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Abstract

This paper is an overview of the developments and generalizations of
Tate Cohomology. The number of such generalizations is high and the
literature on many of them is vast. Hence, we do not pretend to give a
complete account of all the branches that have developed from the origi-
nal ideas of Tate. This is rather an overview of how the ideas developed.
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Introduction

Tate cohomology was de�ned by John Tate in [49]. His declared intention
was to give a compact account of the reciprocity law for Class Field
Theory. The latter is, in short, a family of isomorphisms

Ĥp(π,Z)
∪cE/F−−−−→ Ĥp+2(π,A), (∗)

de�ned for every �nite Galois extension E/F of local or global �elds
with �nite Galois group π. In (∗), A is the multiplicative group E×

of E in the local case and the idèle class group in the global case. In
both situations, an action of π on A is naturally de�ned, and hence also
the classical cohomology groups. Also, Ĥ denotes the Tate cohomology,
while ∪cE/F denotes the so called cup-product with a canonical genera-
tor cE/F of H2(π,A). According to Tate, the family of automorphisms
de�ned in (∗) is ultimately a way to reduce to a minimum the authentic
arithmetic results in Class Field Theory and to show how all the others
are a consequence of a more general algebraic theory. We start with a
summary of Tate's original point of view in Section 1.

Next we give an outline of the rest of the paper.

As Weibel tells in his brief history of homological algebra [53], the
book [13], published by Cartan and Eilenberg in 1956, collected and put
order in several de�nitions, constructions, and results at that time avail-
able on the subject. Among them was also Tate cohomology for �nite
groups. In Section 2, we then follow Chapter XII of [13], where most
features of Tate cohomology for �nite groups are present. Given a �nite
group π, a complete resolution of Z is de�ned as a, possibly unbounded,
exact complex of projective π-modules T such that the image of the dif-
ferential dT

0 is exactly Z (see De�nition 2.2). For every other π-module
M , the n-th Tate cohomology groups of M , denoted by Ĥ•(π,M), are
the cohomology of the complex Homπ(T ,M). The de�nition of these
groups Ĥ•(π,−) is functorial inM . Except for the degrees 0 and 1, they
are the regular cohomology in positive degree and the regular (shifted
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by 1) homology in negative degree, given as follows:

Ĥn(π,A) =
{

Hn(π,A) for n > 0,
H−n−1(π,A) for n < −1.

Moreover, for every short exact sequence of π-modules, we have a long
and unbounded exact sequence in cohomology. Since Tate cohomology
is both e�aceable and coe�aceable, dimension shifting techniques are ap-
plicable. For instance, cup product can be transported from cohomology
to any degree:

∪ : Ĥp(π,M)⊗ Ĥq(π,N) −→ Ĥp+q(π,M ⊗N).

The theory developed until then heavily relied on the existence of a
complete resolution in the category of π-modules for a �nite group π, that
is, in the category of modules over the group ring Z[π]. The subsequent
generalizations of Tate cohomology have taken several directions. The
�rst one, proposed by Farrell in [21], enlarges the class of groups to those
with �nite virtual cohomological dimension. We give an overview of his
idea in Section 3.1. After Farrell, as we see in Section 3.2, Ikenaga [29]
pushed it to the groups with �nite generalized cohomological dimension,
provided that a complete resolution exists, and Buchweitz [42] brought
it to Gorenstein rings, for any ring R, not necessarily a group ring.

For these kind of viewpoints, two ingredients are necessary: the
existence of at least a complete resolution, in the sense de�ned previously,
and a way to ensure that the cohomology de�ned from it does not depend
on the particular choice. Cornick and Kropholler in [17] resolved the
latter issue by slightly modifying the de�nition itself: the exact complex
T must also satisfy the condition that Hom(T ,−) is an exact functor.
This leads eventually to the use of totally acyclic complexes of projective
modules. We discuss this axiom and some methods to build complete
resolutions in Section 3.6.

In Section 3.3 we show how, slightly before Cornick and Kropholler's
work, Mislin used satellites to de�ne a generalization for Tate cohomol-
ogy over any group. Despite the fact that no complete resolution is
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involved, and inspired by Gedrich and Gruenberg, Mislin justi�es the
name using the concept of P-completion. In this context, Tate cohomol-
ogy is the unique, up to equivalence, P-completion of the classical group
cohomology H•(G,−).

Section 3.4 is devoted to the developments of the idea of Tate in the
context of strongly Gorenstein rings, as Buchweitz called them in [42].
These are left-right Noetherian rings with �nite injective dimension as
modules over themselves. Buchweitz redacted a long preprint in which
he established the equivalence of

• right bounded complexes with bounded and �nitely generated coho-
mology, modulo �nite complexes of �nitely generated projective mod-
ules;

• complete resolutions, in the sense of acyclic projective complexes up
to homotopy;

• maximal Cohen-Macaulay modules up to projective modules.

The de�nition of the bifunctor Êxt
n

R(−,−) is then given through the
complete resolution. Finally, Buchweitz was able to give the following
de�nition:

Ĥn(G,−) = ÊxtR[G](R,−).

This is yet another generalization of Tate cohomology, since here G is
acting on R-modules and not just on abelian groups. This setting is
extended to modules of �nite Gorenstein dimension in [2] and �nally to
complexes of �nite Gorenstein dimension by Veliche [51].

In the same years, around 1986, in a private letter, Vogel developed
another method to generalize Tate cohomology. His ideas have been
written and published by Goichot [24] and they substantially converge
to the framework of stable cohomology. We present this cohomology
theory in Section 3.5, following the work done by Avramov and Veliche
in [3].

Although from di�erent points of view the works we have mentioned
so far revolve around the same objects, a di�erent perspective was taken
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by Jørgensen in [32]. Denote by e∗ : Ktac(P(R))→ K(P(R)) the embed-
ding of the homotopic category of totally acyclic complexes of projective
R-modules inside the homotopic category of projective resolutions of R-
modules. If e∗ has a right adjoint e!, we called the image e!(P ) of a
complex in K(P(R)) a totally acyclic projective approximation of P .
Relying on the fact that, when a module M has a complete resolution
T → P and e! exists, we have T ' e!(P ), Jørgensen disregards the
problem of the existence of a complete resolution and directly de�nes

Êxt
n
(M,N) = Hn(HomR(e!(P ), N)),

where P is any projective resolution of M . The motivations for this
approach are both technical a philosophical: a totally acyclic projective
approximation exists for modules over a wide class of rings, and, more-
over, according to Jørgensen, this generalization is more faithful to the
original idea of Tate. We explain his approach, as well as a comparison
with the other generalizations seen so far, in Section 3.6.

Compared to the classical group cohomology, but still in the context
of groups, two additional phenomena arise and deserve attention when
considering Tate cohomology: periodicity of cohomology and non-zero
products in negative degrees. The former is already in plain sight since
the beginning (see (∗) or directly Section 2.3), but it expands further in
the generalizations, especially in the rami�cations of Tate cohomology
in topology. The latter was studied by Benson and Carlson in [5]. We
brie�y report on these facts in Sections 3.7 and 3.8.

Pro�nite groups require a special treatment. Indeed, although �nite
groups are trivially pro�nite, the category of discreteG-modules does not
have enough projectives if G is an in�nite pro�nite group. In Section
3.9 we described various ideas to overcome this issue and build a Tate
cohomology theory nonetheless.

We conclude the paper with a generalization of Tate cohomology to
algebras in Section 4, from some very early results of Nakayama pub-
lished in [37] through a huge gap until recent times with papers like [6]
or [7]. The latter in particular extends to Calabi-Yau categories some of
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the ideas of Benson and Carlson.

Notation and Conventions

Along the whole paper, we will use the following conventions. The letters
G and H will denote groups; in honour of [13], π will be used to refer to
�nite groups.

In general, rings will be denoted by the lettersR orK, while algebras
with capital greek letters like Λ. Modules over rings will be denoted with
capital regular letters likeM andN , or A andB. The category of left and
right modules over R will be denoted byM(R) and (R)M respectively.
Likewise, complexes of left modules over a ring R will be denoted by
C(R), and each complex in bold, like (A, dA) and (B, dB); note that we
will often just write A and B. This choice allows us to denote by A∗

and A∗ respectively the duals HomR(A,R) and HomC(R)(A, R) without
confusion. In the latter, R denotes also the complex concentrated in
degree 0 given by R, even if not in bold. For complexes, the degree will
be written both as An and An, but the direction of the di�erential will
always be consistent with the traditional conventions: dAn : An → An−1

and dnA : An → An+1.
Throughout the paper, when the base ring R is the group ring Z[G]

of a group G, we will use the notationM(G), C(G), and D(G) as short
forms for the categories M(Z[G]), C(Z[G]), and D(Z[G]) respectively.
Likewise, we will write HomG(−,−) instead of HomZ[G](−,−), −⊗G −
for −⊗Z[G] −, and ExtG instead of ExtZ[G]. Therefore, we will make no
distinction between G-modules, that is, abelian groups on which G acts
as groups, and Z[G]-modules. Given a group G, the �xed points functor

will be denoted by (−)G :M(G)→ Ab and it is explicitly de�ned by

MG = {m ∈M | gm = g for every g ∈ G}.

It is left exact and we will denote by Hn(G,M) its right derived functors.
These are also called the group cohomology functors of G. Equivalently,
since the equality MG = HomG(Z,M) holds, Hn(G,M) will also be
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the n-th cohomology group of the right derived functor RHomC(G)(Z,−)
applied to M , the latter seen as a complex concentrated in degree 0.
The same conventions apply also to the functor (−)G : M(G) → Ab,
explicitly de�ned by the quotient

MG =
M

{gm− g | m ∈M, g ∈ G}
.

