k=0}^{j-1}\left((-1)^{k+1} 2^{k} \lambda_{k}\right)\left((-1)^{j-k} 2^{j-1-k} \lambda_{j-k-1}\right) \\
& =\sum_{k=0}^{j-1} d_{k} d_{j-1-k},
\end{aligned}
$$

and hence $d_{j}=c_{j}$ for all j, as desired.
Now we prove a recursive formula for the Catalan numbers.
Proposition 3.2. The Catalan numbers satisfy the following formula

$$
\begin{equation*}
(2 r+1) \frac{c_{r}}{2^{2 r}}=\sum_{j=0}^{r}(-1)^{j}\binom{r}{j} \frac{c_{j}}{2^{2 j}} \tag{3.2}
\end{equation*}
$$

Consequently, λ_{r} satisfies

$$
\begin{equation*}
(2 r+1)(-1)^{r+1} \lambda_{r}=\sum_{j=0}^{r}\binom{r}{j} 2^{r-j}\left(-\lambda_{j}\right) . \tag{3.3}
\end{equation*}
$$

The Groebner basis of a polynomial system related to the Jacobian conjecture

Proof. Replacing c_{j} in (3.2), and using (3.1) yields (3.3). Hence, it suffices to prove only (3.2). For that, we replace c_{j} by $\frac{1}{j+1}\binom{2 j}{j}$ on the righthand side of (3.2) and use the equalities

$$
\binom{-1 / 2}{j}=\frac{(-1)^{j}}{2^{2 j}}\binom{2 j}{j} \quad \text { and } \quad\binom{r+1 / 2}{r}=\frac{(2 r+1)}{2^{2 r}}\binom{2 r}{r}
$$

Then we have

$$
\begin{aligned}
\sum_{j=0}^{r}(-1)^{j}\binom{r}{j} \frac{c_{j}}{2^{2 j}} & =\sum_{j=0}^{r} \frac{(-1)^{j}}{2^{2 j}}\binom{2 j}{j} \cdot \frac{1}{(j+1)}\binom{r}{j} \\
& =\sum_{j=0}^{r}\binom{-1 / 2}{j} \frac{1}{r+1}\binom{r+1}{j+1} \\
& =\frac{1}{(r+1)} \sum_{j=0}^{r}\binom{-1 / 2}{j} \cdot\binom{r+1}{r-j} \\
& =\frac{1}{(r+1)}\binom{r+1 / 2}{r} \\
& =\frac{1}{(r+1)} \frac{(2 r+1)}{2^{2 r}}\binom{2 r}{r} \\
& =(2 r+1) \frac{c_{r}}{2^{2 r}} .
\end{aligned}
$$

The second equality follows from $\frac{1}{j+1}\binom{r}{j}=\frac{1}{(r+1)}\binom{r+1}{j+1}$ and the fourth from $\binom{\alpha+\beta}{r}=\sum_{j=0}^{r}\binom{\alpha}{j}\binom{\beta}{r-j}$, relations valid for all $\alpha, \beta \in \mathbb{C}$. The last equality is known as the Chu-Vandermonde identity or Vandermonde convolution [1, p. 44, 13c'].

Proposition 3.3. Let $I_{2 r}=\left\langle E_{1}, E_{2}, \ldots, E_{2 r}\right\rangle$. Then we have

$$
\left(C^{2 r+1}\right)_{-1} \in \mu_{r} C_{-1}^{r+1}+I_{2 r}
$$

for $\mu_{r}=\frac{2 r+1}{(r+1) 2^{r}}\binom{2 r}{r}$.

