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HEADS REPRODUCTION IN 
HERCULES AND HYDRAS 

BATTLES 

Eduardo Piza Volio 

Abstract 

Hercules killed the Hydra of Lerna in a bloody 
battle-the second of the labor tasks imposed upon him 
in atonement for his hideous crimes. The Hydra was a 

horrible, aggressive mythological monster with many heads 
and poisonous blood, whose heads multiplied each time one 

of them was severed. 
This paper explores some mathematical methods about this 

interesting epic battle. A generalization of the original Kirby 
& Paris model is proposed, concerning a general heads 

reproduction pattern. We also study the connection 
of this model with Goodstein ultra-growing 

and recursive sequences. 
As an interesting application, we next analyze the 

inevitable death of another huge monster of our 
modern era: the Internet. 
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1 The Legend of Hercules and the Hidra 

Greek mythology has it that semi god Hercules1 , extramarital son 
of Jupiter2 and the mortal Alcmene3 , killed his own wife and children 
during temporary insanity induced by goddess Juno4 , who was always 
determined to harm Hercules. 

Upon awakening from temporary insanity, Hercules was appalled 
and repented from his deeds to god Apollo5 , asking him for forgiveness 
and spiritual guidance. The god of the Oracles forgave him and sent 
him to serve king Eurystheus6 for twelve years, doing hard labor for his 
murders. 

As part of the punishment imposed for these horrendous crimes, he 
was given twelve very difficult tasks that seemed impossible to fulfill. 
Fortunately, Hercules eventually had help from Hermes7 and Athena8 

when he most needed it. U pon completion of these twelve tasks Hercules 
became, no doubt, the greatest of all Greek heroes. 

The first task entrusted him was to kill the feared Lion of Nemea. 
The second task was perhaps the most dangerous of all: to kill the 
awful Hydra, a dangerous snake with venomous blood and many heads9 , 

which lived in a marsh of Lerna and terrorized the population. Hercules 
confronted the Hydra in a formidable battle where he cut off its heads 
with a sword. Each time Hercules severed a head, however, more heads 
sprang out in its place. According to official records, Hercules won. 

1 Hercules (Latin name) or Heracles (Greek name), the most popular of Greek 
mythological heroes. 

2 Jupiter (Latin name) or Zeus (Greek name}, father of gods. He conquered the 
Titans and defeated his father, Saturn. God of the heavens, daylight, time, and 
lightning. 

3 Beautiful mortal wife of Amphithryon. 
4Juno (Latin name) or Hera (Greek name), is Jupiter's jealous wife and sister; 

daughter of Saturn; protectress of marriage. 
5 A pollo, god of the oracles, healing, poetry, the arts, the herds, the Day, and the 

Sun. Son of Jupiter and Leto. 
6 Eurystheus, king of Tiryns and Mycenae, was half-brother of Hercules. 
7 Hermes (Greek name) or Mercury (Latin name}, son of Jupiter, god of cunning 

and theft, and messenger of the gods. 
8 Athena (Greek name) or Minerva (Latin name), daughter of Jupiter, goddess of 

wisdom, the arts, sciences, and industry. 
9 According to sorne mythological Greek biographers, the Hydra initially had eight 

mortal heads plus one immortal head. We didn't give credit here to these beliefs. 
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What the ancient Greeks did not reveal is that no matter in what order, 
or what strategy Hercules employed to cut off the heads, he would have 
always defeated the Hydra, although as we are about to see, he would 
have needed almost all the history of time to do it. 

2 Mathematical Model 

Although less charming, and botanically incorrect, we will mathe
matically represent the Hydra as a tree, and Hercules simply asan arrow 
pointing to one of the tree heads. 

Definition l. (Hydra, root, heads) A Hydra H is a tree-that is, 
a finite graph, acyclic and connected, with a fixed node called root and 
denoted as root(H). Any terminal node differing from the root is called 
head. 

heads 

neck(u) 

Hydra with 7 heads. Star Hydra 

head 
u 

neck(u) 

trunk( u) 

root(H) 

Linear Hydra 

Figure 1: Mathematical m o del and different types of Hydras. Star Hydras 
don't have trunks-only heads and root, which root coincides with the head's 
neck. Linear Hydras have only one head. 