In this case, we have the equality MG = Z ⊗Z[G] M , hence MG is right
exact and Hn(G,M) denotes both the left derived functor of (−)G and
the n-th cohomology group of the left derived functor Z⊗LC(G)− applied
to M . In the context of group rings, the ideal I generated by all the
elements of the form 1 − g, with g ∈ G, is called augmentation ideal.
With this notation, MG can also be de�ned as M/IM .

Standard references for all these constructions and notations are for
example [13], [25], [10], [52], and [33]. Speci�cally for complexes over
rings, Section 1 of [51] is an excellent, compact, and clear summary.

1. First appearance of Tate cohomology

We start with an outline of where and how Tate introduced the core of
the cohomology theory that now bears his name. Since it was still in its
infancy, we will be vague about the details, especially on the �eld theo-
retic side. What we omit about the latter can be found in Section 2.4. In
short, the aim of Class Field Theory is to describe the abelian extensions
of a �eld K, that is, the Galois extensions L of K such that Gal(L/K) is
abelian. In principle, it would be even more interesting to drop the lat-
ter assumption, but results are less satisfactory. Let A then denote the
multiplicative group K× of K in the local case or the idèle class group
in the global case. Let G denote a �nite group of automorphisms of K.
Following the remark that all the main results of Class Field Theory
come from a few arithmetical facts about A expressed in cohomological
terms, Tate showed how these can be summarized in the vanishing of
two cohomological groups relative to an auxiliary group Ā. This is the
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splitting module associated to a non trivial element α of H2(G,A). That
is, a G-module such that A is a G-submodule of Ā and α belongs to the
kernel of the natural map H2(G,A) → H2(G, Ā) given by the inclusion
A ↪→ Ā. Here is Tate's result.

Theorem 1.1. Let G be a �nite group of order n and A a G-module.

Let α be a non trivial element of H2(G,A) and Ā a splitting G-module

for α. Then the following two conditions are equivalent.

• For every subgroup H of G, we have H1(H,A) = 0 and H2(H,A) is

cyclic of order |H| generated by the restriction of α to H.

• For every subgroup H of G, we have H1(H, Ā) = 0 and H2(H, Ā) = 0.

The proof given in [49] revolves around the following two short exact
sequences:

0 −→ A −→ Ā −→ I −→ 0,

0 −→ I −→ Z[H]
deg−→ Z −→ 0.

The �rst one comes for the de�nition of Ā. The second one from the
fact that the augmentation ideal I is also the kernel of the degree map

deg : Z[H] −→ Z∑
h∈H

nhh 7−→
∑
h∈H

nh.

See Section 2.1 for more details. Using a standard and key tool of group
cohomology (see [10] Chapter III �6), from these two short exact se-
quences Tate obtained two long exact sequences that he wrote as

H0(H, I) −→ H1(H,A) −→ H1(H, Ā) −→ H1(H, I) −→ . . .

H0(H,Z[H]) −→ H0(H,Z) −→ H1(H, I) −→ H1(H,Z[H]) −→ . . . .

The key point here is that in this diagram Tate denoted by H0(H,−)
not the standard cohomology but what he called `reduced' 0-dimensional

group. This, given an H-module X and denoting by N the element
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∑
h∈H

h ∈ Z[H], is the quotient XH/NX, now commonly denoted by

Ĥ0(H,X) and called the 0-th Tate cohomology group of H with coe�-

cients in X. We review the basic facts about it in Section 2.2.
The second of Tate's theorems states the following.

Theorem 1.2 (Theorem 2 in [49], or Tate's Theorem). Let G and A

be as in Theorem 1.1 and satisfying any of the two additional equivalent

axioms in it. Then the cup product by α yields an isomorphism from

Hn−2(G,Z) to Hn(G,A) for every n > 2.

Tate concluded his paper announcing that negative cohomology
groups can be introduced and that Theorem 1.2 can be proved for all
integers n, adding a remark when n = 0. In this case, indeed, we obtain
the isomorphism

Gab = G/[G,G] ' H−2(G,Z) ∼−→ Ĥ0(G,A),

where Ĥ0(G,A) is called the idèle class norm residues group. The inverse
of the isomorphism in the center coincides with the so called reciprocity

law or norm residue symbol.
Tate did not publish the more general results he claimed, but in a

Séminaire Bourbaki in 1953, [46], Serre developed explicitly these state-
ments by dimension shifting (see Section 2.3).

2. Basic de�nitions and properties

Most of the work of Tate on this subject is unpublished, or has not been
published by Tate. Hence, we have to rely on what other mathemati-
cians have written. It should be noted, though, that many of the ideas
described in this section can be directly traced back to him.

A �rst formal framework for Tate cohomology is developed in Chap-
ter 12 of Homological Algebra, published by Cartan and Eilenberg in
1956 ([13]). Since many of the generalizations that stem from Tate's
ideas rely on a big part of the theoretical structure exposed in [13], we
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will give an account of it already at this point, keeping its notation when
possible.

2.1 Augmented rings and algebras

A left augmented ring is a triple (R, ε,Q) where R is a ring and ε :
R → Q is an epimorphism of left R-modules. The module Q is called
augmentation module, ε is the augmentation epimorphism, or just the
augmentation. The kernel I of ε is called the augmentation ideal.

De�nition 2.1. For a right R-module M and a left R-module N ,

• the homology of the augmented ring R with coe�cients in M is

TorRn (M,Q) = Hn(M ⊗LR Q);

• the cohomology of the augmented ring R with coe�cients in N is

ExtnR(Q,N) = Hn(RHomC(R)(Q,N)).

The (co)homology groups can be computed using a projective res-
olution of either of Q or M , or an injective resolution of N . The par-
ticularity of this setting is that, being R projective, a resolution of the
kind

. . . −→ P1 −→ R −→ Q −→ 0 (2.1)

can always be used for Q.
Given a ring K, a special kind of augmented rings is given by the

supplemented algebras, that is, K-algebras Λ together with a morphism
of K-algebras ε : Λ→ K.

Since ε has to be surjective, the triple (Λ, ε,K) is an augmented
ring. Moreover, if µ : K → Λ is the ring homomorphism giving the
algebra structure, note that ε ◦ µ = 1K necessarily holds.

A supplemented algebra is given for example when we have a ring
K and a group G, with the group ring K[G]. In this context, usually
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only multiplicative augmentations are considered and such augmenta-
tions only depend on the choice of a map G → K. Without loss of
generality, we take the unit augmentation de�ned by ε : g 7→ 1K . The
triple (K[G], ε,K) is then a supplemented algebra.

When K is the ring of integers, we recover in this way the group
(co)homology of G in the sense of right and left derived functors respec-
tively of (−)G and (−)G. On the other hand, taking for example K
as a �eld, we are in the context of G acting on K-vector spaces, as in
Section 3.7, and so on.

2.2 Tate Cohomology for �nite groups

Let us �x Z as base ring and analyze the case of a �nite group π. The
discussion of [13] revolves around the properties of the norm N of π, that
is, the element

∑
x∈π

x in Z[π] or, in the same notation, the corresponding

π-module homomorphism given by the multiplication by N .
Recall that the augmentation ideal I is generated by the elements

x− 1, for x ∈ π. Moreover, we have N(x− 1π) = 0Z[π] and xN = N for
every x ∈ π. Therefore, given a π-module A, we obtain

IA ⊂ ker(N), NA ⊂ Aπ.

This implies that N induces a homomorphism Ñ : Aπ → Aπ. Starting
from this remark, Cartan and Eilenberg show that the family of functors

Ĥn(π,A) = Hn(π,A), for n > 0,
Ĥ0(π,A) = Aπ/NA,

Ĥ−1(π,A) = ker(N)/IA,
Ĥn(π,A) = H−n−1(π,A), for n < −1,

gives a connected sequence of functors, in the sense that, in addition to
being functors, for each short exact sequence of π-modules we have the
usual long exact sequence in cohomology. This is, in a very concrete
way, the Tate cohomology of the (�nite) group π and it is basically the
same construction exposed by Serre in 1953 ([46]).
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2.3 Complete resolutions and main features

The real interesting developments in the exposition of [13] are the �rst
de�nition of a complete resolution and its use to compute (or de�ne) the
Tate cohomology of a �nite group π in one step. This de�nition has been
since then generalized. We will review it in more detail in Section 3.6.

De�nition 2.2. Let π be a �nite group. A complete resolution of Z is
a pair (X, e) where X is an exact complex of projective π-modules and
e is an element of (X−1)π that generates the image of the di�erential
d0 : X0 → X−1.

With this de�nition, we recover the Tate cohomology of a π-module
A as if it were the classical group cohomology:

Ĥn(π,A) = Hn(Homπ(X, A));

we refer to Section XII.3 of [13] for details. Many generalizations of
this cohomology pass through the existence of a complete resolution.
In the case of �nite groups, the existence of such a resolution mainly
relies on the fact that, given a �nitely generated free Z[π]-module X,
also Hom(X,Z) is �nitely generated and free, with the action of π de-
�ned by (gf)(x) = f(g−1x). More precisely, we have the isomorphim
Hom(Z[π],Z) ' Z[π]. Moreover, if X is an exact complex of �nitely
generated free Z[π]-modules, also Hom(X,Z) is exact. Let us then con-
sider the projective resolution P

ε−→ Z given by

. . . −→ P2 −→ P1 −→ Z[π] ε−→ Z −→ 0,

as in (2.1), where all the Pi are free and �nitely generated. From the
previous remarks, if we write P ∗ = Hom(P ,Z), the sequence Z → P ∗

is also a free right resolution. We then consider the diagram

. . . // P1
// Z[π]

ε
��

Z
ε∗��

Z[π] // P ∗1 // . . . .

(2.2)
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The composition ε∗ ◦ ε can be computed explicitly and gives the multi-
plication by N . Contracting 2.2, that is, taking Xn = Pn for n ≥ 0 and
renumbering Xn = P ∗−n+1 for n < 0, we obtain a complete resolution
(X, ε∗(1)).

