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Abstract
In this paper I present a model to forecast the daily Value at Risk (VaR) of the Peruvian stock
market (measured through the general index of the Lima Stock Exchange: the IGBVL) based on
intraday (high-frequency) data. Daily volatility is estimated using realised volatility and I adopted
a regression quantile approach to calculate one-step predicted VaR values. The results suggest that
the realised volatility is a useful measure to explain the Peruvian stock market volatility and I
obtained sound results using quantile regression for risk estimation.
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1. Introduction

Volatility has a vital role in risk management of financial assets such as stocks, indexes,
currencies, etc. The volatility reflects the market risk structure and is a key element in pricing
and portfolio allocation. Even though it is an unobservable variable, volatility can be estimated.
Thus, since the 1980’s, many models have been proposed to estimate daily volatility based
on daily data, following the approaches of Engle (1982) using ARCH-type models, and Taylor
(1986) through stochastic variance models. In the first approach, volatility is a function of past
volatilities and past returns, whereas in the second volatility is a latent variable.

With the availability of records of intraday price movements, the so called tick by tick data
or high frequency data, new approaches have emerged to estimate daily volatility. Taylor and Xu
(1997) and Andersen and Bollerslev (1998) proposed estimating daily volatility using the realised
volatility, measured as the sum of the squared intraday returns. The main difference between
this approach and proposals based on daily data is the character of the realised volatility as
observable. As such, it can be modelled and predicted.

The modelling and use of realised volatility have been intensively studied. Some topics of
investigation are: modifications of the original measure of realised volatility (as the sum of squared
intraday returns) in order to account for market microstructure effects (bid-ask bounces, price
discreteness or non-synchronous trading); the study of statistical properties of realised volatility;
modelling and forecasting realised volatility; and estimation of the Value at Risk (VaR) and daily
return density forecast using realised volatility. Useful reviews of these subjects can be found in
McAleer and Medeiros (2008) and Liu et al. (2015).

Academic literature about the use of high frequency data to model daily volatility and risk
estimation of the Peruvian stock market is very scarce and, as far as I know, the only published
work about this topic is Rodríguez (2017a)1. The purpose of the paper is to fill this gap and
extend previous studies in which the Peruvian stock market risk has been estimated through the
VaR using just daily data; see for example Zevallos (2008), del Carpio and Zevallos (2010), and
Rodríguez (2017b).

Specifically, this paper uses realised volatility for risk management, calculating the Value
at Risk by means of a quantile regression method proposed by Hua and Manzan (2013). This
method was chosen because its versatility to handle non-Gaussian data, breaks and outliers.
For this purpose, I study the general index of the Lima Stock Exchange, IGBVL, which is a
value-weighted index (based on value 100 on December 30, 1991) and is commonly considered
the benchmark of the Peruvian stock market. The results suggest that the realised volatility is a
useful measure to explain the Peruvian stock market volatility, and I obtained sound backtesting
results using quantile regression for risk estimation.

A different path is followed by Rodríguez (2017a), where models with random levels shifts
and genuine long memory, proposed by Varneskov and Perron (2018), are applied to model daily
volatility and to predict Value at Risk on the Peruvian stock market.

The remainder of this paper is organised as follows. Section 2 describes the method to calculate

1Unpublished references are Zevallos (2012) and Téllez et al. (2015).
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the realised volatility. Section 3 presents the estimation of one-step ahead daily Value at Risk
prediction. These methods are applied in Section 4 on intraday IGBVL returns. Finally, Section
5 concludes.