The Hydra head reproductive process-after cutting one of them
can be defined in very diverse ways, sorne of which are more or less 
complex variations of the classic model we will explain next, which was 
introduced for the first time by Kirby & Paris [3] in 1982. 

Definition 2. (Neck and trunk of a head) Let v be a head of Hydra 
H. The predecessor node of v is called neck and is denoted by neck( v). lf 
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neck(v) has a preceding nade on its way from the root(H), this nade we 
call trunk of v and denoted it as trunk(v). In the event that neck(v) = 
root(H), we say that v has no trunk. 

The reproduction of Hydra's heads during the length of the battle 
is the most fascinating part of this monster. Associated to each head 
there's the body, which is the section of Hydra's anatomy that reproduces 
many times when the head is severed. Sorne heads have no associated 
body. 

Definition 3. (Body of a head) Let H be a Hydra and let v be a head 
of H. If v has a trunk, we define the body of v as the subtree containing 
the nades neck( v) and all his successors, eliminating v and then adding 
the nade trunk( v) as the roo t. In the event that v has no trunk, we say 
that v has no body. 

body(v) 
,. - - ~-"' u 

............. 
' ' ·: 
'' 

root(H1) ',;, trunk(v) 

Figure 2: Bodies of heads v and u of two different Hydras, H1 y H2 . 

This is illustrated in Figure 2. Kirby & París classic head repro
duction model is described in the following definition. An example of a 
stage of the battle is illustrated in Figure 3. 

Definition 4. (Battle and head reproduction) Let H be a Hydra. 
A battle between Hercules and Hydra H is a Hydra sequence H0 = H, 
H1, H2, ... where Hydra Hn is obtained from the previous one, Hn-1, 
through the following reproductive scheme: Hercules cuts any given head 
v E Hn-1," in response the Hydra adds n replicas of the body of v, from 
the trunk( v) on, if v has a body. In the event that the severed head has 
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body(v) 
.. - --.... 

n copies 

root(Hn-S = trunk(v) root(Hn) 

Figure 3: Simulating stage n of a battle. At Ieft, Hercules is about to cut the 
head v of Hydra Hn-1· At right we can see the new anatomy of Hydra Hn 
after reproducing n copies of the body of head v. 

no body, the Hydra won't reproduce at this stage. Hercules wins the battle 
if after finite number of stages k (the length of the battle), Hydra Hk is 
precisely the root. 

Thus, the initial sequences of a typical battle between Hercules and 
the Hydra could develop, for example, as illustrated in Figure 4. In 
theory, Hercules has the possibility to choose which of the Hydra's heads 
to cut (in practice this would be a difficult task, with all the adrenaline 
spread out amidst the heat of battle!). In each stage, choosing a specific 
head's decapitation with respect to any other, establishes the various 
strategies available to Hercules. 

As indicated above, Hydra not always produces new heads when 
one is cut. Reproduction takes place so long as the severed head has an 
associated body. But if the cut head lacks a body (as in star Hydras), 
no new heads are reproduced. This is illustrated in Figure 5. 

Hydra's death will come after Hercules gets to cut off its last head, 
which won't reproduce since it lacks an associated body. We will say 
that one of Hercules strategies is a winner if the corresponding battle 
ends in the Hydra's death. In appearance, this situation will be hard 
to achieve due to the overwhelming growth in quantity of the Hydra's 
heads. That is why the following Kirby & Paris result [3) could seem 
disorienting at first. 
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Stage l. After stage l. 

After stage 2. After stage 3. 

Figure 4: First sequences of a typical battle between Hercules and the Hydra. 

Theorem l. Against any initial Hydra H0 , any Hercules strategy is a 
winning strategy. 

Amazing! The theorem tell us that in reality Hercules needs not 
employ intelligence to beat the Hydra, no matter how initially monstrous 
the Hydra might be. All he needs is patience and keeping himself alive 
in the heat of battle. Even more amazing is the following result, also 
owed to Kirby & Paris [3]. 

Theorem 2. The affirmation, "Against any initial Hydra H0 , all Her
cules recursive strategies are winning strategies", is an indemonstrable 
property in Peana 's Arithmetic. 

That is, Theorem l-even when true-cannot be demonstrated by 
using traditional arithmetic techniques. When talking about a recursive 
strategy we refer to a strategy whereby Hercules chooses heads according 
to sorne precise method or algorithm, which method-for example, does 
not allow random choices. 
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t • 
Stage n. Stage n +l. Death of the Hydra. 

