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Abstract
This paper extends the threshold stochastic volatility (THSV) model specification proposed in So
et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation
using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo
algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and
Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The
MCMC-based method exploits a mixture representation of the SMN distributions. The proposed
methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos
Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500
(SP500). Bayesian model selection criteria reveals that there is a significant improvement in model
fit for the returns of the data considered here, by using the THSV model with slash distribution
over the usual normal and Student-t models. Empirical results show that the skewness can improve
VaR and ES forecasting in comparison with the normal and Student-t models.
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1. Introduction

A large literature in financial econometrics has documented many stylized facts for financial
asset returns. As is well known, the return series exhibits significant non-Gaussian behavior such
as heavy tails and asymmetry, in addition to volatility clustering. These properties are crucial
not only for describing the return distributions but also for asset allocation, option pricing,
forecasting and risk management.

Many empirical studies have shown strong evidence of heavy-tailed conditional mean errors
in financial time series; see for example Mandelbrot (1963) and Fama (1965). In the stochastic
volatility literature, Liesenfeld and Jung (2000), Chib et al. (2002), Jacquier et al. (2004) and
Abanto et al. (2010), among others, have provided consistent evidence that leptokurtic distribu-
tions, such as the Student’s t, the generalized error distribution or the scale mixture of normal
(SMN) distributions, are more adequate to capture this empirical regularity by relaxing the
restrictive normality assumption in the distribution of the returns.

Recently, asymmetric behavior in stock returns has received attention since the work of Black
(1976), see also Christie (1982) for a discussion. Furthermore, this empirical evidence has provided
the explanation that unexpected returns and innovations of the volatility process are negatively
correlated, which is known as the leverage effect. Black (1976) asserted that a negative (positive)
return shock leads to an increase (decrease) in the company’s financial leverage ratio, which has
an upward (downward) effect on the volatility of its stock returns.

So et al. (2002) introduced an alternative approach to incorporating asymmetry in stochastic
volatility models. They developed a threshold stochastic volatility (THSV) model allowing the
conditional mean and the log-volatility parameters’ to change with the sign of the lagged returns.
More recently, Chen et al. (2008) generalize the THSV models allowing the threshold variable
to be different from zero and endowing the Student-t distribution to the mean innovation. Note
that the SV model (Taylor, 1982, 1994) is a special case of the THSV model when asymmetry
does not exist in stock returns.

In this article, we extend the setup of So et al. (2002), Chen et al. (2008) and Abanto et
al. (2010), in order to take account simultaneously for heavy-tails of the returns and volatility
asymmetries, by considering the THSV model with SMN distributions. We refer to this generali-
zation as THSV-SMN distributions. Interestingly, this rich class contains as proper elements the
THSV with normal (THSV-N), Student-t (THSV-T), slash (THSV-S) and the variance gamma
(THSV-VG) distributions. The estimation of such intricate models is not straightforward, since
volatility appears in both the mean and the variance equation and hence intensive computatio-
nal methods are needed for estimating purposes. Inference in the THSV-SMN class of models is
performed under a Bayesian paradigm via MCMC methods, which permits to obtain the poste-
rior distribution of parameters by simulation starting from reasonable prior assumptions on the
parameters. Based on the mixture sampler (Kim et al., 1998; Omori et al., 2007), an efficient
multi-move sampler is developed to sample the log-volatilities.

The remainder of this paper is organized as follows. Section 2 shows a brief review of the
SMN distributions. Section 3 describes the THSV-SMN class of models as well as the Bayesian
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estimation procedure using MCMC methods. We discuss some technical details about Bayesian
model selection in Section 4. Section 5 is devoted to application and model comparison among
particular members of the THSV-SMN models using the BOVESPA, MERVAL, MXX and SP500
returns. Finally, some concluding remarks as well as future developments are deferred to Section
6. Next, in Appendices A and B, we show some derivations for sampling from the full conditionals
of parameters and states, respectively.

2. SMN Distributions

A random variable Y belongs to the SMN family if it can be expressed as

Y = µ + κ(λ)1/2X, (1)

where µ is a location parameter, X ∼ N(0, σ2), λ is a positive mixing random variable with
cumulative distribution function (cdf ) H(. ∣ ν) and probability density function pdf h(.∣ν), ν is
a scalar or parameter vector indexing the distribution of λ and κ(.) is a positive weight function.
As in Lange and Sinsheimer (1993) and Choy and Chan (2008), we restrict our attention to the
case in that κ(λ) = 1/λ, because it leads to good mathematical properties. Given λ, we have
Y ∣λ ∼ N(µ,λ−1σ2), and the pdf of Y is given by

fSMN(y∣µ,σ2, ν) = ∫

∞

−∞
φ(y∣µ,λ−1σ2)dH(λ∣ν), (2)

where φ(. ∣ µ,σ2) denotes the density of the univariate N(µ,σ2) distribution. From a suitable
choice of the mixing density h(. ∣ ν), a rich class of continuous symmetric distributions can
be described by the density given in (2) that can readily accommodate thicker-tails than the
normal process. Note that when λ = 1 (a degenerate random variable), we retrieve the normal
distribution. Apart from the normal model, we explore three different types of heavy-tailed
densities based on the choice of the mixing density h(. ∣ ν).

● The Student-t distribution, Y ∼ T (µ,σ2, ν)

The use of the Student-t distribution as an alternative robust model to the normal dis-
tribution has frequently been suggested in the literature (Little, 1988). For the Student-t
distribution with location µ, scale σ and degrees of freedom ν. Y ∼ T (µ,σ2, ν) is equivalent
to the following hierarchical form:

Y ∣ µ,σ2, ν, λ ∼ N (µ,
σ2

λ
) , λ ∣ ν ∼ G(ν/2, ν/2), (3)

where G(., .) denotes the gamma distribution.

● The Slash distribution, Y ∼ S(µ,σ2, ν), ν > 0.
This distribution presents heavier tails than those of the normal distribution and it in-
cludes the normal case when ν → ∞. The slash distribution is equivalent to the following
hierarchical form:

Y ∣ µ,σ2, λ ∼ N (µ,
σ2

λ
) , λ ∣ ν ∼ Be(ν,1), (4)

where Be(., .) denotes the beta distribution.
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● The variance gamma distribution, Y ∼ VG(µ,σ2, ν), ν > 0.
The symmetric variance gamma (VG) distribution was first proposed by Madan and Seneta
(1990) to model share market returns. The VG distribution is controlled by the shape
parameter ν > 0 and presents heavier tails than those of the normal distribution. The VG
distribution is equivalent to the following hierarchical form:

Y ∣µ,σ2, ν, λ ∼ N (µ,
σ2

λ
) , λ∣ν ∼ IG(

ν

2
,
ν

2
), (5)

where IG(., .) denotes the inverse gamma distribution.

