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Abstract
The main goal of this article is to propose estimators for the Spatial Lag Model (SLM) under miss-
ing data context. We present three alternatives estimators for the SLM based on Two Stage Least
Squares estimation methodology. The estimators are efficient within their type and consistent
under random missing data in the dependent variable. Unlike the IBG2SLS estimator presented
in Wang and Lee (2013) which impute all missing data we only impute missing data in the spatial
lag. Our first proposal is an alternative version of the IBG2SLS estimator, the second one is based
on an approximation to the optimal instruments matrix and the third one is an alternative

√
n-

equivalent to the first. Thorough a Monte Carlo simulation we assess the estimators performance
under finite samples. Results show a good performance for all estimators, moreover, results are
quite similar to the IBG2SLS estimator suggesting that a complete imputation (as IBG2SLS does)
does not add information.
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1. Introduction

In the last few decades there has been a renaissance of theoretical and empirical work on the
spatial aspects of the economy. This new economic geography has emerged as one of the most
exciting areas of contemporary economics (Krugman, 1991; Fujita et al., 1999).

One of the reasons for this is the growing interest in the impact of location on multiple
economic aspects. Additionally, the availability of georeferenced data has increased considerably
over the past two decades, allowing the use of spatial econometric techniques for analyzing data.
At the same time, the Internet has greatly facilitated access to such data (Florax and Van der
Vlist, 2003).

The main developments in spatial econometrics have focused on identifying and including
spatial effects into regression models (Anselin, 1988). There are different model specifications,
such as the Spatial Lag Model (SLM); the Spatial Error Model (SEM); and the combination
of both, named SARAR, among the best known. At the same time, given the issues involved
in spatial dependence, these models require their own estimation methods, such as Maximum
Likelihood, the General Method of Moments, and Quasi Maximum Likelihood, among others.

There are some relevant methodological issues which have not been completely covered from
a theoretical point of view. In particular, the development of techniques for dealing with missing
data, under a spatial context, is scarce. This scenario is highly common when using observational
data.

The development of spatial statistics has given rise to several forecasting techniques that can
be useful in handling missing data. Cressie (1993) describes several forecasting tools in a spatial
context, based on Kriging’s methods. Kelejian and Prucha (2007) analyze the relative efficiency
of five different predictors for a SARAR model based on different information sets. Although
these works are related with missing data problems, as they provide imputation options which
could be useful for handling this problem, they make no reference to estimating parameters under
missing data.

This work presents three alternative estimators for the Spatial Lag Model based on the Two-
Stage Least Squares estimation method. Estimators are efficient within their type and consistent
under random missing data in the dependent variable. Kelejian and Prucha (2010) present three
Two-Stage estimators considering different missing data configurations; and show that, in some
cases, missing data effects can be asymptotically neglected. LeSage and Pace (2004) analyze
housing prices using the EM algorithm for predicting missing y′s in an SLM with correlated
errors. Wang and Lee (2013) propose three different estimators for an SLM under missing data
in the dependent variable, based on Non-Linear Least Squares, the General Method of Moments,
and Two-Stage Least Squares, respectively.

Our proposals are mainly related with the I2SLS estimator presented in Wang and Lee (2013);
but the key difference is the number of imputations. In SLM, the dependent (or explained)
variable also acts as explanatory variable through the spatial lag. In this work, in order to
impute as few observations as possible, we propose to impute only the spatial lag, Wy. We
consider only those equations for which we observe the dependent variable; and only impute the
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unobserved y′s in their spatial lag. Partial imputation (in contrast with total imputation) gives
rise to the possibility of working only with complete data.

Following Kelejian et al. (2004), we derive an optimal instrument matrix to minimize the
estimators’ variances.

In the model with missing data described in the following section, we make imputation explicit
and show its impact on the error term. Section 3 presents the proposed estimators, as well as
their asymptotic distributions. Section 4 presents the Monte Carlo results, where we assess the
estimators’ performance and compare their behaviour with the BI2SLS estimator proposed in
Wang and Lee (2013). Finally, section 5 provides the main conclusions. All proofs are provided
in the appendices.

2. Missing Data Model

2.1 Model

Consider the following SLM,

yn = λ0Wnyn +Xnβ0 + en, (1)

where yn is an (n × 1) vector of dependent variables, Xn is an (n × k) matrix of exogenous
variables, β0 is a (k × 1) vector of parameters, en is an (n × 1) vector of disturbances such that
en ∼ (0, σ2eIn),Wn is an (n×n) contiguity matrix, and λ0 is the spatial autoregressive parameter.