The details of this construction can be found again in [13]. Another
technique to recursively construct a complete resolution is described
in [48].

In order to give a more explicit example, we consider the case of a
�nite cyclic group π. Denote the order of π by k and �x a generator σ.
In this setting, the group ring Z[π] is isomorphic to Z[x]/(xk − 1). The

norm element becomes
k−1∑
i=0

σi and the augmentation ideal is generated

by σ − 1. It is then straightforward to verify that we have the following
very simple complete resolution:

. . .
N−→ Z[π] σ−1−→ Z[π] N−→ Z[π] σ−1−→ Z[π] −→ . . . .

This also means that, for any G-module A, we have

Ĥ(π,A) =
{
Aπ/NA for n even,
ker(N)/(σ − 1)A for n odd.

(2.3)

The existence of a complete resolution in other contexts is, in gen-
eral, not true. We will come back to this in more detail in Section 3.6.

Apart from the elegance of a uni�ed construction, de�ning Tate
cohomology through the existence of a complete resolution gives practical
tools to connect homology and cohomology. Among others, dimension
shifting and cup products are probably the most important.

Recall that a G-module is induced if, for some abelian group A,
it is isomorphic to Z[G] ⊗Z A considered with the diagonal action on
the left g(h ⊗ a) = gh ⊗ ga. Dually, a G-module is coinduced if it
is isomorphic to HomZ(Z[G], A) for some abelian group A with action
(gf) : h 7→ gf(g−1h). Only in this section, we denote by A∗ the kernel
of the right projection Z[G] ⊗Z A → A and by A∗ the cokernel of the
constant embedding A → HomZ(Z[G], A). Furthermore, let A be, in
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addition, a π-module for a �nite group π. Nevertheless, we can still apply
the aforementioned de�nitions to the underlying abelian group. Since it
can be proved that the Tate cohomology of any induced or coinduced
π-module is trivial, using the long exact sequence in cohomology we have
the isomorphisms

Ĥn−1(π,A) ' Ĥn(π,A∗) and Ĥn+1(π,A) ' Ĥn(π,A∗),

for every n. Roughly speaking, this means that if, for some convenient

�xed n, some property is true for every π-module, then it is also true for
every n. This is what informally is called dimension shifting.

Coming to the second of the tools we have mentioned, the cup prod-

uct is a family of morphisms. They are normally de�ned for the classical
homology and cohomology; in addition, they can also be extended to
Tate cohomology, using indeed dimension shifting. In its latter form,
they can be axiomatically de�ned as follows.

Proposition 2.3. For every �nite group π and every pair of π-modules

A and B, there exists a unique family of homomorphisms

∪pq : Ĥp(π,A)⊗ Ĥq(π,B)→ Ĥp+q(π,A⊗B)

such that the map ∪00 : Ĥ0(π,A)⊗ Ĥ0(π,B)→ Ĥ0(π,A⊗B) is the one

induced by the tensor product itself and, respectively,

• for each short exact sequence 0 → A′ → A → A′′ → 0 such that

0→ A′ ⊗B → A⊗B → A′′ ⊗B → 0 is still exact, for every p and q,

and for every y ∈ Ĥq(π,B),

• for every short exact sequence 0 → B′ → B → B′′ → 0 such that

0→ A⊗B′ → A⊗B → A⊗B′′ → 0 is still exact, for every p and q,

and for every x ∈ Ĥp(π,A),
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we have commutative diagrams

Ĥp(π,A′′)
δ //

∪pqy

��

Ĥp+1(π,A′)

∪p+1,qy

��
Ĥp+q(π,A′′ ⊗B)

δ
// Ĥp+q+1(π,A′ ⊗B),

Ĥq(π,B′′)
δ //

x∪pq

��

Ĥq+1(π,B′)

x∪p,q+1

��
Ĥp+q(π,A⊗B′′)

δ
// Ĥp+q+1(π,A⊗B′).

The family is often collectively denoted by ∪.

2.4 Application to Class Field Theory

We want to give here a brief account of the so called Class Field Theory.
The literature on the topic is extensive, therefore our intention is only to
show how Tate cohomology is linked to �eld theory, in order to complete
what we have already cited from the paper by Tate [49].

A discrete valuation v over a �eld K is a group homomorphism
v : (K×, ∗)→ (Z,+) such that v(x+y) ≥ inf(v(x), v(y)). The function v
is formally extended to a mapK → Z∪{∞} by the assignment v(0) =∞.
Each discrete valuation de�nes a valuation ring Rv = {x ∈ K | v(x) ≥ 0}
and a valuation ideal mv = {x ∈ K | v(x) > 0}. The ring R is local and
mv is its maximal ideal. A discrete valuation �eld is a pair (K, v) where
K is a �eld and v is a discrete valuation over it. Attached to it, we have
the residue class �eld kv of (K, v), that is, the residue class �eld Rv/mv

of Rv.
Given a prime p, we denote by vp : Z → N the function that asso-

ciates to each integer n the exponent of the maximum power of p dividing
n. By extending each vp so that vp(a/b) = vp(a)− vp(b), we obtain easy
examples of valuations over the �eld Q. Another example is provided by
the �eld of formal power series k[[T ]] over a �eld k of �nite characteristic.
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A local �eld is a discrete valuation �eld (K, v) that is complete with
respect to the topology de�ned by the norm |x− y| = e−v(x−y) and such
that its residue class �eld is �nite. If we consider the completions Qp

of Q with respect to each valuation vp, it turns out that the examples
brie�y described above are essentially the only ones, see Proposition 5.2
in [39].

A similar axiomatic description is available also to de�ne global

�elds. In this case, it can be proven that they again are of two kinds:

• number �elds, that is, �nite �eld extensions of Q;

• function �elds, that is, �nite �eld extensions of k(x), for some �nite
�eld k.

As we have already mentioned, one of the main aims of Class Field
Theory is to describe all the abelian extensions of a �eld K: an extension
F/K is said to be abelian if it is �nite, Galois, and if the Galois group
Gal(F/K) is abelian. If we denote by GK the absolute Galois group of

K, that is, the Galois group Gal(Ks/K) of the separable closure Ks of
K over K itself, this aim can be achieved by determining GK/[GK , GK ],
that is, the maximal abelian quotient of GK .

In this context, the interesting similarity among the two classes of
�elds described so far is that they both give rise to a class formation.

De�nition 2.4. • A formation is a topological group G together with
a topological G-module A with a continuous action.

• A layer is a pair E and F of subgroups of G such that [E : F ] is �nite.
Moreover, a layer E/F is said to be normal if F is normal in E.

• A formation is a class formation if, for every normal layer E/F , we
have H1(E/F,AF ) = 0 and H2(E/F,AF ) is cyclic of order [E : F ].

Given a normal layer E/F , note that, since it is �nite, we can con-
sider the Tate cohomology groups Ĥn(E/F,AF ) with any integral index
n. The typical examples of formations are given by the absolute Galois
group of a �eld K endowed with the Krull topology and taking A to be
the groups (K,+) or (K×, ∗). Here, taking into account the topology is
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necessary: otherwise, the usual Galois correspondence between normal
subgroups and normal extensions would fail; the right objects in this
case are normal closed subgroups. The action of G is continuous if the
stabilizer of each element is open.

Theorem 2.5. Let K be a local �eld. Then the pair (GK ,K×) is class

formation.

This result mainly follows from the so called Hilbert's Theorem 90
(see Proposition 2 in �X.1 of [45]) and the computation of the Brauer
group of a local �eld (see �XIII.3 in [45]). We refer for example to �XII.4
of [45] for complete details.

Combining now Theorems 1.1 and 2.5, we obtain a proof of the
Tate's Theorem 1.2 already stated in Section 1.

In the so called global case, the situation is more involved because
the classifying object is much less simple than K×. Let K be a global
�eld. An idèle of K is a family {xv}v in

∏
v

K×v , such that xv ∈ Uv, for

almost all valuations v, where Uv denotes the multiplicative group of the
units in the valuation ring Rv of Kv.

Theorem 2.6. Let K be a global �eld. The pair (GK , IK) is a class

formation.

3.Tate cohomology for bigger classes of groups

and rings

The classical Tate cohomology is de�ned for a �nite group π using Z
as base ring and π-modules as coe�cients. Generalizations have been
pursued in several directions. A natural one, after the discussion in
Section 2.3, is to search for complete resolutions in bigger categories,
as for [21], [29], and [42]. Others, like Vogel (reported in [24]) and [35]
follow other paths.
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3.1 Farrell-Tate cohomology

The cohomological dimension of a group G is the smallest integer n such
that for every G-moduleM the groups Hm(G,M) are all trivial ifm > n.
It is denoted by cd(G). If such an integer does not exist, we say that G
has in�nite cohomological dimension, and we write cd(G) =∞.

We say that a group G has virtually a property P if it contains a
subgroup of �nite index for which property P holds (see [10] Chapter
VIII.11).

A group G is then virtually of �nite cohomological dimension if
it has a subgroup of �nite index with �nite cohomological dimension.
In [44], Serre proved that, in this case, this property is also veri�ed for
every other subgroup of �nite index and, furthermore, their cohomolog-
ical dimension is the same. The latter depends then only on G and is
denoted by vcd(G). It is called the virtual cohomological dimension of

G. For example, �nite groups have �nite virtual cohomological dimen-
sion, since the trivial subgroup 0 has �nite index and �nite cohomology
dimension.

Farrell, in [21], extended Tate cohomology from �nite groups to this
class. His idea is to modify the de�nition of complete resolution. A
key part in the construction exposed in [13] is that we can splice the
two projective (free) complexes P = . . . → P1 → Z[G] → Z → 0 and
Hom(P ,Z). This is done via two identi�cations: Hom(Z[G],Z) ' Z[G]
and Hom(Z,Z) ' Z. To see why this approach cannot be immediately
extended, observe that the composition Z → Z → Z[G] associates to 1
the element

∑
g∈G

g. If G is �nite, this is the norm element, but other-

wise, this is not de�ned in Z[G]. The idea of Farrell is still to use two
complexes, but splicing them in degree vcd(G) rather than in degree 0.