3. The Heavy-Tailed Threshold Stochastic Volatility Model

The THSV model with SMN distributions is defined by

yt = µst + βstyt−1 + e
ht
2 λ

− 1
2

t εt, (6a)

ht+1 = αst+1 + φst+1ht + σst+1ηt, (6b)

λt ∼ p(λt ∣ ν), (6c)

where yt and ht are respectively the compounded return and the log-volatility at time t. The
innovations εt and ηt are assumed to be mutually independent and normally distributed with
zero mean and unit variance. At time t − 1, when there is an unexpected drop in price due to
the presence of bad news, yt−1 < 0 and st = 0. In contrast, if there is good news at time t − 1

then yt−1 ≥ 0 and st = 1. In the THSV-SMN class the parameters µ,β,α,φ, σ2 switch between
the two regimes corresponding to sign of yt−1. In this setup, λt is a scale factor, p(λt ∣ ν) is the
mixing density and ν the parameter that capture the heavy-tailness. The aim of the THSV-SMN
class of models is to describe both mean and volatility assymetry in the presence of outliers.
The THSV-SMN class includes the THSV with normal (THSV-N), Student-t (THSV-T), slash
(THSV-S) and variance gamma (THSV-VG) distributions as special cases. The first model is
obtained with λt = 1 for all t, and the other ones are obtained by choosing the mixing density
as: λt ∼ G(ν2 ,

ν
2), λt ∼ Be(ν,1) and λt ∼ IG(ν2 ,

ν
2), where G(., .), Be(., .) and IG(., .) denote the

gamma, beta and inverse gamma distributions respectively.
Under a Bayesian paradigm, we use MCMC methods to conduct the posterior analysis in

the next subsection. Conditionally to λt, some derivations are common to all members of the
THSV-SMN family.

3.1 Parameter Estimation via MCMC

Bayesian estimation in the THSV-SMN class of models defined by equations (6a)-(6c) is a non
trivial task, because the stochastic volatility ht is an unknow process. To overcome this difficulty,
we propose an algorithm based on MCMC simulation to make the Bayesian analysis feasible.

First, let us to introduce some notation. Let h1∶T = (h1, . . . , hT )
′ be the vector of log-

volatilities, λ1∶T = (λ1, . . . , λT )
′ the mixing variables and θ = (ψ0,ψ1,ϕ0,ϕ1, σ

2
0, σ

2
1, ν)

′ the
entire parameter vector of the entire class of THSV-SMN models, where ψst = (µst , βst)

′,
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ϕst = (αst , φst)
′, for st = 0,1 respectively. As the posterior density p(θ,h1∶T ,λ1∶T ∣ y1∶T ) does

not have closed form, we draw random samples from it using the Gibbs sampling. The sampling
scheme is described by the following algorithm:

Algorithm 1.

1. Set i = 0 and get starting values for the parameters θ(i) and the latent quantities λ(i)
1∶T , and

h
(i)
1∶T .

2. Generate θ(i+1) ∼ p(θ ∣ h
(i)
1∶T ,λ

(i)
1∶T ,y1∶T ).

3. Draw λ(i+1)
1∶T ∼ p(λ1∶T ∣ θ(i+1),h(i)

1∶T ,y1∶T ).

4. Generate h1∶T ∼ p(h1∶T ∣ θ(i+1),λ(i+1)
1∶T ,y1∶T )

5. Set i = i + 1 and return to 2 until convergence is achieved.

As described by Algorithm 1, the Gibbs sampler requires to sample parameters and latent
variables from their full conditionals. Sampling the log-volatilities h1∶T in Step 4 is the more
difficult task due to the nonlinear setup in the mean equation (6a). In order to avoid the higher
correlations due to the Markovian structure of the h′ts, we apply a multi-move sampler (Kim
et al., 1998; Omori et al., 2007) in the next subsection to sample the h1∶T at once. Multi-move
algorithms are computationally efficient and convergence is achieved much faster than using a
single move (Abanto et al., 2010, 2014). Details on the full conditionals of θ and the latent
variable λ1∶T are given in the Appendix A, some of them are easy to simulate from.

Sampling the log-volatilities

Let, ut = log(yt − rtψst)
2, where rt = (1, yt−1)′. After a log-square transformation, (6a) can be

re-written as.

ut = − logλt + ht + log ε2t , (7)

where log ε2t ∼ logχ2
1. The model defined by equations (7) and (6b) is a non-Gaussian state space

model. So, following the ideas of Kim et al. (1998) and Omori et al. (2007), we approximate
log ε2t by a finite mixutre of normals distributions,

f(log ε2t ) ≈
P

∑
i=1
qif(log ε2t ∣ kt = i),

where, kt is a discrete mixing variable, log ε2t ∣ kt = i ∼ N(ϑi,$
2
i ) and qi = Pr(kt = i). So equation

(7) can be written as

ut = − logλt + ht + ξt, (8)

where ξt ∣ kt = i ∼ N(ϑi,$
2
i ).

Omori et al. (2007) argued that P = 10 gives a satisfactory approximation of the logχ2
1 density.
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For the parameters of the mixture of normal distributions, ϑi and $2
i for i = 1, . . . ,10, we refer to

Omori et al. (2007). The discrete mixing variable kt can be drawn by computing the conditional
probability

Pr(kt = i ∣ ut, λt, ht) ∝ 1
$i

exp{− 1
2$2

i
(ut + logλt − ht − ϑi)

2}qi, (9)

for i = 1, . . . ,10 and t = 1, . . . , T .
We use the simulation smoothing method proposed by McCausland et al. (2011) to simulate

from the states in the system defined by equations (8) and (6b), which conditional to the k′ts and
s′ts follows a linear Gaussian state space model. The method of McCausland et al. (2011)(MMP)
is described in Result 1.