2. Realised Volatility

Taylor and Xu (1997) and Andersen and Bollerslev (1998), among others, advocated that
daily volatility may be estimated using intraday returns. Thus, each trading day (t = 1, . . . , T )
is divided into ∆-minute intervals. Let Pt,i be the price at the end of the i-th interval of day t
for i = 1, . . . ,M and let Pt,0 be the first price of day t. The (continuously compounded) intraday
returns in percentage, rt,i, are calculated as:

rt,i = 100[ln(Pt,i) − ln(Pt,i−1)], i = 1, . . . ,M, (1)

and rt,0 = 100[ln(Pt,0)−ln(Pt−1,M)]. Thus, the total number of intraday returns2 is N = (M+1)T .
The realised variance or realised volatility on day t, vt, is defined as:

v2t =
M

∑
i=0
r2t,i. (2)

Assume that log-prices follow a continuous stochastic volatility model: dYs = (µ + βσt)ds +
σsdWs where µ is the drift, β is the risk premium, σ2s is the instantaneous variance at time
s and Ws is a standard Wiener process. Under certain conditions, Andersen and Bollerslev
(1998) demonstrated that the realised variance v2t is a consistent estimator of σ2t = ∫

tδ
(t−1)δ σ

2
sds.

Therefore, the realised volatility estimates the total amount of variation in the time interval δ
(here one day).

In practice, to calculate the realised volatility one has to specify the sampling frequency ∆.
As discussed by Giot and Laurent (2004) and Hardle et al. (2008), to name a few, using a very
high sampling frequency (e.g., 30 seconds, 1 minute, etc.) may introduce bias in the variance
estimate due to the so called market microstructure effects: bid-ask bounces, price discreteness
or non-synchronous trading. On the other hand, sampling at small frequencies (e.g., 10, 15 or 30
minutes) may produce small bias but at the cost of high variability in the variance estimator. As
a compromise between these two types of sampling, Andersen et al. (2003) and Liu et al. (2015)
advocated the use of 5-minute returns to estimate daily realised volatility.

Statistical properties of the realised volatility and daily returns standardised by the square
root of the realised volatility have been studied by several authors; see for example Hardle et al.
(2008). Daily returns in percentage (Rt) are defined using the closing prices as follows:

Rt = 100[ln(Pt,M) − ln(Pt−1,M)], t = 1, . . . , T. (3)

Then the (daily) standardised returns are,

zt =
Rt
vt
, t = 1, . . . , T. (4)

2Returns out of the official trading hours, called overnight returns, are usually discarded.
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A very well known model for daily returns is the product model, defined as:

Rt = σtεt, (5)

where {εt} is an independent identically distributed sequence (IID) with zero mean and unit
variance. Therefore, if realised volatility captures all the dependence in the data, one expects the
estimated standardised returns (ẑt)

ẑt =
Rt
v̂t
, t = 1, . . . , T, (6)

to be independent.

3. Value at Risk Forecasting

The Value at Risk (VaR) measures the potential loss in value of a risky asset or portfolio over
a defined period for a given confidence interval. For instance, if the VaR of an asset is $10 million
in one-day, with 95% confidence level, there is only a 5% chance that the value of the asset will
drop more than $10 million during any given day.

Under the realised volatility paradigm, realised volatility estimates are considered observed
values. As a consequence, time series models can be fitted to these values. To estimate the VaR
at time t + 1, one approach consists of predicting first the realised volatility at t + 1, v̂2t+1, based
on the information until time t. Then one calculates the VaR α% as the (1-α)-quantile of the
distribution of the standardised returns. Typical models for predicting realised volatility are the
ARFIMA model, proposed by Hosking (1981) and Granger and Joyeux (1980), and the HAR
model proposed by Corsi (2009).

An interesting alternative to the two-step procedure above is the quantile regression approach.
Assume that daily returns Rt follow a location-scale model Rt = µ + σtεt where µ is a constant,
σt is the conditional standard deviation on day t and {εt} is an IID sequence with zero mean
and variance one. Then, the τ -quantile conditional on the information at time t satisfies:

Qt(τ) = µ + σtQε(τ), (7)

where Qε(τ) is the τ -quantile of the distribution of the disturbances εt. Hua and Manzan (2013)
assume that the conditional mean and the quantiles of the error are constants. Therefore, the
return quantile varies over time only through changes in the conditional standard deviation of
the process. In addition, they proposed to explain σt by a set of observable variables at time t,
including the realised volatility, and to estimate the model via quantile regression. In this paper,
because the small size of the dataset, I adopt the following simple specification:

Qt+1(τ) = α0(τ) + α1(τ)Rt + α2(τ)vt (8)

where vt is the square root of the realised volatility defined in (2). Thus, Qt+1 depends on both
the previous daily return and realised volatility. Once the parameters of the quantile regression
model (7) - (8) are estimated, the VaR at time t+1 with (1-τ) confidence level is given by Q̂t+1(τ).
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4. Empirical Application

In this section I apply the proposed methods using high frequency Peruvian stock market
data.