De�nition 3.1. Let G be a group with �nite virtual cohomological
dimension. A complete resolution for G is a pair (X,P ), where (X, dX)
is an exact complex of projective G-modules and (P , dP ) is a projective
resolution of Z, also of G-modules, for which we have both Xn = Pn and
dXn = dPn for n su�ciently large.
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Proposition 3.2 ([21], Proposition 6). If G has �nite virtual cohomo-

logical dimension, there exists a complete resolution for G.

A sketch of the construction is as follows. Let H be a torsion-free
normal subgroup of �nite index of G and let π denote the quotient G/H.
Let (Y , dY ) be a complete resolution for π as in (2.2) so that

. . . // Y1

dY
1 // Y0

dY
0 //

ε     @
@@

@@
@@

@ Y−1

dY
−1 // Y−2

dY
−2 // . . .

Z.
. �

µ

=={{{{{{{{

Let also (Q, dQ) be a G-projective resolution of Z. If s = vcd(G), then it
can be shown that K = Im(dQs ) is an H-projective module (see Lemma
5 in [21]). Finally, de�ne the complex X as Xn = Yn−s ⊗ K and the
complex P such that Pn = Qn for n < s, and Pn = Xn for n ≥ s, setting
the s-th di�erential to be dXs (x⊗ k) = ε(x) · k. We refer to �1 of [21] for
the facts needed to prove that (X,P ) is actually a complete resolution
for G.

The Farrell-Tate cohomology of a G-module A is now de�ned as

Ĥn(G,M) = Hn(HomG(X,M))

for a �xed complete resolution (X,P ) of Z. It is independent from it up
to a canonical isomorphism.

By construction, it is immediate to see that, for n > vcd(G), the
functors Ĥn(G,−) and Hn(G,−) are isomorphic as connected sequences
of functors.

Farrell-Tate cohomology retains many of the features of the orig-
inal Tate cohomology. For example, it is also both e�aceable and co-
e�aceable, so dimension shifting is still possible and morphisms like
resGH : Ĥn(G,−)→ Ĥn(H, ρGH) exist for any n as extensions of the usual
resGH for n > vcd(G), where ρGH denotes the forgetful functor from C(G)
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to C(H). From this, it can be shown that this cohomology is still torsion:
if H is torsion-free, the index [G : H] annihilates Ĥn(G,−).

The motivation of Farrell in this work is to measure the obstruction
to the Bieri-Eckmann duality for groups with �nite virtual cohomological
dimension. Following [8] we introduce the following de�nition.

De�nition 3.3. Let G be a group, C a right G-module, and n a positive
integer. Then G is a duality group of dimension n with respect to C if
there exists an element λ ∈ Hn(G,C) such that

λ∩ : Hk(G,M) ∼−→ Hk−n(G,C ⊗M)

is an isomorphism for every left G-module M and every k. The mod-
ule C is called the dualizing module of G. The symbol ∩ denotes the
cap product ; for its de�nition, symmetric to De�nition 2.3, we refer to
Chapter XI [13].

The dualizing module and the dimension depend only on G. Ac-
tually, we have the identity n = cd(G) (see Proposition 2 in [8]). This
duality is a generalization of the Poincaré duality and we refer to said
paper and to [9] for any further topological remark.

At this point, following the spirit of the virtual properties, one may
wonder if a virtual duality group, that is, a group having a �nite index
subgroup satisfying (3.3), has a Bieri-Eckmann duality. The answer is
in general no and, for a left G-module M , the obstruction is represented
by Ĥ(G,M); see Theorem 2 and Remark 4 in [21].

After the work of Farrell, there have been various attempts of gen-
eralizing Tate cohomology to bigger classes of groups or base rings. In
this way, the connections between Tate cohomology and various types of
dimensions will become apparent.

3.2 Generalized (co)homological dimension

The mere existence of a complete resolution is not enough to generate a
Tate-like cohomology: tools to shift degree along their terms are neces-
sary at least to de�ne the morphisms fn : Ĥn(−,M) → Ĥn(−, N) from
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a homomorphism f : M → N . That is, to make the Ĥn's functors. This
was the intention of Ikenaga in giving the following notion.

De�nition 3.4. Consider a group G. The generalized cohomological

dimension of G is the integer

cd(G) = sup(k ∈ N | ExtkG(M,F ) 6= 0,M Z-free, F G-free).

By taking M = Z, we recover the usual cohomological dimension.
Some properties of the generalized cohomological dimension and its dual,
the generalized homological dimension hd(−), are investigated, for ex-
ample, in [29] and [30]. We remark the following two facts.

1. If vcd(G) = n, then cd(G) = n.

2. If G is �nite, then cd(G) = 0. The converse is also true, see [19]).

For our discussion, the important result is the following one.

Proposition 3.5 ([29] Proposition 13). If a group G has �nite gener-

alized cohomological dimension, then any two complete resolutions of G

(in the sense of De�nition 3.1) are homotopically equivalent.

Hence, the next concept is well de�ned.

De�nition 3.6. Let G be a group with �nite generalized cohomological
dimension. If G possesses a complete resolution, we can extend the
Farrell-Tate cohomology as

Ĥn(G,M) = Hn(HomG(X,M)),

where X is the acyclic ZG-projective part of a complete resolution of G.

Also in this context, and given a subgroup H, restriction and core-
striction can be de�ned. Shapiro's lemma continues to hold, and hence
Ĥ(G,−) is also e�aceable and coe�aceable. Using dimension shifting,
the ∪-product can again be extended to any degree.
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3.3 Satellites and completions

After Tohoku [25], usually homology and cohomology are considered as
derived functors and computed through resolutions. A slightly di�erent
point of view is possible though. The main reference is again [13], Chap-
ter 3. We are now recalling the basic de�nitions and then we are coming
back to our main topic.

De�nition 3.7. Let F : A → B be an additive functor between two
abelian categories. If A has enough projectives (resp. injectives), the left
satellites functors SnF (resp. the right satellites SnF ) are recursively
de�ned as follows on an object A ∈ A: consider a short exact sequence

0 → M
ϕ→ P → A → 0 with P projective (resp. 0 → A → Q

ψ→ N → 0
with Q injective), then

S0F = F (resp. S0F = F ),
S1F = ker(F (ϕ)) (resp. S1F = coker(F (ψ))),
SnF = S1Sn−1F (resp. SnF = S1Sn−1F ).

These families of functors, when they exist, are well de�ned. If they
both exist, they may be regrouped as {SnF}n∈Z, where SnF = S−nF

for negative n. If the functor F is half exact, that is, if it preserves the
exactness in the center of any exact sequence 0 → A′ → A → A′′ → 0,
then we have an associated long exact sequence:

. . . // Sn−1F (A′′)

δn−1

��
SnF (A′) // SnF (A) // SnF (A′′)

δn

��
Sn+1F (A′) // . . .

Note that, when it makes sense, this sequence exists for any n.
Both the left and right derived functors and left and right satellites

are examples of connected sequences of functors, that is, families of func-
tors T • together with connecting homomorphisms δ• associated to each
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short exact sequence. If F is left (resp. right) exact, its left (resp. right)
derived functors coincide with its left (resp. right) satellites.

More or less at the same time as Ikenaga, the notion of completion
of a cohomological functor was introduced by Gedrich and Gruenberg
in [22].

De�nition 3.8. (1) Given a pair of integers r and s, with r ≤ s and
possibly r = −∞, s = +∞, an (r, s)-cohomological functor in an

abelian category A is a family {Tn}sn=r of additive functors Tn :
A → Ab such that for any short exact sequence we have the usual
long exact sequence in cohomology (for the existing indexes).

(2) A complete cohomological functor is a (−∞,+∞)-cohomological
functor.

(3) Given an (r,+∞)-cohomological functor U•, a completion of U•

is a complete cohomological functor T • such that Uk is naturally
isomorphic to T k for every k > n, for some n ≥ r.

Given a (r,+∞)-cohomological functor, a category of completions
can be de�ned and a terminal completion is a terminal object in this
category. Finally, by de�nition, such a completion is unique up to a
unique (collection of) isomorphism(s).

In their aforementioned paper, they proved the following proposi-
tion.

Proposition 3.9 ([22] Proposition 1.2). For a complete cohomological

functor T •, the following are equivalent:

(1) Tn(P ) = 0 for every projective object P of A and every n;

(2) for every integer k, T • is a terminal completion of T≥k;

(3) for every integer k, we have T i ' Si−kT k for every i ≤ k, where Sn
is the n-th right satellite.

This result can be specialized to the category of modules over a ring.
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Theorem 3.10 ([22] Theorem 1.3). LetM be an R-module. The (0,∞)-
cohomological functor Ext•R(M,−) has a terminal completion if and only

if there exists an integer m, in general depending on M , such that

ExtnR(M,P ) = 0 for every projective R-module and every n ≥ m.

In the case of a group G of �nite virtual cohomological dimension
d, the value m can always be chosen as d. Finally, taking M = Z, we
see that the Farrell-Tate cohomology is the terminal completion of the
usual cohomology.

On the other hand, in general, a terminal completion needs not to
exist. In [35], Mislin then weakens the de�nitions and calls P-complete a
complete cohomological functor T • such that Tn(P ) = 0 for every n and
for every projective object P . The de�nition of P-completion follows.
In this case, we do have an existence theorem.

Theorem 3.11 ([35] Theorem 2.2). All complete cohomological functors

admit a unique, up to equivalence, P-completion.

Specializing the proof to G-modules, Mislin is able to present the
following de�nition.