Result 1. If h1∶T ∣ z1∶T ∼ N(Ω−1c,Ω−1), where Ω is defined as in Appendix B, then

ht ∣ ht+1,y1∶T ∼ N(mt −ΣtΩt,t+1ht+1,Σt) and E[h1∶T ∣ z1∶T ] = (µ1, . . . , µT )
′

where Σ1 = Ω−1
11 , m1 = Σ1c1, Σt = (Ωtt − Ω2

t−1,tΣt−1)−1, mt = Σt(ct − Ωt−1,tmt−1), µT = mT and
µt =mt −Σt,t+1µt+1.

Algorithm 2 describes the simulations scheme using the MMP procedure for the j−th MCMC
iteration.

Algorithm 2.

1. Simulate h(j)
T ∼ N(m

(j)
T ,Σ

(j)
T )

2. For t = T − 1, . . . ,1, simulate h(j)
t ∼ N(m

(j)
t −Σ

(j)
t Ω

(j)
t,t+1h

(j)
t+1,Σ

(j)
t )

3.2 Forecasting Returns, Volatility, Value-at-Risk and Expected Shortfall

The K−step ahead prediction densities can be calculated using the composition method via the
following recursive procedure:

p(yT+K ∣ y1∶T ) = ∫ [p(yT+K ∣ hT+K , λT+K)p(λT+K ∣ θ)

× p(hT+K ∣ θ,y1∶T )p(θ ∣ y1∶T )]dhT+KdλT+Kdθ,

p(hT+K ∣ θ,y1∶T ) = ∫ p(hT+K ∣ θ, hT+K−1)p(hT+K−1 ∣ θ,y1∶T )dhT+K−1.

Numerical evaluation of the last integrals is straightforward. To initialize the recursion, we use
h
(i)
T and θ(i), for i = 1, . . . ,N , from the MCMC output. Given theseN draws, we sample h(i)

T+k from
p(hT+k ∣ θ(i), h(i)

T+k−1) and λ(i)
T+k from p(λT+k ∣ θ(i)), for i = 1, . . . ,N and k = 1, . . . ,K, by using

(6b) and (6c), respectively. Finally, using (6a), we sample y(i)T+k from p(yT+k ∣ θ(i), λ(i)
T+k, h

(i)
T+k),

for i = 1, . . . ,N and k = 1, . . . ,K.
To check the performance of the volatility forecasts, we use an extra dataset as validation

period to perform m one-step-ahead forecasts. By the moving window approach, we use the
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first T observations in the initial period to estimate the model and to forecast the (T + 1)−th
observation; the sample is then rolled forward by one observation so that the second to the
(T +1)−th observations are used to forecast the (T +2)−th observation. This process is repeated
until the end of the sample, the (T+m)−th observation. To evaluate the performance of the model
on VaR prediction, the likelihood ratio test introduced in Kupiec (1995) is used to test that the
null hypothesis that the expected proportion of the number of “beyond VaR” or “violation” during
the test periods is equal to α. The violation is formulated by It(α) = I[yT+1 < V̂aRt(α)] for the
left tail and It(α) = I[yt > V̂aRt(α)] for the right tail, where I[.] is an indicator function and
V̂aRt(α) is the estimated VaR at level α, which can be obtained by simulation using the k−step
ahead densities described below (See Chen et al., 2008; Fan and Wang, 2013, for a detailed
review). Let xα be the number of violations, that is, xα = ∑

T+m
t=T+1 It(α) and α̂ = xα/m. The

unconditional test of Kupiec (1995) is a likelihood ratio test with the χ2
1-distributed test statistic

defined as

LRuc = 2{log[α̂xα(1 − α̂)m−xα] − log[αxα(1 − α)m−xα]}. (10)

The Expected Shortfall (ES) is formally defined via ESt(α) = E[yt ∣ yt < V aRt(α)] for the
left tail and ESt(α) = E[yt ∣ yt > V aRt(α)] for the right tail. Following Aas and Haff (2006) and
Nakajima (2013), we compute the measure developed by Embrechts et al. (2004) for evaluating
the performance of the predicted ES, denoted by ÊSt(α). We define δt(α) = yt − ÊSt(α) as an
excess of return. Let δα be the αth quantile {δt(α)}

T+m
t=T+1. Next, define St(α) = I[δt(α) < δα] for

the left tail and St(α) = I[δt(α) > δα] for the right tail. Write sα = ∑
T+m
t=T+1 St(α). The measure

of Embrechts et al. (2004) is given by D(α) = 1
2(∣D1(α)∣ + ∣D2(α)∣, where

D1(α) =
1

xα
∑

It(α)=1
δt(α), (11)

D2(α) =
1

sα
∑

St(α)=1
δt(α). (12)

As discussed in Aas and Haff (2006) and Nakajima (2013), D1(α) is the standard back-testing
measure for expected shortfall estimates. Its weakness is that it depends strongly on the VaR
estimates without adequately reflecting the correctness of these values. D2(α) is computed to
correct it because D2(α) measures an average difference between the return and the estimated
ES for the α-level tail of that difference from all test periods. A smaller D(α) implies more
precise prediction of ES.

4. Bayesian Model Comparison

To compare the goodness of the estimated models with different members of the SMN dis-
tributions, we calculate the Watanabe-Akaike information criterion (WAIC, Watanabe, 2010,
2013). The WAIC is defined as

WAIC = −2(lppd − pWAIC), (13)
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where lppd is the log pointwise predictive density defined by

lppd =
T

∑
t=1

log∫ p(yt ∣ θ,h1∶T )p(h1∶T ∣ y1∶T )dθdh1∶T (14)

and

pWAIC = 2
T

∑
t=1

{ logEθ,h1∶T ∣y1∶T
[p(yt ∣ θ,h1∶t)] −Eθ,h1∶T ∣y1∶T

[log p(yt ∣ θ,h1∶t)]}. (15)

We can compute both the lppd and the pWAIC using the MCMC output. We label them as
θ(i) and h

(i)
1∶T , i = 1, . . . , I. Approximated versions obtained for computation are given by

ˆlppd =
T

∑
t=1

log(
1

I

I

∑
i=1
p(yt ∣ θt))

pWAIC = 2
T

∑
t=1

( log(
1

I

I

∑
i=1
p(yt ∣ θt)) −

1

I

I

∑
i=1

log p(yt ∣ Ψ, θt)).

The minimum value of the WAIC gives the best fit.