Christian Valqui, Marco Solorzano

Proof. By definition we have

$$
\left(C^{2 r+1}\right)_{-1}=\left[\left(C^{2}\right)^{r} C\right]_{-1}=\sum_{j=-2}^{2 r}\left[\left(C^{2}\right)^{r}\right]_{j} C_{-j-1},
$$

since $C_{-j-1}=0$ for $j<-2$ and $\left[\left(C^{2}\right)^{r}\right]_{j}=0$ for $j>2 r$
But we also have $\left[\left(C^{2}\right)^{r}\right]_{j}=\sum_{i_{1}+\cdots+i_{r}=j}\left(C^{2}\right)_{i_{1}} \ldots\left(C^{2}\right)_{i_{r}}$. We claim that if $i_{1}+\cdots+i_{r}=j$, then $i_{k} \geq-2 r$ for $k=1, \ldots, r$. In fact, as $i_{j} \leq 2$, then so we have

$$
i_{1}+\cdots+i_{k-1}+i_{k+1}+\cdots+i_{r} \leq 2(r-1),
$$

and $j=i_{k}+\left(i_{1}+\cdots+i_{k-1}+i_{k+1}+\cdots+i_{r}\right) \leq 2(r-1)+i_{k}$ as well. Therefore we get $i_{k} \geq j-2 r+2 \geq-2 r$, since $j \geq-2$.

By definition we have $E_{i}=\left(C^{2}\right)_{-i}$ for $i=1, \ldots, 2 r$. Consequently we obtain

$$
\left(C^{2}\right)_{i_{1}} \ldots\left(C^{2}\right)_{i_{r}} \in I_{2 r}, \quad \text { if some } i_{k} \text { is negative. }
$$

It follows that

$$
\left[\left(C^{2}\right)^{r}\right]_{j} \in \sum_{\substack{i_{1}+\cdots+i_{r}=j \\ i_{k} \geq 0}}\left(C^{2}\right)_{i_{1}} \ldots\left(C^{2}\right)_{i_{r}}+I_{2 r}=\left[\left(x^{2}+2 C_{-1}\right)^{r}\right]_{j}+I_{2 r}
$$

holds, since $C^{2}=x^{2}+2 C_{-1}+\left(C^{2}\right)_{-1} x^{-1}+\left(C^{2}\right)_{-2} x^{-2}+\left(C^{2}\right)_{-3} x^{-3}+\ldots$. But we also have

$$
\left(x^{2}+2 C_{-1}\right)^{r}=\sum_{k=0}^{r}\binom{r}{k}\left(2 C_{-1}\right)^{r-k} x^{2 k},
$$

and so

$$
\left[\left(x^{2}+2 C_{-1}\right)^{r}\right]_{j}= \begin{cases}\binom{r}{k}\left(2 C_{-1}\right)^{r-k} & \text { if } j=2 k \\ 0, & \text { if } j=2 k+1\end{cases}
$$

We arrive at

$$
\left(C^{2 r+1}\right)_{-1} \in \sum_{k=0}^{r}\binom{r}{k}\left(2 C_{-1}\right)^{r-k} C_{-2 k-1}+I_{2 r}
$$

The Groebner basis of a polynomial system related to the Jacobian conjecture

Note that by Proposition 2.2 we have

$$
C_{-2 k-1}=\widetilde{E}_{2 k}-\lambda_{k} C_{-1}^{k+1} \in-\lambda_{k} C_{-1}^{k+1}+I_{2 r}
$$

so we obtain

$$
\begin{aligned}
\left(C^{2 r+1}\right)_{-1} & \in \sum_{k=0}^{r}\binom{r}{k}\left(2 C_{-1}\right)^{r-k}\left(-\lambda_{k} C_{-1}^{k+1}\right)+I_{2 r} \\
& =\left(\sum_{k=0}^{r}\binom{r}{k} 2^{r-k}\left(-\lambda_{k}\right)\right)\left(C_{-1}\right)^{r+1}+I_{2 r}
\end{aligned}
$$

and the formula for μ_{r} follows now from (3.1) and (3.3).
Corollary 3.4. For $\widetilde{E}_{2 r+1}=\mu_{r}\left(C_{-1}\right)^{r+1}+y$ we have

$$
\left\langle E_{1}, E_{2}, \ldots, E_{2 r-1}, E_{2 r}, E_{2 r+1}\right\rangle=\left\langle\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r-1}, \widetilde{E}_{2 r}, \widetilde{E}_{2 r+1}\right\rangle
$$

Proof. By Proposition 3.3 we have $E_{2 r+1}-\widetilde{E}_{2 r+1}=\left(C^{2 r+1}\right)_{-1}-\mu_{r} C_{-1}^{r+1} \in$ $I_{2 r}$. The result follows now from Corollary 2.3.