De�nition 3.12. Let G be any group and consider the complete coho-
mological functor Hn :M(G)→ Ab de�ned as Hn(G,M) for n ≥ 0 and
0 for n < 0. We denote by Ĥ• its P-completion

Ĥn(G,M) = lim−→
k≥0

S−kHk+n(G,M).

Being the Farrell-Tate cohomology also the terminal completion of
the usual cohomology, this de�nition coincides with it when G has �nite
virtual cohomological dimension.

In a similar fashion, with respect to satellites, Benson and Carlson
gave in [5] another de�nition of Tate cohomology for an arbitrary group
using the loop-space functors of Heller [26]. In Theorem 4.1, Mislin
proves that the two are equivalent. We will come back to this and other
interesting results found in that paper in Section 3.7.
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A compact but careful review of the results illustrated until this
point is also in �5 of [34]. In that paper, Kropholler used the generalized
version of Tate cohomology to prove the following result.

Theorem 3.13 ([34] Theorem 3.1.3 and 3.1.4). Let G be a soluble group

or a characteristic zero linear group. If Z has a projective resolution

of �nitely projective modules, then G has �nite virtual cohomological

dimension.

3.4 Tate cohomology in the Gorenstein context

Around 1986, Buchweitz started writing a 150 pages long paper [42]
with the title Maximal Cohen-Macaulay modules and Tate Cohomology

over Gorenstein Rings. Even if it has never been published in a journal,
it is the reference for many developments in each of the three topics
mentioned so far. The general program, as stated by Buchweitz, is the
equivalence of the following three data:

• right bounded complexes with bounded and �nitely generated coho-
mology, modulo �nite complexes of �nitely generated projective mod-
ules;

• complete resolutions, de�ned as acyclic projective complexes up to
homotopy;

• maximal Cohen-Macaulay modules (see De�nition 3.15) up to projec-
tive modules.

Buchweitz proves these equivalences in the context of modules over a
left-right Noetherian ring that has �nite injective dimension as a module
over itself. He calls them strongly Gorenstein rings. The name choice is
to distinguish them from common Gorenstein rings, that are required to
be, in addition, commutative. On the other hand, Buchweitz's notation
allows us to consider also group rings. The restriction to this context will
anyway not be needed until the de�nition of a maximal Cohen-Macaulay
module. Hence, until then, R can be any associative ring with unit.
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It must be remarked that even a summary of all the results explained
by Buchweitz is above the possibilities of this paper. We will then only
sketch the framework in which he worked, keeping his choice of using
the language of derived categories.

Recall that, given a ringR, the derived categoryD(R) is the localiza-
tion of the homotopy category K(R) with respect to quasi-isomorphisms.
That means that the objects of D(R) are complexes and the morphisms
between two complexes A and B can be represented as pair of arrows
A

s←− S
t−→ B where both s and t are morphisms of complexes up to

homotopy and s is a quasi-isomorphism. References about triangulated
and derived categories are [23] and [33]. A classical and fundamental
result is that D(R) is equivalent to the category K−(P(R)), that is, the
homotopy category of complexes of projective modules bounded above.
Roughly speaking, the equivalence is given by `taking projective resolu-
tions'.

A complex of R-modules is perfect if it is isomorphic, in D(R), to
a �nite complex of �nitely generated projective modules. The perfect
complexes form a triangulated full subcategory of Db(R), the derived

category of bounded complexes, denoted by Dbperf(R). We can then give
the following de�nition.

De�nition 3.14. The stabilized derived category of R is the triangu-
lated quotient

Db(R) = Db(R)/Dbperf(R).

The objects of Db(R) are the same as Db(R), while for the mor-
phisms we have the following property:

HomDb(R)(A,B[n]) ' HomDb(R)(A,B[n]), for n big enough,

where n depends on A and B. Hence the word `stabilized': what counts
is, somehow, the `tail' of B. This is the �rst of the data listed by
Buchweitz.

The second one is the full subcategory of K(P(R)) given by the
acyclic complexes of �nitely generated projective R-modules. Buchweitz
denotes it by APC(R).
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Finally, for the third one, we need the following.

De�nition 3.15. A maximal Cohen-Macaulay module over a strongly
Gorenstein ringR is a left moduleM such that ExtiR(M,R) = 0 for i 6= 0.
In short they are denoted by MCM. They constitute a full subcategory
of C(R) denoted by MCM(R).

The interesting properties of Gorenstein rings and MCM modules
are numerous, we refer for example to [4] or [18].

We need one last construction, that we will use also later, to �t all
these object in a unique elegant diagram. Following for example [26]
or [1], we proceed as follows.

Given the category C(R) for some ring R, or more general an abelian
category A, the stabilized category of �nitely generated R-modules is the
category C(R) such that Obj(C(R)) = Obj(C(R)) while

HomC(R)(M,N) =
HomR(M,N)
P(M,N)

,

where the denominator is the group of morphisms f : M → N that
factors through a projective module. We will denote HomC(R)(M,N) by
HomR(M,N).

By a universal property of the stabilization, we obtain a canonical
decomposition that gives the diagram

C(R)

��

// Db(R) // Db(R)

C(R)

ιR

55kkkkkkkkk
.

Recall that, given a complex of left R-modules A, the n-th syzygy

of A is Ωn(A) = coker(d−nA ).

Theorem 3.16 ([42] Theorem 4.4.1). Let R be a strongly Gorenstein

ring. The 0-th syzygy functor induces an equivalence of categories via

Ω0 : APC(R) −→ MCM(R), the functor ιR induces an equivalence
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of categories MCM(R) −→ Db(R), and the two structures induced on

MCM(R) agree.

All these maps �t into the following commutative diagram (up to

isomorphisms of functors):

0 // P (R) //

zzzzzzzz

zzzzzzzz
MCM(R) //

zzuuuuuuuuuu
MCM(R) //

zzttttttttt

ιR

��

0

0 // P (R) //

!!C
CC

CC
CC

C
C(R) //

$$I
III

III
III
C(R) −→ 0

ιR

$$J
JJJJJJJJ

APC(R)

σR{{www
ww

ww
ww

Ω0

ccHHHHHHHHH

0 // Dbperf(R) // Db(R) // Db(R) // 0.
(3.1)

For the explicit description of the morphism APC(R) σR−→ Db(R),
we refer to [42]. Buchweitz denotes its quasi-inverse by CM and the
quasi-inverse of ιR by M. These functors give a second diagram ([42]
Theorem 5.6.7), again commutative up to isomorphisms of functors:

Db(R)
CM

yyrrrrrrrrrr
M

�� %%KKKKKKKKK

APC(R) Ω0 // MCM(R) ιR // Db(R).

Given an R-module M , its image M(M) is called the maximal Cohen-

Macaulay approximation of M .
Now that we have de�ned and established the equivalence among

our three categories, we can �nally state the generalization of Tate co-
homology proposed by Buchweitz.

De�nition 3.17. Let M and N be two modules (but they can even be
complexes with bounded cohomology) over a strongly Gorenstein ring
R. The n-th Tate cohomology group of M with value in N is

ExtnR(M,N) = HomDb(S)(M,N [n]).
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Equivalently, we have

Hn(HomR(CM(M), N)) = ExtnR(M,N) = HomR(ΩnR(M(M)), N),

where ΩnR is the loop-space functor attached to the stabilized category
C(R).

This new Tate cohomology enjoys similar properties of the classical
one: it is functorial in both components, it is e�aceable and coe�aceable
(and hence it allows dimension shifting), and it has a product. Moreover,
for n big enough, we have ExtnR(M,N) = ExtnR(M,N) and Ext−nR (M,N)
is isomorphic to TorRi−1(N,M∗).

The examples that can be analyzed with this machinery are vast,
but the essential exposition we could give here prevents us from saying
more. As expected though, the classical Tate cohomology is recovered
through Ĥn(G,M) = ExtnZ[G](Z,M).

Given the existence of an MCM approximation for every module
over a strongly Gorenstein ring, this kind of modules may also be used
instead of the projectives modules to build resolutions and, hence, a
cohomology theory. This has been done, for example, in [2]. In that
paper, the theory is actually developed for totally re�exive modules over
a left and right Noetherian ring. Given an R-modules M , we denote by
M∗ the dual of M , that is HomR(M,R).

An R-module M is re�exive if the natural morphism M → M∗∗ is
bijective. A re�exive module is totally re�exive if also

ExtnR(M,R) = 0 = ExtnRop(M∗, R)

holds for every n > 0.
On the other hand, on a local Gorenstein ring R a �nite module M

is totally re�exive if and only if it is MCM (see [11], Theorem 3.3.10.d).
To keep the generality of [2], we will consider totally re�exive modules,
but said equivalence should be kept in mind. Denote by F , G, and
P the full subcategories of C(R) respectively constituted by �nite R-
modules, totally re�exive R-modules, and projective R-modules. Note
the inclusion G ⊂ P.
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De�nition 3.18. Let M be an R-module. The Gorenstein dimension

of M , denoted by GdimR(M), is the minimum integer g for which there
exists a G-resolution of M of the form

0 −→ Gg −→ Gg−1 −→ . . . −→ G0 −→M −→ 0.

If no such g exists, M is said to have in�nite Gorenstein dimension.

Denote now also by G̃ the �nite R-modules with �nite Gorenstein
dimension and by P̃ the �nite R-modules of �nite projective dimension.
To understand the relevance of these two classes, we remark that they
coincide for a Gorenstein ring R if and only if R itself is regular.

We need an extra technical re�nement before constructing the so
called relative cohomology: an exact complex A is called proper if for
every M ∈ G the complex HomR(M,A) is still exact. A G-resolution
G → M of an R-module M is proper if . . . → G1 → G0 → M → 0
is proper. Denote by Ḡ the full subcategory of F of �nite R-modules
having a proper G-resolution. We need this re�nement because G̃ does
contain Ḡ but possibly strictly.