Figure 5: At Jeft, when cutting a bodiless head, the Hydra doesn 't reproduce 
heads. At right,the Hydra's death occurs when the Jast head is severed. 

We will demonstrate later on (see Theorem 4) a generalization of 
Theorem l. Theorem 2 demonstration is very complex, framing itself 
within the techniques of Model Theory and requiring the use of the 
concept "finite o:-large sets", machinery developed by Ketonen & Solovay 
[2]. Kirby & París proved there exists at least one recursive strategy 
that, although being a winning one, cannot be demonstrated within 
Peano's Arithmetic. Simply said, we can affirm that the impossibility to 
demonstrate Theorem 1 within Peano's Arithmetic is dueto the fact that 
there are recursive strategies where the number of necessary stages to kill 
the Hydra is immense-greater than the growth of primitive-recursive 
functions. 

But let us first introduce a similar growing pattern, the interesting 
Goodstein sequences, used by Kirby & París in the proofs of these results. 

3 Introduction to Goodstein Sequences 

Let us start discussion with the following example. Number 266 
allows only one binary representation: 

In the above representation, exponents 8 and 3 may also be repre
sented in base 2, as well as the exponents of the exponents, etc. to obtain 
the strict representation in base 2 of 266: 

266 = 22
2+

1 + 22+1 + 21 . 
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Then, from the principie of transfinite induction below €0 , there 
exists k E N such that ak = O. That implies that mk = O. We need only 
to formalize sorne things: 

l. Primitive-recursiveness of Goodstein sequence (mk): Let 

S 

m= L niai = n 8 as + ns-las-1 +···+na¡+ ao 
i=O 

be the normal representation of m in base n. We define the function 
gm,n: N t-+ N by way of the recursion 

{ 

~S g'•n(x) . 
m n( ) L.Ji=O X a~ g ' X := 

o 
,ifm >O 

,if m= O. 

Thus, gm,n is primitive-recursive function and also {m}n = gm,n(n). We 
define the Goodstein sequen ce (m k) starting at base n by 

m0 .- m, 

m¡ .- Gn(mo) = gmo,n(n + 1)- 1 and in general, 

mk+l .- Gn+k(mk) = gmk,n+k(n +k+ 1)- 1, Vk E N. 

2. Exact manner to associate ordinals to each mk: Consider the ordinal 
operator (a)(n), defined for a E Ord, n E N, a< €0 , inductively through 

(O)(n) 

([3 + 1)(n) 

(w 6 · ([3 + 1))(n) 

.- o, 

.- {3, and for 6 > 0: 

.- w6. {3 + w(6)(n). n + (w(6)(n))(n). 

We can formally add w to the domain of the functions gm,n. Thus, we 
ha ve: 

mo +---+ ao := gmo,n(w), 

m 1 +---+ a 1 := (a0)(n), and in general, 

mk+l +---+ ak+l := (ak)(n +k), Vk E N. 

From definition, it is clear that (ak) is a strictly decreasing sequence and 
also ak < €0 , for all k E N. Then, the principie of transfinite induction 
is applicable to (ak), thereby concluding the proof of (a). 
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Idea of the proof of (b): Goodstein 's theorem cannot be demon
strated in Peano's Arithmetic due-fundamentally- to the immense 
time the sequence (mk) takes to reach O. Indeed, let hn: N H N be 
the function defined by hn(m) := pk[mk = O], that is, the smallest in
dex k for which Goodstein sequence (mk) starting on base n reaches O. 
Clearly, the functions hn are recursive as well as total, for all n ~ 2, due 
to Goodstein's Theorem's veracity. 

Ketonen & Solovay proved through indirect methods related to the 
theory of indicators, that under the supposition that Goodstein's The
orem be demonstrable in Peano's Arithmetic, then for any recursive 
and total function f there exists n E N su eh that f ( x) < hn ( x), for 
x sufficiently large. This leads us to the absurd since we would come 
to construct a recursive and total function h growing faster than any 
recursive and total function. O 

By the way, although the functions hn are recursive and total, they 
are not primitive-recursive and therefore, they have a fast growth. For 
example, the standard sequence (starting on base 2) (4k) reaches O to 
the astronomical index of k = h2 ( 4) = 3 x 2402 653 211 - 3, a number of 
the arder of 10121210700 . The first terms of this sequence (4k) are shown 
in Figure 6. 