5. Empirical Application

We consider the daily closing prices for three Latin American indexes: BOVESPA (Brazil),
MERVAL (Argentina) and MXX (Mexico)1. We also use the daily returns of S&P 500 stock
market index in order to compare the results with Latin American stock markets. The datasets
were obtained from the Yahoo finance web site available to download at http://finance.yahoo.
com. The period of analysis is from January 5, 1998, until December 30, 2016. Stock returns are
computed as yt = 100 × (logPt − logPt−1), where Pt is the (adjusted) closing price on day t. The
sample size differs between countries due to holidays and stock market non-trading days. Table
1 reports a summary of descriptive statistics for the series of returns.

According with Table 1, MERVAL and SP500 returns are negatively skewed and the BO-
VESPA and MXX positively skewed. Regarding kurtosis, all the indexes considered here show
kurtosis greater than three, confirming a well-known stylized fact for return series, namely the
departure from normality. We analyze the datasets with the aim of providing robust inference
by using the SMN class of distributions. In our analysis, we compare the THSV-N, THSV-T,
THSV-S and THSV-VG models for each one of the series described above.

Table 1
Summary statistics for the BOVESPA, MERVAL, MXX and SP500 returns

Return size mean SD Minimum Maximum Skewness Kurtosis Return≥ 0

BOVESPA 4699 0.0369 2.0267 -17.2082 28.8325 0.5300 16.7908 2422
MERVAL 4652 0.0700 2.2123 -14.2986 16.1165 -0.2089 7.3432 2451
MXX 4761 0.0456 1.4281 -10.3410 12.1536 0.1447 8.7346 2522
SP500 4779 0.0174 1.2416 -9.4695 10.9572 -0.2079 10.2474 2537

1We do not consider the peruvian market due to dificulty to find stocks with large daily quotes series.

http://finance.yahoo.com
http://finance.yahoo.com
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Table 2
Estimation results for the BOVESPA returns.

Parameter THSV-N THSV-T THSV-S THSV-VG
0.0322 0.0340 0.0384 0.0326

µ0 (-0.0664,0.1334) (-0.0688,0.1361) (-0.0639,0.1393) (-0.0651,0.1302)
0.52 -1.02 -0.27 1.23

0.0480 0.0403 0.0337 0.0402
µ1 (-0.0483,0.1405) (-0.0522,0.1383) (-0.0613,0.1272) (-0.0567,0.1321)

-0.04 0.35 -1.54 1.91
-0.0174 -0.0200 -0.0213 -0.0201

β0 (-0.0845,0.0487) (-0.0844,0.0460) (-0.0811,0.0461) (-0.0848,0.0445)
0.59 -1.91 -0.62 0.99

0.0351 0.0371 0.0399 0.0375
β1 (-0.0291,0.0977) (-0.0245, 0.0986) (-0.0209,0.1007) (-0.0239,0.0998)

1.14 -0.27 1.80 1.53
0.0221 0.0171 0.0068 0.0196

α0 (0.0081,0.0378) (0.0053,0.0308) (0.0001,0.0014) (0.0066,0.0341)
0.37 -0.80 -0.17 -1.45

0.0209 0.0160 0.0042 0.0189
α1 (0.0080,0.0362) (0.0054,0.0281) (-0.0020,0.0106) (0.0065,0.0324)

1.44 -0.68 1.70 -1.68
0.9818 0.9851 0.9884 0.9841

φ0 (0.9689,0.9929) (0.9737,0.9949) (0.9793,0.9965) (0.9726,0.9945)
-1.52 0.84 0.18 1.65
0.9761 0.9804 0.9852 0.9788

φ1 (0.9619,0.9874) (0.9692,0.9904) (0.9757, 0.9939) (0.9670,0.9897)
-1.70 0.49 -1.51 1.45
0.0226 0.0175 0.0125 0.0191

σ2
0 (0.0165, 0.0332) (0.0117,0.0246) (0.0089,0.0176) (0.0133,0.0269)

1.58 -0.44 0.20 -1.28
0.0223 0.0173 0.0125 0.0189

σ2
1 (0.0164,0.0328) (0.0117, 0.0246) (0.0087,0.0174) (0.0132,0.0264)

1.28 -0.51 0.18 -1.31
– 24.2300 1.7587 27.9404

ν – (16.9300,35.8700) (1.6370,1.8480) (18.9400,37.7400)
– -0.40 -0.30 -1.16

Note: First row: Posterior mean. Second row: Posterior 95% credible interval in parentheses.
Third row: CD statistics

In all posterior calculations, we simulate the h′ts using the mixture sampler described on
Section 3. We set the priors distributions of the common parameters as ψi ∼ N2[∣βi∣<1](ψ̄

∗
i ,Sψi),

ϕi ∼ N2[∣φi∣<1](ϕ̄
∗
i ,Sϕi), σ

2
i ∼ IG(5,0.5) for i = 0,1, where ψ̄∗

i = (0,0)′, Sϕi = diag(100,100), ϕ̄∗i =
(0,0.98)′, Sϕi = diag(100,100). N2[.](., ; ) and IG(., .) denote the truncated bivariate normal and
inverse gamma distributions, respectively. For the shape parameters, we assume ν ∼ G(2,0.10)

in the THSV-T (Juárez and Steel, 2004), ν ∼ G(0.08,0.04) for the THSV-S and THSV-VG
respectively.

For all the models and datasets we considered, we generated 60000 MCMC iterations. In all
the cases, the first 20000 draws were discarded as a “burn-in” period. In order to reduce the
autocorrelation between successive values of the simulated chain, only every 20th values of the
chain were stored. With the resulting 4000 values, we calculated the posterior means, the 95%
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Table 3
Estimation results for the MERVAL returns.