Now we can state our main result.
Theorem 3.5. If we fix the lex order with $C_{-2 r-1}>C_{-2 r}>\cdots>$ $C_{-3}>C_{-2}>C_{-1}>y$, then $G_{2 r+1}=\left(\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r}, \widetilde{E}_{2 r+1}\right)$ is a Groebner basis for the ideal

$$
I=\left\langle E_{1}, E_{2}, \ldots, E_{2 r-1}, E_{2 r}, E_{2 r+1}\right\rangle
$$

Proof. By Corollary 3.4 it suffices to prove that the division of the S polynomials $S\left(\widetilde{E}_{i}, \widetilde{E}_{j}\right)$ by $G_{2 r+1}$ is zero. If $i, j \leq 2 r$, then the division algorithm yields the same quotients and remainders as in Proposition 2.4, since the remainders become zero before one has to divide by $\widetilde{E}_{2 r+1}$. Note that $l t\left(\widetilde{E}_{2 r+1}\right)=\mu_{r}\left(C_{-1}\right)^{r+1}$, since $\mu_{r} \neq 0$. It remains to divide the S-polynomials $S\left(\widetilde{E}_{i}, \widetilde{E}_{2 r+1}\right)$ by $G_{2 r+1}$. We first consider the case $i=2 t-1$ for some $t=1, \ldots, r$. We get

$$
\begin{aligned}
S\left(\widetilde{E}_{2 t-1}, \widetilde{E}_{2 r+1}\right) & =\frac{C_{-2 t} C_{-1}^{r+1}}{C_{-2 t}}\left(C_{-2 t}\right)-\frac{C_{-2 t} C_{-1}^{r+1}}{\mu_{r} C_{-1}^{r+1}}\left(\mu_{r} C_{-1}^{r+1}+y\right) \\
& =-\frac{1}{\mu_{r}} y C_{-2 t}
\end{aligned}
$$

for all $t=1, \ldots, r$. The first division step yields $S\left(\widetilde{E}_{2 t-1}, \widetilde{E}_{2 r+1}\right)=$
 $1, \ldots, r$.

Now for the S-polynomials of $\widetilde{E}_{2 t}$ and $\widetilde{E}_{2 r+1}$, for some $t=1, \ldots, r$, we have

$$
\begin{aligned}
S\left(\widetilde{E}_{2 t}, \widetilde{E}_{2 r+1}\right)= & \frac{C_{-2 t-1} C_{-1}^{r+1}}{C_{-2 t-1}}\left(C_{-2 t-1}+\lambda_{t} C_{-1}^{t+1}\right)- \\
& \frac{C_{-2 t-1} C_{-1}^{r+1}}{\mu_{r} C_{-1}^{r+1}}\left(\mu_{r} C_{-1}^{r+1}+y\right) \\
= & \lambda_{t} C_{-1}^{r+t+2}-\frac{1}{\mu_{r}} C_{-2 t-1} y .
\end{aligned}
$$

with leading term

$$
l t\left(S\left(\widetilde{E}_{2 t}, \widetilde{E}_{2 r+1}\right)\right)=-\frac{1}{\mu_{r}} C_{-2 t-1} y
$$