De�nition 3.19. For every pair of R-modules M ∈ Ḡ and N , we de�ne
the relative cohomology of M with coe�cients in N as

ExtnR(M,N) = Hn(Homn
R(G, N)),

where G is a proper G-resolution of M .

For a discussion of the properties of the relative cohomology and
their connection with the Gorenstein projective dimension, we refer to
�4 of [2]. Now, if we also consider a P-resolution P of M , the identity
1M can be lifted to a morphism P → G to give collection of morphisms

εnR(M,N) : ExtnR(M,N) −→ ExtnR(M,N).

In this context (see De�nition 3.27), a complete resolution M is a di-

agram T
θ−→ P

ϕ−→ M where T is a totally acyclic complex, P is in
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P, and θn is an isomorphism for n big enough. Here totally acyclic

means that both T and T ∗ are acyclic. In the same style as the previous
paragraphs, we give the following.

De�nition 3.20. Given a strongly Gorenstein ring R and R-modules
M and N , the n-th Tate cohomology group of M with coe�cients in N

is
Êxt

n

R(M,N) = Hn(Homn
R(T , N)).

Also in this case we obtain a natural map:

εnR(M,N) : ExtnR(M,N) −→ Êxt
n

R(M,N).

This de�nition of the Tate cohomology enjoys the expected properties.

Theorem 3.21. For every n, Êxt
n

R : G̃op ×M(R) → Ab is a functor.

Moreover

1. these functors and the morphisms εnR(M,N) are independent of T

and ϕ;

2. the module M has �nite Gorenstein dimension GdimR(M) = g if

and only if εnR(M,N) is an isomorphism whenever n > g;

3. the R-module M has �nite projective dimension if and only if we have

Êxt
n

R(M,−) = 0 for every n;

4. the R-module N has �nite projective dimension if and only we have

if Êxt
n

R(−, N) = 0 for every n; and

5. for every short exact sequence 0 → M ′ → M → M ′′ → 0 in G̃ and

0 → N ′ → N → N ′′ → 0 in C(R), we have long exact sequences in

cohomology.

The proofs of (1) and (2) are in [2], Theorem 5.2. That of (3) and
(4) are combined in [2], Theorem 5.2 and Theorem 5.9. For (5) see [2],
Proposition 5.4 and [14], Theorem 5.4 (see also the following remark).

Remark 3.22. (a) In [51], Veliche generalized both the de�nition of
Gorenstein dimension and Tate cohomology to complexes bounded
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above in the controvariant component and below in the covariant
component. See also De�nition 3.28 further in this paper.

(b) The functor Êxt
n

R is de�ned as Gop × M(R) → Ab instead of
M(R)op × M(R) → Ab only to ensure the existence of a com-
plete resolution. In fact, Christensen and Jorgensen [14] proved
that Tate cohomology can be computed, already in the general
context of complexes just mentioned, through a complete injective
resolution of N , in the sense of [41]. Hence, provided the neces-
sary hypotheses to ensure the existence of a complete projective or
injective resolutions, the Tate cohomology is balanced.

(c) Analogous results are available for Tate homology, see [28].

(d) It is enough to verify Properties 3 and 4 only for a single index n

or when Êxt
0

R(M,M) = 0. The proof is again in [2], Theorem 5.9.

Through the so called comparison morphisms δnR (see [3], Theorem
7.1), the relative, absolute, and Tate cohomology �t in the following long
exact sequence:

0 −→ Ext0
R(M,N)

ε0R−→ ExtnR(M,N)
ε0R−→ . . .

. . .
εn

R−→ Êxt
n

R(M,N)
δn

R−→ Extn+1
R (M,N)

εn+1
R−→ Extn+1

R (M,N) −→ . . . .

(3.2)

3.5 Tate-Vogel or stable cohomology

In the 80s, in a private letter, Vogel developed another method to gen-
eralize the Tate cohomology. His ideas have been written in a paper by
Goichot [24] and taken over several times by other authors. We present
here a modern formulation developed by Avramov and Veliche in [3],
presented with the language of di�erentially graded-categories, or DG-
categories. The basic example of a DG-category is a DG-algebra, seen as
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the set of homomorphisms of the category with one object. A reference
for this topic is the introductory paper by Toën [50]. Here, we will con-
sider the DG-category of complexes of R-modules, for an associative ring
R. This is an enhanced category where, given two complexes (A, dA)
and (B, dB), the complex HomR(A,B) is de�ned as

HomR(A,B)n =
∏
i∈Z

HomR(Ai, Bi+n) = HomR(A,B)−n,

with di�erentials

d(αi) = dBαi − (−1)iαi−1d
A.

There is no risk of confusion, since the normal set of morphisms in C(R)
would be denoted by HomC(R)(−,−). In fact, if any of the two com-
plexes is concentrated in one degree, for example B, we have the equality
Hn(HomR(A, B)) = HnHomC(R)(A, B) for every n, since B is the only
non-zero component, no matter the degree. In this context, if P → M

and Q → N are two projective resolutions of two R-modules M and
N respectively, we have that HomR(P ,Q) and HomR(P , N) are quasi-
isomorphic and satisfy

H(HomR(P ,Q)) = H(HomR(P , N)) = ExtR(M,N),

as graded abelian groups. Moreover, we will use the important subcom-
plex of HomR(A,B) de�ned as

HomR(A,B)n =
⊕
i∈Z

HomR(Ai, Bi+n) = HomR(A,B)−n.

For two R-modules M and N , we can de�ne the following additional
graded abelian group.

De�nition 3.23. The bounded cohomology ofM with coe�cients in N

over R is the graded group

ExtR(M,N) = H(HomR(P ,Q)),

where P → M and Q → N are two projective resolutions of M and N
respectively.
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The choice of the term `bounded' comes from the fact that every
DG-morphism αi vanishes when |i| is big enough.

Denoting by ĤomR(P ,Q) the quotient HomR(P ,Q)/HomR(P ,Q),
we can now follow Vogel.

De�nition 3.24. Given a ring R and two R-modules M and N , we call
stable cohomology the graded abelian group

ÊxtR(M,N) = H(ĤomR(P , N)),

where P is any projective resolution of M .
Given a group G and a commutative ring K, for every K[G]-module

M , we call Tate-Vogel cohomology groups of M the collection

Ĥn
K(G,M) = Êxt

n

K[G](K,M) = Hn(HomK[G](P ,M)),

where P → K is a K[G]-projective resolution of K.

Remark 3.25. (a) The same process can be carried on with tensor
product to develop homology. This is actually the original approach
of Goichot [24]. Beware: the notation in [3] is highly inconsistent
with that of [24].

(b) To de�ne ÊxtR(M,N), one could of course also use an injective
resolution N → I and compute H(ĤomR(M, I)).

(c) In case G has �nite virtual cohomological dimension, we recover the
already de�ned Farrell-Tate cohomology (cf. [24], Theorem 3.1).

By construction, we have the following short exact sequence

0 −→ HomR(A,B) −→ HomR(A,B) −→ ĤomR(A,B) −→ 0

that yields a link among the three cohomology theories just de�ned
through the long exact sequence similar to (3.2):

. . . // ExtnR(M,N) // Êxt
n

R(M,N) // Ext
n+1

R (M,N) // . . .

. . . // Extn+1
R (M,N) // Êxt

n+1

R (M,N) // Ext
n+2

R (M,N) // . . . .
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Hence, this suggests that, whenever the suitable resolutions exist, there
is an isomorphism

Ext
n

R(M,N) ' ExtnR(M,N).

We conclude this section with the following criterion given by Tate-
Vogel cohomology to detect Gorenstein rings.

Theorem 3.26 (Corollary 6.3 and Theorem 6.4 in [3]). Let R be a

commutative local ring with maximal ideal m and residue �eld k. If the

rank of Êxt
n

R(k, k) is �nite for some integer n, then R is Gorenstein.

3.6 Complete resolutions versus totally acyclic ap-

proximations

So far, we have discussed complete resolutions and see how they are
related to various generalizations of Tate cohomology.

In general, the issues with the concept of a complete resolution (of
projectives) are two. The �rst and most di�cult is of course its existence.
The second is how to ensure that the cohomology de�ned through it
does not depend on the choice of a particular one. The latter is easier
to address and it has been settled in [17] by Cornikh and Kropholler, for
modules, and by Veliche, for complexes of modules, with the following
two generalized de�nitions.

De�nition 3.27. Let R be a ring and M an R-module. A complete

resolution of M is a morphism of complexes T
τ−→ P where

(1) the complex T is an exact complex of R-projective modules such
that HomR(T , Q) is still exact for every projective R-module Q;

(2) the complex P is an R-projective resolution of M ;

(3) the morphism τn is an isomorphism for n big enough.

A complex satisfying condition (1) is said to be totally acyclic.

De�nition 3.28. Let M be a complex over a ring R.
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(1) A complex P is semiprojective if Pi is projective for every i and
HomR(P ,−) preserves quasi-isomorphisms.

(2) A semiprojective resolution of M is any quasi-isomorphism ϕ : P →
M , where P is semiprojective.

(3) A complete resolution of M is a diagram T
τ−→ P

π−→M , where T

is a totally acyclic complex, P is a semiprojective resolution of M ,
and τn is an isomorphism for n big enough.

Remark 3.29. The latter consistently includes the former, as semipro-
jectivity reduces, for complexes concentrated in 0, to preserving common
isomorphisms.

The additional requirements, compared for example to De�nition
2.2, ensure the independence of Tate cohomology from the complete
resolution chosen for the computation. In the case of a �nite group, of a
group with �nite virtual cohomological dimension, or over a Gorenstein
ring, they are not explicitly necessary, because they are automatically
veri�ed. More precisely, Iyengar and Krause proved the following.