Model (1) can be expressed in terms of observed and unobserved variables as follows:

⎛
⎝
yon
yun

⎞
⎠

= λ0Wn
⎛
⎝
yon
yun

⎞
⎠
+Xnβ0 + en. (2)

In this model, yon is an (no×1) sub-vector of observed outcomes from yn, where no is the total
number of observed y′s. In the same line, yun is an (nu × 1) sub-vector of unobserved outcomes
from yn, where nu is the total number of unobserved y′s, with n = no + nu.

Let Jun = [0nu×no , Inu×nu] be an (nu×n) selection matrix that chooses the unobserved elements
from yn. In the same line, let Jon = [Ino×n0 , 0no×nu] be an (no × n) selection matrix that chooses
the observed elements from yn. Thus, yon = Jonyn and yun = Junyn.

As mentioned above, we work only with those equations for which the dependent variable is
observed. We derive such equations by pre-multiplying (2) by Jon:

yon = λ0J
o
nWn

⎛
⎝
yon
yun

⎞
⎠
+ JonXnβ0 + Jonen. (3)

We can think of model (1) as a structural model; and we estimate the parameters using (3).
Little (1992) states that, as data set X is complete, and y are missing at random, imputing

unobserved y′s does not add information into the regression of y on X. Based on this state-
ment, and trying to impute as few observations as possible, we only impute missing data in

JonWn
⎛
⎝
yon
yun

⎞
⎠
, which is the spatial lag of observed dependent variables. Imputing the spatial
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lag not necessary implies imputing all unobserved data. The level of imputation is the main
difference with the estimators proposed in Wang and Lee (2013).

From equation (1), yn = (In − λ0Wn)−1Xnβ0 + (In − λ0Wn)−1 en. Applying expectations, we
obtain E (yun) = JunE(yn) = Jun (In − λ0Wn)−1Xnβ0 = Fn (θ0), with θ0 = (λ0, β

′

0)
′

.
Therefore, we can express equation (3) as:

yon = Jonλ0Wn
⎛
⎝

yon
Fn (θ0)

⎞
⎠
+ JonXnβ0 + Jonun, (4)

where un = [λ0WnJ
u′
n J

u
nS

−1
n (λ0) + In] en, with Sn (λ0) = (In − λ0Wn).1

The expectation of yn on the right hand side of equation (4) depends on unknown parameters,
which must be estimated. Assuming that θ̂ is a consistent estimator and replacing in (4), we
obtain:

yon = Jonλ0Wn
⎛
⎝

yon
Fn (θ̂)

⎞
⎠
+ JonXnβ0 + Jonũn, (5)

where ũn = un − λ0WnJ
u′
n J

u
n [(S−1n (λ̂)Xnβ̂) − (S−1n (λ0)Xnβ0)].

With some algebra (see appendix A) we arrive at

ũn = un − λ0WnJ
u′

n J
u
nS

−1
n (λ0)Cn (θ̂ − θ0) + λ0WnJ

u′

n J
u
nRn (λ̂ − λ0) , (6)

with Rn = [S−1n (λ̂)GnXnβ̂ − S−1n (λ0)GnXnβ0] and Cn = (GnXnβ0Xn).
Following Wang and Lee (2013), we replace θ̂ for a Non-Linear Least Squares estimator, which

is consistent with an asymptotic distribution given by:

√
n (θ̂nls,n − θ) = [ 1

n
C

′

nB
′

nBnCn]
−1 1√

n
C

′

B
′

nBnen + op(1)
dÐ→ N (0,Σnls) . (7)

Replacing (7) into (6) and using some algebra (see appendix A), we obtain:

yon = JonZ̃nθ0 + Jon (Hn (λ0) en +R∗) , (8)

where: Z̃n = (WnỹXn) , with ỹ =
⎛
⎝

yon
Fn (θ̂nls)

⎞
⎠
; θ0 = (λ0β

′

0)
′

and

Hn (λ0) = {λ0WnJ
u′

n J
u
nS

−1
n (λ0) + In − λ0WnJ

u′

n J
u
nS

−1
n (λ0)Cn [C

′

nB
′

nBnCn]
−1
C

′

nB
′

nBn} .