Parameter THSV-N THSV-T THSV-S THSV-VG
0.0189 0.0059 0.0006 0.0096

µ0 (-0.0833,0.1223) (-0.0939,0.1049) (-0.0995,0.1005) (-0.0869,0.1078)
-1.86 -0.16 -0.50 -0.73
0.1711 0.1716 0.1700 0.1698

µ1 (0.0767,0.2656 ) (0.0766,0.2642) (0.0722,0.2646) (0.0754,0.2624)
-1.06 0.90 0.48 -0.02

-0.0033 -0.0245 -0.0323 -0.0253
β0 (-0.0675,0.0613) (-0.0847,0.0351) (-0.0923,0.0293) (-0.0852,0.0350)

-1.47 0.50 0.05 -0.10
0.0372 0.0291 0.0288 0.0273

β1 (-0.0234,0.0980) (-0.0272, 0.0859) (-0.0265,0.0861) (-0.0289,0.0836)
-0.31 0.55 -1.63 0.81
0.0606 0.0343 0.0175 0.0387

α0 (0.0336,0.0934) (0.0147,0.0575) (0.0049,0.0323) (0.0176,0.0623)
-1.74 -1.75 0.67 1.85
0.0572 0.0317 0.0133 0.0347

α1 (0.03201,0.0881) (0.0135,0.0525) (0.0023,0.0252) (0.0191,0.0578)
-1.62 1.72 1.17 -1.42
0.9539 0.9700 0.9739 0.9718

φ0 (0.9292,0.9735) (0.9521,0.9861) (0.9563,0.9882) (0.9553,0.9861)
1.81 -1.38 -0.17 -1.42

0.9451 0.9644 0.9688 0.9665
φ1 (0.9187,0.9651) (0.9463,0.9807) (0.9510, 0.9826) (0.9509,0.9803)

0.96 -1.91 -0.41 0.74
0.0752 0.04146 0.0357 0.0384

σ2
0 (0.0518, 0.1094) (0.0247,0.0609) (0.0242,0.0572) (0.0268,0.0526)

-1.51 1.85 0.28 1.56
0.0721 0.0413 0.0355 0.0382

σ2
1 (0.053,0.1076) (0.0247, 0.0607) (0.0241,0.0572) (0.0266,0.0518)

-1.62 1.82 0.29 1.47
– 10.1110 1.7690 6.5434

ν – (7.6580,13.5880) (1.6650,1.8520) (5.8740,8.9290)
– 1.14 1.00 1.21

Note: First row: Posterior mean. Second row: Posterior 95% credible interval in parentheses.
Third row: CD statistics

credibility intervals and the convergence diagnostic (CD) statistics. If the sequence of the recorded
MCMC output is stationary, it converges in distribution to the standar normal. According to the
CD, the null hypothesis that the sequence of 4000 draws is stationary is accepted at 5% level,
i.e. CD ∈ (−1.96,1.96), for all the parameters in all the models and series of returns considered
here (see Tables 2, 3, 4 and 5 for details.)

From Tables 2, 3, 4 and 5, we found for all the models and datasets, that posterior means
and 95% credibility intervals of φ0 and φ1 were very close to the unity, which is consistent with
the existing evidence of great persistence in the log-volatility process. Additionally, the posterior
means of φ0 and φ1 under the THSV-N model were slightly smaller than those under the other
three models. As expected, the posterior means of σ20 and σ21 under the THSV-N were higher
than those under the THSV-T, THSV-S and the THSV-VG models, indicating that the log-



42 C. Abanto-Valle and H. Garrafa-Aragón

Table 4
Estimation results for the MXX returns.

Parameter THSV-N THSV-T THSV-S THSV-VG
0.0670 0.0676 0.0702 0.0692

µ0 (0.0560,0.1255) (0.0104,0.1270) (0.0126,0.1266) (0.0104,0.1289)
1.21 0.71 1.27 -1.06

0.0623 0.0621 0.0624 0.0639
µ1 (0.0059,0.1177) (0.0089,0.1171) (0.0092,0.1175) (0.0106,0.1183)

-0.36 0.29 0.23 -0.32
0.0671 0.0616 0.0601 0.0636

β0 (0.0044,0.1293) (0.0004,0.1218) (0.0017,0.1188) (0.0036,0.1246)
0.88 -0.82 0.36 -0.88

0.0881 0.0831 0.0803 0.0801
β1 (0.0304,0.1472) (0.0246, 0.1409) (0.0246, 0.1348) (0.0274,0.1328)

0.66 -1.68 0.36 1.21
0.0079 0.0047 -0.0013 0.0062

α0 (-0.0012,0.0181) (-0.0027,0.0124) (-0.0088,0.0060) (-0.0017,0.0145)
0.64 -1.71 1.92 0.69

0.0002 -0.0017 -0.0087 0.0007
α1 (-0.0081,0.0084) (-0.0087,0.0053) (-0.0167,0.0012) (-0.0065,0.0076)

-0.22 -1.46 1.74 -0.32
0.9857 0.9891 0.9903 0.9892

φ0 (0.9739,0.9961) (0.9803,0.9973) (0.9817,0.9981) (0.9804,0.9973)
-1.26 0.61 1.75 1.26
0.9792 0.9840 0.9859 0.9840

φ1 (0.9673,0.9897) (0.9746,0.9926) (0.9770,0.9938) (0.9747,0.9921)
-1.70 1.70 1.42 1.07
0.0296 0.0214 0.0185 0.0213

σ2
0 (0.0185, 0.0451) (0.0154,0.0292) (0.0134,0.0259) (0.0150,0.0291)

1.84 -0.96 -1.92 -1.17
0.0292 0.0212 0.0183 0.0211

σ2
1 (0.0184,0.0442) (0.0151, 0.0284) (0.0132,0.0257) (0.0150,0.0288)

1.91 -0.99 -1.86 -1.13
– 14.9193 1.7572 11.3888

ν – (11.1400,19.5100) (1.6450,1.8400) (8.5870,14.2820)
– 0.16 0.16 0.41

Note: First row: Posterior mean. Second row: Posterior 95% credible interval in parentheses.
Third row: CD statistics

volatility process of the last three models is less variable than that of the THSV-N model. We
found that the persistence coefficients for the MERVAL index are lower than the coefficients
of the other indexes. Under the THSV-T, THSV-S and THSV-VG models, the magnitude of
the tail-heavyness is measured by the ν parameter. We found that the posterior means of ν
were 24.2300, 1.7587 and 27.9404 (BOVESPA), 10.1110, 1.7690 and 6.5434 (MERVAL), 14.9193,
1.7572 and 11.3888 (MXX), 25.2610, 1.7532 and 9.3880 (SP500), respectively. This results seem
to indicate the presence of heavy tails.

To assess the goodness-of-fit of the estimated models, we calculate the WAIC criterion for the
SV-N, SV-T, SV-S, SV-VG2, THSV-N, THSV-T, THSV-S and THSV-VG models, respectively.