Theorem 3.30 (Corollary 5.5 in [31]). Let R be a Noetherian com-

mutative ring with a dualizing complex (see De�nition 3.31). Then the

following are equivalent:

(1) R is Gorenstein;

(2) every acyclic complex of projective R-modules is totally acyclic;

(3) every acyclic complex of injective R-modules is totally acyclic.

De�nition 3.31. Let R be a commutative Noetherian ring. A complex
D is a dualizing complex if the cohomology of D is bounded and �nitely
generated over R, the complex D has �nite injective dimension, and the
canonical homomorphism R→ RHomR(D,D) is a quasi-isomorphisms,
hence an isomorphism in D(R).

Remark 3.32. If π is a �nite abelian group and k is a �eld, then k[π] is
a dualizing complex. The hypothesis of being abelian can be removed,
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see Setup 1.4' and Proposition 3.8 in [32]. This also makes evident that
this de�nition cannot be confused with De�nition 3.3.

We now turn our attention to the existence of a complete resolution.
We have already seen the de�nition of the Gorenstein dimension for
modules. As explained by Veliche, there is an equivalent formulation,
where the connection to complete resolutions is more evident.

De�nition 3.33. Let R be a ring.
(1) An R-module G is said to be Gorenstein projective if there exists a

totally acyclic complex (T , dT ) such that G = coker(d1).

(2) The Gorenstein projective dimension GpdR(M) of an R-module M
is the minimum integer g such that there exists an exact sequence

0 −→ Gg −→ Gg−1 −→ . . . −→ G0 −→M −→ 0,

where Gi is Gorenstein projective for every i.

(3) The Gorenstein projective dimension GpdR(M) of a complex of left
R-modules M is the minimum integer g such that there exists a
complete resolution T

τ−→ P −→M for which τn is an isomorphism
for every n ≥ g.

Remark 3.34. For all R-modulesM , we haveGdimR(M) = GpdR(M),
see (2.4.1) in [51]. Moreover, if M is concentrated in 0, the notion of
Gorenstein projective dimension for modules and complexes coincide, see
Corollary 3.6 in [51].

Theorem 3.35 (Theorem 3.4 in [51]). Let g be an integer and M be a

complex of left R-modules. We have GpdRM < g if and only if for every

semiprojective resolution P −→M , there exists a (surjective) complete

resolution T
τ−→ P −→M such that τn = 1Tn

for every n ≥ g.

Remark 3.36. A commutative ring R is Gorenstein if and only if every
R-module has �nite Gorenstein projective dimension. In this case, we
recover the same result of Section 3.4.

If, for example, a group G has �nite virtual cohomological dimension
n, then for every G-module M we have GpdZ[G](M) ≤ n.
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From a di�erent point of view, in [32] Jørgensen argued that a gen-
eralization of Tate cohomology, in order to be called such, should be
bound to some sort of complex. Hence, from this perspective, the Tate-
Vogel cohomology should then be only called stable cohomology. In the
same vein, he suggested a di�erent approach that we now outline.

Given a ring R, we denote by Ktac(P(R)) the full subcategory of
K(P(R)) consisting of totally acyclic complexes of projective left R-
modules (we are adopting here the notation of [31]), while in [32] the
same category is denoted by E(R)) and by e∗ : Ktac(P(R))→ K(P(R))
the natural embedding. To avoid confusion, in this paper we work with
the following concept.

De�nition 3.37. Assume that e∗ has a right adjoint e!. We call the
image e!(P ) of a complex in K(P(R)) a totally acyclic projective ap-

proximation of P .

We are now ready for a di�erent generalization of Tate cohomology.

De�nition 3.38. Let R be a ring and assume that e∗ has a right ad-
joint e!. Then, given two left R-modules M and N , we de�ne the Tate
cohomology groups of M and N as

Êxt
n
(M,N) = Hn(HomR(e!(P ), N));

where P is any projective resolution of M .

The advantage of considering totally acyclic projective approxima-
tions rather than complete projective resolutions is that they exist for a
wider range of cases. In the same paper, Jørgensen proves for example
the following.

Theorem 3.39 (Theorem 1.10 in [32]). In any of the following two cases

• R is a commutative noetherian ring with a dualizing complex,

• R is a left-coherent and right noetherian k-algebra over a �eld k for

which there exists a left-noetherian k-algebra S and a dualizing com-

plex BDA,
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the functor e∗ : Ktac(P(R))→ K(P(R)) has a right adjoint.

The two notions coincide if a complete resolution exists.

Theorem 3.40 (Lemma 3.6 in [32]). Let R be a ring such that e∗ has a

right adjoint e!. LetM be a left R-module such that a complete resolution

T → P →M exists. Then we have

e!(P ) ' T .

Outside of this setting, though, the cohomology theories do di�er,
as Iyengar and Krause showed with the following example.

Example 3.41 (�1 in [31]). Let A be a commutative local ring, with
maximal ideal m and residue �eld k, such that m2 = 0 and rankk(m) ≥ 2.
This ring is not Gorenstein, but the injective hull of k is a dualizing
complex for A: hence an adjoint e! : K(P(R))→ Ktac(P(R)) exists.

By Proposition 6.1 in [31], any totally acyclic complex in C(A) is ho-
motopically trivial, that is, corresponds to 0 in K(A). As a consequence,
the Tate cohomology Êxt(M,N), in the sense of Jørgensen, is trivial for
any pair of A-modules M and N . On the contrary, this cannot be the
stable Êxt computed following [24] or [3], since, by Theorem 3.26, the
ring A would then be a Gorenstein ring.

3.7 Products in negative cohomology

Tate cohomology can be seen as an extension of the regular cohomology
to negative degrees. We have reported that the cup-product can be also
extended, with the same notation, to a product

∪ : Ĥp(G,A)⊗ Ĥq(G,B) −→ Ĥp+q(G,A⊗B),

for any pair of integers p and q. A natural curiosity could then be to
investigate the nature of these mixed (pq < 0) or negative (p, q < 0)
products. It should be noted that, even if in principle we have already
shown such a case since the beginning (see for example Section 1.2), in
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the previous situations the cohomology itself was periodic; hence, the
cup-product was just a shift of the classical one and we are not really in
the presence of new phenomena.

In [5], Benson and Carlson have shown interesting results on this
topic, in the speci�c case of K[G]-modules, where K is a �eld of positive
characteristic and G is a �nite group. The computational advantages in
this context are that

• K[G]-modules are in fact vector spaces over K, with a G-action,

• the ring K[G] is itself self-injective (see for example [15]; more in
general, K[G] is a Frobenius K-algebra),

• projective K[G]-modules are also injective.

Before restricting to these conditions, a generalized de�nition for
Tate cohomology is proposed in [5], for any commutative ring R and any
group G, as follows.

De�nition 3.42. Let R be a commutative ring and G a group. Given
two R[G]-modules M and N and projective resolutions P

ε−→ M and
Q

η−→ N , an almost-chain map µ of degree n from (P , ε) to (Q, η) is a
family {µi}i∈Z of R[G]-homomorphisms µi : Pi+n → Qi, such that for
all but a �nite number of indices the diagram

Pi+n

µi

��

di+n // Pi+n−1

µi−1

��
Qi

di

// Qi−1

commutes. The R[G]-modules Pi and Qi are assumed to be trivial for
i < 0, so that no restriction is required on the indexes.

Two almost-chain maps µ and ν are almost-chain homotopic if there
exists a family {σi}i∈Z of R[G]-homomorphisms such that µi − νi =
di ◦ σi + σi+1 ◦ di+n+1 for all but a �nite number of indices.
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Observe that the composition of two almost-chain maps of degree
m and n is an almost-chain map of degree m + n and almost chain-
homotopy gives an equivalence relation. The following de�nition can
then be given.

De�nition 3.43. Let R be a commutative ring, G be a group, and M
and N be R[G]-modules. We set

Êxt
n
(M,N) =

{
almost-chain homotopy classes of

almost-chain maps (P , ε)→ (Q, η) of degree n

}
.

In particular, taking R as M , we de�ne

Ĥn(G,M) = Êxt
n

R[G](R,M) = Êxt
n

G(Z,M).

We can now observe that if G is �nite (or of �nite virtual cohomo-
logical dimension, respectively), we recover the classical Tate (or Farrell)
cohomology. The usage of complete resolutions is avoided by allowing
some of the morphisms to be in some sense ignored in �nitely many de-
grees, relying on the fact that in order to compute Ĥ•(G.M) only the
leftmost part of each resolution is relevant.

The Yoneda products

Êxt
p

R[G](M2,M3)⊗ Êxt
q

R[G](M1,M2) −→ Êxt
p+q

R[G](M1,M3)

are also directly de�ned using the already mentioned fact that the com-
position of almost-chain maps is still an almost-chain map of the required
degree. (For a full de�nition of the cup-products, see �2 in [5].)

After having generalized Tate cohomology and cup-products, Ben-
son and Carlson proceed with their program, proving among other results
the following.

Proposition 3.44 ([5], Lemma 2.2). If K is a �eld of positive charac-

teristic p and G is a �nite group such that its Sylow p-subgroup is neither

cyclic nor the generalized quaternion group, then

Ĥm(G,K) · Ĥ−m(G,K) = 0.
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Theorem 3.45 ([5], Theorem 3.1 and 3.3). Let the p-rank of G be greater

than 1. Then if the cohomology ring H(G,M) is Cohen-Macaulay, we

have

Ĥm(G,K) · Ĥn(G,K) = 0,

for every m and n both negative.

If, viceversa, there exist negative integers m and n such that

Ĥm(G,K) · Ĥn(G,K) 6= 0,

then H(G,K) has depth 1, and the center of any Sylow p-subgroup of G

has rank one.

Theorem 3.46 ([5], Theorem 4.1). If G has p-rank 2 and H(G,K) is

not Cohen-Macaulay, then there exist negative integers m and n such

that

Ĥm(G,K) · Ĥn(G,K) 6= 0.