4 Ordinal N umbers Associated to Hydras 

Definition 7~ Let H be a Hydra. We can associate H to an ordinal 
number a = a(H) according to the following recursive procedure. To 
each nade s E H we associate an ordinal number: 

(a) lf s is a head, we associate it to ordinal number O. 

(b) lf s is not a head, then let 's say that s has k immediate successor 
nades. Let /31 ~ /32 ~ · · · ~ !3k be the ordinal numbers associated 
to these immediate successors. Then, we associate to s the ordinal 
number w!31 + w!32 + · · · + w!3k. 

Lastly, a(H) will be the associated ordinal to nade root(H). 

In Figure 7 we illustrate this procedure. Sorne comments must be 
made. First, observe that for any Hydra H we will have a(H) < Eo since 
H is a finite tree. Reciprocally, if a < Eo is any ordinal number, then 

155 



Goodstein sequence Ordinal ak associateQ 

4o 22 f---7 w"' 
4¡ 33 - 1 = 32 

• 2 + 31 . 2 + 2 f---7 w2 · 2 +w · 2 + 2 
42 42 ·2+41 ·2+1 f---7 w2 · 2 +w · 2 + 1 
43 52 .2 +51 . 2 f---7 w2 · 2 +w · 2 
44 62 . 2 + 61 . 2 - 1 = 62 . 2 + 61 + 5 f---7 w2 · 2 +w + 5 
4s 72 .2 + 71 + 4 f---7 w2 · 2 +w + 4 

49 112 ·2+111 +0 f---7 w2 · 2 +w 
410 122 . 2 + 121 - 1 f---7 w2 

· 2 + 11 
4u 132 .2 + 10 f---7 w2 · 2 + 10 

421 232 . 2 +o f---7 w2 ·2 
422 242 . 2- 1 = 242 + 24. 23 + 23 f---7 w2 +w · 23 + 23 
423 252 + 25. 23 + 25 f---7 w2 +w · 23 + 22 

Figure 6: First terms of the Goodstein 's standard sequen ce ( 4k). 

Figure 7: Procedure to associate an ordinal number to Hydra H. 
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we can associate a to a Hydra H = H (a). Indeed, sin ce a < Eo, then 
Cantor's normal form is relevant to express a in an only way as 

with a > a 1 ;::: a2 ;::: · · · ;::: ar and also, by expressing each ordinal a 1 , a 2 , 

... , ar by the same Cantor's normal form, the process is stabilized after 
a finite number of steps. For example, the following ordinal numbers a 
y/3 

define Hydras H (a) y H (/3) illustrated in Figure 8. It is clear that for 
any ordinal number a< Eo, we will have the identities a(H(a)) =a and 
H(a(H)) = H, if we identify as "equal" (or "equivalent") the Hydras 
differing only in the order of their nodes. 

H(a) H(f3) 

Figure 8: Construction of Hydras corresponding to ordinal numbers a and f3 
given. 

5 Slowest and Shortest Strategies 

We have seen that in the battle between Hercules and the Hydra 
any strategy that Hercules employs is a winner. Which is the slowest 
strategy Tmax? And which is the shortest strategy Tmin? For a Hydra H, 
these "optimal" strategies are defined as follows: 
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Figure 9: Sequence (an) of ordinals associated to Hydras in the battle in 
Figure 4. 

Tmax: Consists in choosing in each stage the head "closest" to the root; 
that is, to ascend from the root of H through the subtree associated 
to the smallest ordinal number. In case of draws, any head with 
the corresponding smallest ordinal number can be chosen. 

Tmin: Consists in choosing in each stage the head "furthest" from the 
root; that is, to ascend from the root of H through the subtree as
sociated to the greatest ordinal number. In case of draws, any head 
with the corresponding greatest ordinal number can be chosen. 

Well, Loebl [4] demonstrated that while the strategy Tmin produces 
battles of primitive-recursive duration (number of stages until the Hy
dra is defeated)-that is, 'short' battles, by contrast the strategy Tmax 

produces battles of a duration superior to the growth of any primitive
recursive function-that is, "long" battles. On the other hand, Miser
scque [7] demonstrated that to any Hydra H, the strategy Tmax produces 
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the longest battle between Hercules and the Hydra H. Precisely, the 
finitude of the battle when using this strategy Tmax is indemonstrable in 
Peano's Arithmetic. 