2We fit the basic class of SV models with SMN distributions , but we do not report the results for parameter
estimation.
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Table 5
Estimation results for the SP500 returns

Parameter THSV-N THSV-T THSV-S THSV-VG
0.0770 0.0796 0.0825 0.0817

µ0 (0.0264,0.1264) (0.0299,0.1276) (0.0336,0.1311) (0.0339,0.1317)
-0.96 -1.11 -0.23 0.08
0.0224 0.0206 0.0183 0.0179

µ1 (-0.0237,0.0669) (-0.0234,0.0657) (-0.0261,0.0616) (-0.0260,0.0606)
-0.69 0.34 0.11 -0.67

-0.0619 -0.0638 -0.0680 -0.0672
β0 (-0.1208,-0.0006) (-0.1216,-0.0067) (-0.1256,-0.0101) (-0.1250,-0.0067)

0.37 -1.84 -0.59 0.43
0.0069 0.0089 0.0130 0.0125

β1 (-0.0540,0.0676) (-0.0482, 0.0658) (-0.0404,0.0668) (-0.0421,0.0665)
-1.16 -0.34 -1.30 -0.11
0.0037 0.0020 -0.0062 0.0032

α0 (-0.0060,0.0135) (-0.0066,0.0108) (-0.0166,0.0668) (-0.0051,0.0120)
-0.31 -1.57 -1.19 -1.86

-0.0085 0.0085 -0.0154 -0.0058
α1 (-0.0181,0.0007) (-0.0174,0.0000) (-0.0267,-0.0049) (-0.0137,0.0020)

1.24 -1.77 0.27 -0.20
0.9814 0.9840 0.9865 0.9861

φ0 (0.9706,0.9917) (0.9731,0.9938) (0.9766,0.9959) (0.9764,0.9950)
1.73 1.90 -1.01 -0.84

0.9799 0.9827 0.9854 0.9848
φ1 (0.9693,0.9892) (0.9635,0.9885) (0.9761, 0.9941) (0.9756,0.9936)

0.96 1.36 -1.18 -0.84
0.0352 0.0299 0.0250 0.0256

σ2
0 (0.0270, 0.0354) (0.0205,0.0408) (0.0177,0.0334) (0.0188,0.0331)

-0.86 -1.31 1.58 0.58
0.0354 0.0300 0.0251 0.0257

σ2
1 (0.0273,0.0447) (0.0205, 0.0411) (0.0177,0.0336) (0.0187,0.0330)

-0.81 -0.42 1.53 0.38
– 25.2610 1.7532 9.3880

ν – (17.2200,36.0200) (1.6410,1.8400) (7.0260,12.1850)
– -1.64 1.00 1.21

Note: First row: Posterior mean. Second row: Posterior 95% credible interval in parentheses.
Third row: CD statistics

From Table 6 the WAIC indicates the THSV-S model gives the best in-sample fit among all
the models considered here, for BOVESPA, MERVAL, MXX and SP500 returns, suggesting a
sufficient departure from the underlying assumption of normality and the presence of asymmetric
behavior in the returns.

In Figure 1, we plot the absolute returns (gray line), the posterior smoothed mean of e
ht
2

obtained from the MCMC output for the SV-N model (dotted black line) and the THSV-S model
(dotted red line), which are the worst and the best model fit according to the WAIC criterion,
for BOVESPA, MERVAL, MXX and SP500 returns. It is important to note that returns from
Latin American indexes show a volatile period at the beginning of 1998, which is caused by
brazilian crisis. All the indexes showed higher volatility between 2007 and 2008 as a consequence
of the subprime crisis. MXX and SP500 showed a similar behaviour. From a practical point
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Table 6
WAIC criterion for BOVESPA, MERVAL, MXX and SP500 returns

BOVESPA MERVAL
Model Value Ranking Model Value Ranking
SV-N 18367.3 7 SV-N 19006.8 8
SV-T 18297.7 6 SV-T 18786.2 6
SV-S 18236.6 2 SV-S 18775.7 4
SV-VG 18261.3 3 SV-VG 18779.7 5
THSV-N 18438.7 8 THSV-N 18939.5 7
THSV-T 18282.3 4 THSV-T 18732.3 3
THSV-S 18220.3 1 THSV-S 18715.5 1
THSV-VG 18286.0 5 THSV-VG 18725.8 2

MXX SP500
Model Value Ranking Model Value Ranking
SV-N 14946.0 8 SV-N 15950.3 8
SV-T 14769.6 6 SV-T 15880.4 6
SV-S 14716.3 3 SV-S 15808.2 2
SV-VG 14723.7 5 SV-VG 15818.7 3
THSV-N 14872.8 7 THSV-N 15926.3 7
THSV-T 14721.3 4 THSV-T 15843.6 5
THSV-S 14652.3 1 THSV-S 15780.8 1
THSV-VG 14695.8 2 THSV-VG 15841.3 4

of view, we are mainly interested in whether we find a significant difference between the two
series. Therefore, in the bottom panel of Figure 2, we plot the smoothed mean of the ratio of
e
ht
2 obtained from the SV-N and THSV-S models for BOVESPA, MERVAL, MXX and SP500

returns. Some extreme returns make the differences clear. This can have a substantial impact,
for instance, in the evaluation of derivative instruments and several strategic or tactical asset
allocation topics.

The magnitudes of the mixing parameter λt are associated with extremeness of the corres-
ponding observations. In the Bayesian paradigm, the posterior mean of the mixing parameter
can be used to identify a possible outlier (see Rosa et al., 2003, for instance). The SV and THSV
models with Student-t, slash and variance gamma distributions can accommodate an outlier by
inflating the variance component for that observation in the conditional distribution with smaller
λt value. This fact is showed in Figure 3 where we plot the posterior mean of the mixing variable
λt for the THSV-S model (the best in-sample fit).

In order to examine the performance of VaR and ES forecast for the competing models, we
use the data from January 3, 2017 to Febraury 1, 2019 as validation period, giving m trading
days (m = 516,508,525,524 trading days for BOVESPA, MERVAL MXX and SP500 returns,
respectively). In the moving window approach, we use the first T observations in the period
January 5, 1998 - December 30, 2016 to estimate the model and to forecast the (T + 1)−th
observation; the sample is then rolled forward by one observation, so that the second to the
(T +1)−th observations are used to forecast the (T +2)−th observation. This process is repeated
until the end of the sample, i.e., the (T +m)−th observation.
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Figure 1. BOVESPA, MERVAL, MXX, SP500 returns datasets: absolute returns (gray line) and the posterior smoothed mean of e
ht
2 obtained from the

MCMC output, for the SV-N model (dotted black line) and THSV-S model (dotted red line), respectively.
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Figure 2. BOVESPA, MERVAL, MXX, SP500 returns datasets: posterior smoothed mean of the ratio of e
ht
2 obtained from the MCMC output for the

SV-N and THSV-S models.
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Figure 3. Posterior smoothed mean of the mixture variable λt obtained from the MCMC output for the THSV-S model for BOVESPA, MERVAL, MXX
and SP500 returns.
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Table 7
BOVESPA, MERVAL, MXX and SP500 return datasets.