We divide $S\left(\widetilde{E}_{2 t}, \widetilde{E}_{2 r+1}\right)$ by $G_{2 r+1}$, and the first division step gives us

$$
S\left(\widetilde{E}_{2 t}, \widetilde{E}_{2 r+1}\right)=-\frac{1}{\mu_{r}} y \widetilde{E}_{2 t}+R_{1}
$$

with $R_{1}=\lambda_{t} C_{-1}^{r+t+2}+\frac{\lambda_{t}}{\mu_{r}} y C_{-1}^{t+1}$. Finally we take note of the equality $R_{1}=\frac{\lambda_{t}}{\mu_{r}} C_{-1}^{t+1} \widetilde{E}_{2 r+1}$, in order to obtain ${\overline{S\left(\widetilde{E}_{2 t}, \widetilde{E}_{2 r+1}\right)}}^{G_{2 r+1}}=0$, for all $t=1, \ldots, r$. This concludes the proof.

In brief, we give the Groebner basis $G_{2 r+1}=\left(\widetilde{E}_{1}, \widetilde{E}_{2}, \ldots, \widetilde{E}_{2 r}, \widetilde{E}_{2 r+1}\right)$ of I explicitly as

The Groebner basis of a polynomial system related to the Jacobian conjecture

$$
\begin{aligned}
& \widetilde{E}_{1}=C_{-2}, \\
& \widetilde{E}_{3}=C_{-4}, \\
& \vdots \\
& \widetilde{E}_{2 r-1}=C_{-2 r}, \\
& \widetilde{E}_{2}=C_{-3}+\lambda_{1} C_{-1}^{2}, \\
& \widetilde{E}_{4}=C_{-5}+\lambda_{2} C_{-1}^{3}, \\
& \vdots \\
& \widetilde{E}_{2 r}=C_{-2 r-1}+\lambda_{r} C_{-1}^{r+1}, \\
& \widetilde{E}_{2 r+1}=\mu_{r}\left(C_{-1}\right)^{r+1}+y .
\end{aligned}
$$

with

$$
\mu_{r}=\frac{2 r+1}{(r+1) 2^{r}}\binom{2 r}{r} \quad \text { and } \quad \lambda_{j}=\frac{(-1)^{j+1}}{(j+1) 2^{j}}\binom{2 j}{j} .
$$

Acknowledgments

We wish to thank Jonathan Farfán, who provided the proof of Formula (3.3) (and hence, implicitly, of Formula (3.1)).

References

[1] L. Comtet; Advanced combinatorics, D. Reidel Publishing Co., Dordrecht, 1974.
[2] D. Cox, J. Little, D. O'Shea; Ideals, varieties, and algorithms, Undergraduate Texts in Mathematics, 3, Springer, New York, 2007.
[3] J.A. Guccione, J.J. Guccione, C. Valqui; A system of polynomial equations related to the Jacobian conjecture, arXiv:1406.0886v1 [math.AG] (3 June 2014).
[4] T. Koshy; Catalan numbers with applications, Oxford University Press, Oxford, 2009.

Resumen

En este artículo calculamos la base de Groebner de un sistema polinomial de ecuaciones relacionada con la conjetura del jacobiano utilizando una formula recursiva para los números de Catalan.

Palabras clave: Jacobiano, bases de Groebner, números de Catalan

Christian Valqui
Sección Matemáticas
Departamento de Ciencias
Pontificia Universidad Católica del Perú
Av. Universitaria 1801, San Miguel, Lima 32, Perú
Instituto de Matemática y Ciencias Afines (IMCA)
Calle Los Biólogos 245, Urb. San Cesar, La Molina, Lima 12, Perú
cvalqui@pucp.edu.pe
Marco Solorzano
Sección Matemáticas
Departamento de Ciencias
Pontificia Universidad Católica del Perú
Av. Universitaria 1801, San Miguel, Lima 32, Perú
marco.solorzano@pucp.pe

[^0]: ${ }^{1}$ Sección Matemáticas, Departamento de Ciencias, PUCP.
 ${ }^{2}$ Instituto de Matemáticas y Ciencias Afines (IMCA).
 ${ }^{3}$ Proyecto PUCP-DGI-2013-3036.