The conditions in Proposition 3.44 will be the same as in Proposi-
tion 3.48, where conditions under which the Tate cohomology is periodic
are discussed. This supports the general idea that products in negative
cohomology are somehow exceptional. In this perspective, the proof it-
self of Theorem 3.46 provides a way to �nd non-trivial examples. For
instance, let G = SD16 be the semi-dihedral group of order 16. We have
then

H(G.K) =
K[x, y, z, w]

(x3, xy, xz, z2 − y2w)
,

where the respective degrees are 1, 1, 3, and 4. Being each of the
Hn(G,K) a K-vector space, their dimensions can be used to control
their size. Fitting them in a spectral sequence converging to 0 and using
this data, Benson and Carlson obtain that there must exist an element
u ∈ Ĥ−3(G,K) such that uw = x. Using Tate duality (or Lemma 2.1 in
[5]), it is �nally obtained an element v ∈ Ĥ−2(G,K) subject to uv 6= 0,
as wanted.
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3.8 Periodicity and topological aspects

Another peculiarity of Tate cohomology is the phenomenon of periodic-
ity. We have already seen an example at the end of Section 2.3 in the
case of a �nite cyclic group π.

Another example from �5 of Chapter XII in [13] is provided by
the family of groups called generalized quaternion groups, that can be
presented by 〈x, y | xt = y2, xyx = y〉 for some �xed integer t. In this
case Tate cohomology has period 4.

In general, the study of periodicity has tight bounds both to the cup
product and to the structure of the group π itself, as we can see from
the following two propositions.

Proposition 3.47 (Proposition 11.1, XII in [13]). Let π be a �nite group

of order k. For each γ ∈ Ĥq(π,Z), the following are equivalent:

• the order of γ is k, and hence it generates Ĥq(π,Z);

• there is an element γ−1 ∈ Ĥ−q(π,Z) such that γ−1 ∪ γ = 1;

• the cup product ∪γ induces an isomorphism

Ĥn(π,A) ∼−→ Ĥn+q(π,A),

for every π-module A and every n.

Local Class Field Theory (as we have seen in De�nition 2.4) is a
clear example of this setting.

The second proposition is the following.

Proposition 3.48 (Theorem 11.6, XII in [13]). For each �nite group π

the following conditions are equivalent:

• the Tate cohomology of π has a positive period;

• every abelian subgroup of π is cyclic;

• every p-subgroup of π is either cyclic or a generalized quaternion group;

• every Sylow subgroup of π is either cyclic or a generalized quaternion

group.
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Similar statements are still valid also for Farrell-Tate cohomology
(see [10], Chapter X.4). Examples in this sense come mainly from topol-
ogy. To give an idea of the kind of results that can be obtained, in [16]
it is proven the following.

Theorem 3.49 ([16] Corollary 1.4). If G is a group with �nite virtual

cohomological dimension, then G acts freely and properly discontinuously

on Rm × Sn−1 if and only if G is countable and the Farrell-Tate coho-

mology Ĥn(G,Z) is periodic.

Further works that study similar problems are, among the oth-
ers, [36] and [47].

3.9 Pro�nite groups

Finite groups appear in Class Field Theory as Galois groups of number
�elds or �nite extensions of �nite �elds. In this context, they are viewed
as objects of the category of pro�nite groups. We recall that a group
is pro�nite if it is the projective limit of an inverse system of �nite
groups. Hence, �nite groups are trivially pro�nite. Therefore, it may
look somehow natural to extend Tate cohomology in this direction too.
The category under consideration is the category of G-modules with the

discrete topology and a continuous action by G, often denoted by CG. In
this setting, CG does still have enough injectives, hence cohomology can
be de�ned, but does not have enough projectives, whenever G is in�nite.
Nevertheless, in [43] Scheiderer found a way to partially overcome this
problem. The main remark is that the functor Hom(−,Q/Z) gives an
equivalence of categories, called Pontryagin duality, between the category
of pro�nite G-modules and the category of torsion discrete G-modules.
Since the latter still has enough injectives, the former does have enough
projectives. Obviously, this constrains the coe�cients of the cohomology.

After Scheiderer, Studer de Boer, in her Ph.D. thesis (cf. [12]), de-
�nes another generalization of the Farrell-Tate cohomology for pro�nite
groups with �nite virtual cohomological dimension through the comple-
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tion of the Hn(G,−)'s functors, as in Section 3.8 but with respect to
injectives, following the approach of [41].

4. Tate cohomology for algebras

Let us �x a commutative ring K and consider a K-algebra Λ. Denote
by Λop the opposite algebra of Λ.

De�nition 4.1. The enveloping algebra of the K-algebra Λ is the K-
algebra Λ⊗K Λop. It is denoted by Λe.

A two-sided Λ-module, or a ΛΛ-bimodule A, is equivalent to a left
Λe-module via the product (λ ⊗ µ)a = λaµ. In particular, Λ itself is
a left Λe-module. By de�ning the K-module homomorphism ρ : λ ⊗
µ 7→ λ · µ we obtain the augmented triple (Λe, ρ,Λ). The corresponding
augmentation ideal J is then generated by the elements of the form
λ⊗ 1− 1⊗ λ.

We are now ready, again through De�nition 2.1, for the following
de�nition.

De�nition 4.2. Let Λ be K-algebra and A a two-sided Λ-module.

• The homology of the algebra Λ with coe�cients in A is

Hn(Λ, A) = TorΛe

n (A,Λ).

• The cohomology of the algebra Λ with coe�cients in A is

Hn(Λ, A) = ExtnΛe(Λ, A).

These groups, that are actually K-modules, are called Hochschild

homology and cohomology groups for Λ. They are a generalization of
the (co)homology of algebras de�ned by Hochschild [27]; they coincide
when K is a �eld.

We shall remark that in general, given a supplemented algebra, the
(co)homology computed as an algebra or an augmented ring may di�er.
In the case of group rings, they coincide (see [13], X.6.1 and following).
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As for group cohomology, also in the context of algebras, we �nd
some generalizations. Nakayama already showed in [37] how to build
a complete cohomology theory for a Frobenius algebra. The two ap-
proaches he proposes are again either by a correspondent of the norm
homomorphism or by the equivalent of a complete resolution. After that
paper, to our knowledge, not much have been done on this topic until
recently. New developments, that we summarize now, are on the other
hand, for example, published in [6] or [40]. We use the setting of Bergh
and Jørgersen, since it is more modern and it includes what has been
done by Nakayama in the same spirit of the generalization of Farrell.

In order to recover the results of [2] we consider a k-algebra Λ such
that the enveloping algebra Λe is two-sided, Noetherian, and Goren-
stein, that is, it has �nite injective dimension over itself. Then, Λ has
a complete resolution T , in the sense of Farrell, but with the additional
property that its dual T ∗ = HomΛ(T ,Λ) is still exact.

De�nition 4.3. Let A be a bimodule.

• The Tate-Hochschild homology of Λ with coe�cients in A is

ĤHn(Λ, A) = T̂or
Λe

n (A,Λ) = Hn(A⊗Λe T ).

• The Tate-Hochschild cohomology of Λ with coe�cients in A is

ĤH
n
(Λ, A) = Êxt

n

Λe(Λ, A) = Hn(HomΛe(T , A)).

As for the Farrell cohomology, for n > d, these groups coincide
respectively with the Hochschild homology and cohomology of Λ as in
De�nition 4.2.

In their paper [6], Bergh and D. Jorgensen study the properties
of these groups. For example, if Λ has �nite dimension over K and
A is �nitely generated, both its homology and cohomology are �nite
dimensional K-vector spaces. Another noteworthy aspect relates to the
dualities that can be found.
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Theorem 4.4 (Theorem 2.4 in [6]). Let Λ be a �nite dimensional Goren-

stein algebra over K. Consider M and L �nitely generated left modules

and N a �nitely generated right module. If the Gorenstein dimension

of Λ is at most d, we have isomorphisms of �nite dimensional K-vector

spaces

T̂or
Λ

n(N,M) ' T̂or
Λ

−(n−d+1)(Ω
d
Λ(M)∗, D(N)),

Êxt
n

Λ(N,M) ' Êxt
−(n−d+1)

Λ (L,D(ΩdΛ(M))∗),

for every n in Z.

Here we have D(−) = Homk(−,K) and ΩdΛ(−) is the n-th syzygy
of a minimal resolution of M . We refer to the paper for details.

The case of the Frobenius and quasi-Frobenius algebras is the orig-
inal setting studied by Nakayama in [37] and [38], and it is also an in-
teresting special case for [6]. Indeed, in this situation we have a cleaner
duality

Êxt
n

Λ(M,L) ' Êxt
−n−1

Λ (L,νM);

here ν is the Nakayama automorphism given by the Frobenius structure.
A similar statement holds for T̂or.

Specializing the former formula to the (co)homology of Λ, we have
the following.

Theorem 4.5 (Theorem 3.7 in [6]). There are isomorphisms

ĤHn(Λ,Λ) ' ĤH−n−1(Λ,Λ), ĤH
n
(Λ,Λ) ' ĤH

−n−1
(Λ,ν2Λ).

Other applications of this type of generalization are in the same [6]
for a quantum complete intersection, in [40] for Hopf algebras, and in [20]
for Calabi-Yau Frobenius algebras. In this last paper, the Hochschild-
Tate cohomology is introduced as a stable cohomology, in the same style
as Vogel or [3].
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Resumen

Este artículo es una revisión del desarrollo y generalizaciones de la co-
homología de Tate. El número de tales generalizaciones es alto y la
literatura en torno a muchas de ellas es vasta. Por consiguiente, no pre-
tendemos dar un recuento completo de las ramas que se desprenden de
las ideas originales de Tate; esto más bien representa un bosquejo de
cómo estas ideas se han ido desarrollando.

Palabras clave: Cohomología de Tate, dimensión de Gorenstein, reso-
luciones completas, cohomología estable.
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