BOVESPA MERVAL

Violation LRuc D(0.05) D(0.95) Violation LRuc D(0.05) D(0.95)

Rate (%) Rate (%)

RiskMetriks 0.0821 0.0021 0.3572 0.5512 0.0942 0.0001 0.5511 0.2543
SV-N 0.0310 0.0337 0.1974 0.1336 0.2717 0.0000 1.2976 1.3591
SV-T 0.0329 0.0549 0.1674 0.1320 0.0490 0.9174 0.3984 0.4007
SV-S 0.0271 0.0098 0.1418 0.1311 0.0334 0.0684 0.3142 1.0340
SV-VG 0.0349 0.0968 0.1465 0.1322 0.0490 0.9174 0.1580 0.2775
THSV-N 0.0329 0.0549 0.1739 0.1689 0.0511 0.9097 0.3249 0.2954
THSV-T 0.0349 0.0968 0.1461 0.1317 0.0531 0.7508 0.1947 0.4393
THSV-S 0.0349 0.0968 0.1289 0.1311 0.0511 0.9097 0.0493 0.1150
THSV-VG 0.0349 0.0968 0.1510 0.1320 0.0551 0.6036 0.1958 0.4387

MXX SP500

Violation LRuc D(0.05) D(0.95) Violation LRuc D(0.05) D(0.95)

Rate (%) Rate (%)

RiskMetriks 0.0630 0.1882 0.5511 0.2543 0.073 0.1022 0.5511 0.2543
SV-N 0.0495 0.9578 0.2122 0.4045 0.0611 0.2279 0.4398 0.0956
SV-T 0.0438 0.5058 0.1899 0.1619 0.0592 0.3097 0.3984 0.0669
SV-S 0.0343 0.0809 0.1203 0.4495 0.0553 0.5296 0.1418 0.0641
SV-VG 0.0457 0.6467 0.1834 0.1450 0.0591 0.3097 0.3946 0.0641
THSV-N 0.0514 0.8837 0.2411 0.1653 0.0649 0.1141 0.5033 0.0728
THSV-T 0.0533 0.7313 0.1827 0.1960 0.0649 0.1141 0.4629 0.0599
THSV-S 0.0476 0.7992 0.0445 0.1221 0.0553 0.5296 0.3289 0.0456
THSV-VG 0.0533 0.7313 0.1759 0.2209 0.0668 0.1141 0.4382 0.0881

Note: Violation rate in m one-step-ahead forecast, P-values of the uncondtional coverage test, D(0.05) and D(0.95)
measures, (m = 516,508,525,524 for the BOVESPA, MERVAL, MXX and SP500 returns, respectively).

We thus obtain m volatility forecasts, VaR at level 5%, and ES estimates with confidence levels
of 5% and 95%. The competing models were: Riskmetrics, SV-N, SV-T, SV-S, SV-VG, THSV-N,
THSV-T, THSV-S and THSV-VG.

The results ofm one-step-ahead forecasts are presented in Table 7. For the BOVESPA returns,
according to the unconditional coverage test, we reject the null hypothesis that the achieved
violation rate is equal to 5% for the Riskmetrics, SV-N and SV-S models at 5% level. For the
MERVAL returns, we reject the null hypothesis at 5% level for Riskmetrics and SV-N model.
For MXX and SP500 returns, we accept the null hypothesis for all models. According to the
violation rate the SV-S and THSV-S give better performance than the other competing models,
it is the P−values of SV-S and THSV-S models are greater than the other competing models.
When, we compare D(0.05) and D(0.95), the THSV-S models show the smaller measures than
the competing models for the BOVESPA, MERVAL and MXX returns. For the SP500 returns
the SV-S show the smallest for the D(0.05) measure (see the values in bold in Table 7 for details).

In order to evaluate the prediction accuracy of the SV-N, SV-T, SV-S, SV-VG, THSV-
N,THSV-T, THSV-S, THSV-VG models, we use the same moving window approach as in the
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Table 8
MSPE for BOVESPA, MERVAL, MMX and SP500 returns

Series SV-N SV-T SV-S SV-VG THSV-N THSV-T THSV-S THSV-VG

BOVESPA 0.6378 0.6225 0.6035 0.6037 0.6227 0.6019 0.6022 0.6047
MERVAL 0.4625 0.4592 0.4478 0.4489 0.4485 0.4481 0.4475 0.4481
MXX 0.5181 0.4935 0.4931 0.4940 0.5024 0.4925 0.4914 0.4917
SP500 0.4378 0.4381 0.4374 0.4375 0.4372 0.4374 0.4240 0.4375

VaR estimation. We define the Mean Square Predictive Error (MSPE) as

MSPEg =
T+m
∑

t=T+1

1

m

N

∑
i=1

1

N
(y

(i,g)
t − yt)

2

where y(i,g)t is obtained by simulation using the MCMC procedure described in Section 3.2 and
g ∈ {SV-N, SV-T, SV-S, SV-VG, THSV-N,THSV-T, THSV-S, THSV-VG} denotes the model.

From Table 8, we find that the THSV-S model outperforms the other models using the MSPE.
So, according to the MSPE, the THSV-S model gives the best out-of-sample fit for all series of
returns analyzed here. It is also important to emphasize that, in general, we do not advocate
the use of the THSV-S model in all situations but recommend using the model discussed here to
assess the robustness of the conclusions, replacing the normal assumption with a more flexible
model if this provides a more appropriate analysis.