Intraday index figures of the IGBVL were collected from the Bloomberg database for the
period from 15 September, 2011 to 22 August, 2012. This period is interesting because exhibits
different volatility levels. To calculate realised volatilities, in this paper I consider ∆ = 15min,
so for each day I have 36 intraday returns. The election of this sampled frequency was moti-
vated by the small quantity of available intraday data. For instance, the reported indexes were
very infrequent, reproducing a very well known characteristic of the Peruvian stock market: low
liquidity.

Once the realised volatilities and daily returns were calculated as described in Section 2,
performing T = 238, I estimated the standardised returns, ẑt, by (6). Although not shown, the
autocorrelation functions of ẑt and ẑ2t do not reveal serial correlation. Moreover, applying the
Ljung-Box test with 10 lags on ẑt and ẑ2t led to p-values of 0.84 and 0.93, respectively (for 20
lags the p-values are 0.88 and 0.50, respectively). Therefore, it seems that the realised volatility
captures the dependence structure of daily returns.

In order to obtain one-step ahead 95% VaR forecasts, I estimated model (8) using the
quantreg package (R Core Team, 2017). The estimates when τ = 0.05 using 15-min realised
volatilities and daily returns are given in Table 1. Here it can be seen that the estimates of the
return and volatility are highly significant and that the effects are as expected. For instance,
small returns and high realised volatilities imply low VaRs.

Table 1
Estimated quantile regression model.

Coefficient Estimate Std. Error t-value p-value
α0(0.05) -0.526 0.427 -1.232 0.22
α1(0.05) 0.474 0.234 2.025 0.04
α2(0.05) -2.252 0.976 -2.308 0.02

Figure 1 presents the one-step predicted 95% VaRs for daily IGBLV returns via quantile
regression (red line). As can be seen, the predicted VaRs mimic very well the variability of the
returns. In addition, the percentage of violations (times that the return is below the VaR) is
5.46%, so the estimated model presents good results in terms of backtesting. As a comparison, I
also estimated the VaRs using a popular method employed by practitioners: the RiskMetricsTM ,
see Longerstaey and More (1995)3. The percentage of violations using RiskMetrics is 7.14%,
much bigger than the nominal value of 5%, and as can be seen in Figure 1, the RiskMetrics
VaRs are not adaptive enough in face of small returns which occurs after (very) large returns.
For instance, once a large return appears, the next VaRs are often unnecessarily large when
small returns occur. In contrast, the VaRs calculated by the proposed method in this paper

3Calculations were performed using the R function RMfit.R described in Tsay (2013), assuming a conditional
Gaussian distribution.
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Figure 1. One-step ahead daily VaR prediction. Daily IGBVL returns in vertical lines, quantile
regression VaRs in red and RiskMetrics VaRs in green.

are adaptive to the size of returns and are bigger than the RiskMetrics VaRs in periods of high
volatility. Therefore, for this sample, in periods of great market uncertainty the quantile method is
prefered, while in periods of medium or small uncertainty the RiskMetrics is a sound alternative.
However, overall the quantile method is preferred given the small percentage of violations.

5. Conclusions

In this paper I applied quantile regression methods which use realised volatilities to forecast
the Peruvian stock market risk. The main findings can be summarised as follows: the realised
volatility is a useful measure to explain the market volatility of the IGBVL, and sound results
are obtained by using a quantile regression approach for VaR estimation.

The results were obtained using a small sample (approximately one year of daily returns),
so studies involving larger samples would be welcome. Other issues for further research are to
study the convenience of using different realised volatility estimators and intraday frequencies;
see Liu et al. (2015). This is especially important given the liquidity characteristics of the assets
in the Peruvian stock market. Another issue for further research is to compare the Value at Risk
estimates given by the proposed method in the paper and the method applied by Rodríguez
(2017a).
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