Matousek & Loebl [6] studied the following game of mixed strategies: 
Let 's suppose the Hydra has a hidden helper, who tries to prolong battle 
as much as ·possible. Each time Hercules makes a move cutting a head 
( aiming to kill the monster as quickly as possible), he is followed by k 
different moves by the Hydra's hidden helper-the same kind of moves 
as Hercules but aiming to keep Hydra alive as long as possible. It was 
demonstrated that when k = 1 Hercules can keep the battle "short" ( that 
is, of a primitive-recursive number of moves as a function of the number 
of nodes that the Hydra have), while if k ~ 2 the Hydra's hidden helper 
has a strategy to make battle "long" ( duration superior to the growth of 
primitive-recursive functions, or finitude of the battle not demonstrable 
within Peano's arithmetic). 

6 General Model for Heads Reproduction 

In the classic model introduced by Kirby & Paris, the Hydra's 
heads spring out in arithmetic progression: in the first stage one copy 
comes out of the body of the cut head; in the second stage 2 copies are 
produces from the body, and 3 copies in the third stage, etc. 

One of the first complaints the reader might voice is ... How come 
such an organized head reproduction law-following arithmetic progres
sion? Why not follow a geometric progression, or any other type of 
growth in this head reproduction matter? 

The finitude of the battle between Hercules and the Hydra is not 
affected by replacing the classic model with an alternative one that allows 
for reproduction of an arbitrary number of heads. The following is the 
author's own result: 

Theorem 4. Suppose the law of head reproduction of the Kirby & Paris 
model is modified according to the following pattern: in the n-esimal 
stage after the cutting of a head, Hydra reproduces f(n) replicas from 
the cut head's body, where f: N~--+ N is a total function. Then, for any 
initial Hydra H 0 , all Hercules strategies are winners. 
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Proof: The battle consists of a Hydra sequence (Hn)neN, to which we 
associate corresponding ordinal numbers (an)neN, where an := a(Hn), 
following the previously described procedure to assign ordinal numbers 
to Hydras. 

Let T be a Hercules strategy. We define the ordinal operator [a]r(n) 
that calculates the ordinal number an in terms of the previous ordinal 
an-1 and the natural number n (that is, an := [an-l]r(n)) using the 
strategy T. Let us demonstrate that (an) is a strictly decreasing se
quence, thereby applying the principie of transfinite induction below fo 
to deduce the existence of an index k E N for which ak = O, meaning 
that the corresponding Hydra Hk has died. In order to demonstrate 
that (an) is decreasing, it suffices to prove that for any a E Ord, with 
O < a < fo (that is, confronting any Hydra), and independently of the 
heads chosen by strategy T, we will get 

[a]r(n) <a, Vn E N. (6.1) 

We will demonstrate this by using transfinite induction over a below fo, 
examining the five different forms that a could have according to ordinal 
number theory and the reproduction schema. First off, one should ob
serve that for sorne relatively simple ordinals a < fo the value of [a)r(n) 
is independent of the chosen strategy T. Indeed, out of the Hydra head 
reproduction definition, we will have the following particular cases: 

[O)r(n) = O, (6.2) 

[a+ l]r(n) = a, (6.3) 

[w7 +1 ·(a+ 1))r(n) = w7+1 ·a+ w7 · f(n), (6.4) 

for all 'Y < fo, a E N and n E N. lt is clear that the non-trivial particular 
cases (6.3), (6.4) comply with property (6.1). Next, suppose (as hypoth
esis of induction) that property (6.1) are true for all ordinals /3 smaller 
than a. Pending analysis are two possible forms that a can have. The 
first is when a has the form wó · (a+ 1), where & is a limit ordinal. In 
such case, we have: 

[wó · (a+ 1))r(n) = wó ·a+ w[ó].,.(n), (6.5) 

and being & < a, the induction hypothesis is applicable, demonstrating 
property (6.1) for any strategy T used. The last possibility occurs when 
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the ordinal a has the form 

a = w>11 
• (a¡ + 1) + · · · + w>-; · ( ai + 1) + · · · + w>-r · ( ar + 1), 

with a > A¡ > · · · > Ar y ai E N, 1 :$ i :$ n. Strategy T manifests itself 
in the choice of any of the subtrees associated to the previously added 
terms. Let"s suppose that T consists in choosing the subtree that starts 
with the i-esimal added term, w>-; · ( ai + 1). Then we ha ve: 