6. Discussion

In this article, we have proposed the threshold stochastic volatility model with scale mixture
of normal distributions (THSV-SMN) errors as an alternative to the normal (symmetric) as-
sumption in the conditional distribution of the returns. The THSV-SMN class of models allows
a parsimonious yet flexible treatment of both the skewness and the heavyness of the tails of
the error distribution. Within the Bayesian framework, we have developed a fast and efficient
MCMC sampling procedure to estimate all the parameters and latent quantities in our proposed
THSV-SMN class of models. As a by-product of the MCMC algorithm, we were able to produce
an estimate of the latent information process which can be used in financial modeling. The use
of mixing variables, λ1∶T not only simplifies the full conditional distributions required for the
Gibbs sampling algorithm, but also provides a mean for the outlier diagnostics. We applied our
methods to the analysis of the BOVESPA, MERVAL, MXX and SP500 returns, which showed
that the THSV-S model provides a better fit than the SV-N, SV-T, SV-S, SV-VG, THSV-N,
THSV-T and THSV-VG terms of parameter estimates, interpretation and robustness aspects.
We found that the THSV-S model outperforms the other models using the MSPE given the best
out-of-sample fit and it can be used to VaR and ES forecast.

A potential interesting future research topic is the further investigation of the large obser-
vations by introducing jump components or correlation between perturbations of returns and
volatilities.
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Appendix A

Full Conditionals of ψ0, ψ1, ϕ0, ϕ1, σ2
η,0 and σ2

η,1

Let r′t = (1, yt−1) andH ′
t+1 = (1, ht). We assume thatψi ∼ N2[∣βi∣<1](ψ̄

∗
i ,Sψi),ϕi ∼ N2[∣φi∣<1](ϕ̄

∗
i ,Sϕi),

σ2i ∼ IG(5,0.5), for i = 0,1. Then the full conditionals are given by

ψi ∼ N2[∣βi∣<1](ψ̄
∗
i ,Σψi), (A.1)

ϕi ∼ N2[∣φi∣<1](ϕ̄
∗
i ,Σϕi), (A.2)

σ2i ∼ IG(
n∗i
2
,
S∗i
2

), (A.3)

where:

ψ̄
∗
i = Σψi[S

−1
ψi
ψ̄i + ∑

{t∶st=i}
λte−htrtyt], Σψi =[S

−1
ψi
+ ∑

{t∶st=i}
λte−htrtr′t]

−1
,

ϕ̄∗i = Σϕi[S
−1
ϕi ϕ̄i + ∑

{t∶st+1=i}

ht+1Ht+1
σ2η,i

], Σϕi =[S
−1
ϕi + ∑

{t∶st+1=i}

Ht+1H ′
t+1

σ2η,i
]

−1
,

n∗i = ni + ∑
{t∶st+1=i}

I(st+1 = i), S∗i = Si + ∑
{t∶st+1=i}

(ht+1 −H
′
t+1ϕi)

2 for i = 0,1,

and N2[.](., .), IG(., .) denote the bivariate truncated normal and inverse gamma distributions,
respectively.

Full Conditional of λt and ν

● THSV-T Case
As λt ∼ G(ν2 ,

ν
2), then λt ∣ yt, yt−1, ht,θ ∼ G(

ν+1
2 ,

[yt−r′tψst
]2e−ht+ν

2 ). As in Juárez and Steel (2004),
we take a G(2,1/10) prior for ν with mass covering a large range of relevant values (prior mean
20 and variance 200) for the THSV-T model. Then the full conditional of ν is given by

p(ν ∣ λ1∶T ) ∝

[ ν
100e

− ν
10 ][ν2]

Tν
2

e−
ν
2
[∑Tt=1(λt−logλt)]

[Γ(ν2)]
T

I[2<ν≤40], (A.4)

where I[.] denotes an indicator function. As (A.4) does not have closed form, we sample ν using
and adaptive Metropolis-Hastings algorithm based on Shaby and Wells (2011).

● THSV-S Case
Using the fact that λt ∼ Be(ν,1), then λt ∣ yt, yt−1, ht,θ ∼ G(0<λt<1)(ν +

1
2 ,

1
2[yt − r

′
tψst]

2e−ht),
the right truncated gamma distribution. Assuming that a prior distribution of ν ∼ G(aν , bν), the
full conditional distribution of ν is G(ν>1)(T + aν , bν −∑

T
t=1 logλt), i.e. the left truncated gamma

distribution.



Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach 51

● THSV-VG Case
As λt ∼ IG(ν2 ,

ν
2), then λt ∣ yt, yt−1, ht,θ ∼ GIG(−ν+12 ,

[yt−r′tψst
]2e−ht+1

2 , ν), where GIG(., ., .)
denotes the generalized inverse Gaussian distribution. In the THSV-VG, we assume the prior
ν ∼ G(a0, b0). Then the full conditional is given

p(ν ∣ λ1∶T ) ∝
νa0−1e−b0νe−

ν
2
[∑Tt=1(logλt)+ 1

λt
]

[Γ(ν2)]
T

I2<ν≤40. (A.5)

As (A.5) does not have closed form, we sample ν using and adaptive Metropolis-Hastings algo-
rithm based on Shaby and Wells (2011).

Appendix B

First we define the matrix

At =

⎡
⎢
⎢
⎢
⎢
⎣

A11,t 0

0 A22,t

⎤
⎥
⎥
⎥
⎥
⎦

,

where A11,t = 1/$2
kt

and A22,t = 1/[(1 − st)σ
2
0 + stσ

2
1]. We define Ω as follows

Ω =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω11 Ω12 0 . . . 0

Ω12 Ω22 Ω23 ⋱ ⋮

0 Ω23 ⋱ ⋱ 0

⋮ ⋱ ⋱ ΩT−1,T−1 ΩT−1,T

0 . . . 0 ΩT−1,T ΩT,T

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (B.1)

where

Ω11 = A11,1 + [((1 − s1)φ0 + s1φ1] ×A22,1 + (1/P1)

Ωtt = A11,t + [((1 − st)φ0 + stφ1] ×A22,t +A22,t−1

ΩTT = (1/$2
kT

) +A22,T−1 (B.2)

Ωt,t+1 = −[(1 − st)φ0 + stφ1]A22,t

and

c1 = A11,1 × (z1 + log(λ1) − ϑk1) − [((1 − s1)φ0 + s1φ1] ×A22,1 × [((1 − s1)α0 + s1α1] + (a1/P1)

ct = A11,t × (z1 + log(λt) − ϑkt) − [((1 − st)φ0 + stφ1] ×A22,t × [((1 − st)α0 + stα1]

+ A22,t−1 × [((1 − st−1)α0 + st−1α1] (B.3)

cT = (1/$2
kT

)[zT + log(λT ) − ϑkT ] +A22,T−1 × [((1 − sT−1)α0 + sT−1α1]
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