But since Ai < a, we can apply the hypothesis of induction to obtain 
[Ai]r(n) < Ai, from where property (6.1) is deduced. O 

The techniques used in this proof are similar to that used by Mis
ercque in [7] and follows the central ideas of Kirby & Paris in [3]. It can 
be proved that in the generalized model just described, the number of 
moves it takes Hercules to kill the Hydra is recursive in f, as a function 
on the initial number of nodes. 

Another interesting problem related to Kirby & París standard 
model about Hercules and the Hydra, is to examine whether there is 
a proof within Pea no 's Arithmetic for the finitude of recursive strategy 
Tmin. Well then, this is still an open problem! 

In effect, Theorem 2 only establish that there exists a recursive 
strategy r whích does not admit finitude proof within Peano's Arith
metic. However, even in K ir by & Paris classic model the problem of 
proving the existence of recursive strategies whose finitude is demonstra
ble within usual arithmetic, could be as difficult as the famous conjecture 
P -:f. NP, not yet resolved and fundamental in Computer Sciences. 

Sorne particular cases of this problem have already been solved: 
Indeed, Luccio & Pagli in [5] studied the particular case of the alternative 
head reproduction scheme proposed in Theorem 4, when f(n) = 2 for 
all n E N (that is, when the Hydra produces two copies of the cut head's 
body in each stage). They found combinatoria! proof of Tmin finitude 
within usual arithmetic by using the notion of potential of the Hydra's 
node. Their demonstration could extend to the case of any recursive, 
bounded and total function f. 
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7 Death of the Internet11 

Let us now considera different monster. Internet, a huge and intri
cate set of linked sites, engages for the bright future of global commerce. 
As a first approximation we regard the whole structure as a dynamic 
tree, where a user encounters more and more specialized pages moving 
from the root to the leaves, and such pages are updated continuously. 

To discuss this phenomenon we shall pay a visit to a recent com
pany at www.o)..¿¡.t1fOt7.com, a paradigm of perfection in e.commerce and 
Internet evolution (Figure 10). Three sales departments have been estab
lished for sorne time under the supervision of Aphrodite12 (Beauty Shop), 
Athena (Weapons), and Hermes (Hardware), anda new department has 
been opened recently under the supervision of Dionysus13 (Wines & 
Liquors), accessible at the moment in just one leaf page of the o)..¿¡.t1fot7 

tree. 

Wines & Liquors 
(Dionysus) 

Figure 10: The site www.oA.¿¡.t1roa.com 

11 Allegory by Fabricio Luccio and Linda Pagli (5] from Pisa U niversity, Italy. Prod
uct of the disquisitions at a conference offered by the author on the theme of Hercules 
and the Hydra at Havana, Cuba, January, 1999. 

12 Aphrodite is the goddess of beauty and !ove, identified as Venus by the Romans. 
13 Dionysus is the Greek god of wine, son of Zeus and Sermele, identified as the 

Roman Bacchus. 
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Now spirits are in great demand, and the number of accesses to 
the Dionysus page has increased so rapidly that the company decides to 
upgrade the site. The Wines & Liquors page is moved one level up in 
the tree to be more directly accessible, thus becoming a child of Business 
and a sibling of Products. Sorne stiucturing is added to the department 
description, of the same type successfully experienced for Products. That 
is, a subtree like the one of Products is attached to Wines & Liquors. 

So far so good. But the tree has undertaken a transformation of the 
Hydra type, in the version indicated in Theorem 4 when f(n) = l. We 
then cometo an inevitable conclusion: the Internet will disappear! 

Epilogue. Yes, Internet will eventually disappear. However, as this 
conclusion may spread panic in Wall Street, we feel obligated to add a 
few words. First, the annihilation will take billions of steps, so there is 
no danger in the near future. Second, when a leaf directly attached to 
the root is cut off nothing grows from the tree, but a companion tree 
grows asid e. A myriad of new Internets will then appear, then disappear, 
etc. Be prepared! 
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