3. Estimators

This section presents three alternative estimators for model (8). The first one is based on the
IBG2SLS estimator proposed in Wang and Lee (2013). The second one is similar, except for the
use of an approximation to the optimal instrument matrix, as presented in Kelejian et al. (2004).
The last one is

√
n equivalent to the initial one.

1See appendix A for more details.
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3.1 Assumptions

Assumption 1: ei ∼ i.i.d. (0, σ2e), ∀i = 1, . . . , n, with 0 < σ2e <∞.

Assumption 2: The elements of Xn are uniformly bounded constants; Xn has full rank k;
and limn→∞ 1

nX
′

nXn exists and is non-singular.

Assumption 3: Spatial weight matrices Wn and S−1n (λ) are uniformly bounded in both
row and column sums in absolute value, for ∣λ∣ < 1.

This assumption ensures that Sn (λ) is not singular. Furthermore, this allows to express
S−1n (λ) = ∑∞k=0 λkW k

n .

Assumption 4: Proportion n0

n of observations tends to c, where c is a finite positive
constant, as n approaches infinity.

This assumption indicates that the number of non-missing observations should not be
too small relative to n. Since n0 remains a share of n (for a large value of n), the rate of
convergence of an estimator can be expressed as a function of n.

Assumption 5: The instrument matrix Qon is a function of JonXn and JonWn. The elements
of Qon should be uniformly bounded. Furthermore, limn→∞ 1

nQ
o′
nQ

o
n is non-singular and

limn→∞ 1
nQ

o′
n [JonGnXnβ0J

o
nXn] has full column rank.

Two-Stage Least Square Estimator With Imputation (I2SLS)

As mentioned above, unlike the estimator proposed in Wang and Lee (2013), in the I2SLS
estimator we only impute JonWnyn, which does not necessarily require to impute all yn, but only
those unobserved y′s belonging to the spatial lag of yo. This partial imputation gives rise to the
possibility of working only with complete data; i.e., if we observe JonWnyn, we do not need to
perform any imputations.

The I2SLS estimator is given by:

θ̂i2sls,n = [Z̃o
′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

n Z̃
o
n]

−1
Z̃o

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

n y
o
n, (9)

where Qon is an instrument matrix with rank ≥ k+1, which is a function of JonWn and JonXn; and
Z̃on = JonZ̃n.

Proposition 1: Under assumptions 1-5, θ̂i2sls,n is a consistent estimator of θ0 and
√
n (θ̂i2sls,n − θ0)

dÐ→ N (0,Σi2sls), where

Σi2sls = σ2e lim
n→∞ [ 1

n
Co

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

nC
o
n]

−1
[ 1

n
Co

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

nH
o
n (λ0)

Ho′

n (λ0)Qon (Qo
′

nQ
o
n)

−1
Qo

′

nC
o
n] [

1

n
Co

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

nC
o
n]

−1
.
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Generalized Two-Stage Least Squares Estimator with Imputation (IG2SLS)

Here we propose a generalized version of the previous estimator using the error term structure
for weighting observations.

The asymptotic variance of model (8) is:

Avar (ũon) = Avar (Ho
n (λ0) en + JonR∗) = σ2e (Ho

n (λ0)Ho′

n (λ0)) ,

withHo
n (λ0) = JonHn (λ0) and JonR∗ p

Ð→ 0. Given that Ω (λ0) =Ho
n (λ0)Ho′

n (λ0), thenAvar (ũon) =
σ2eΩ (λ0).

Assumption 6: Let Ωn (λ0) be an (no × no) uniformly positive-definite
and symmetric matrix, with limn→∞ 1

nΩn (λ0) positive-definite and symmet-
ric. Furthermore, limn→∞ 1

nQ
o′
nΩ−1

n (λ0)Qon is finite and non-singular; and
limn→∞ 1

nQ
o′
nΩ−1

n (λ0) [JonGnXnβ0J
o
nXn] has full column rank.

The IG2SLS estimator is given by:

θ̂ig2sls,n = [Z̃o
′

n Ω−1
n (λ0)Qon (Qo

′

nΩ−1
n (λ0)Qon)

−1
Qo

′

nΩ−1
n (λ0) Z̃on]

−1

Z̃o
′

n Ω−1
n (λ0)Qon (Qo

′

nΩ−1
n (λ0)Qon)

−1
Qo

′

nΩ−1
n (λ0) yon.

Proposition 2: Under assumptions 1-4 and 6, θ̂ig2sls,n is a consistent estimator of θ0 and
√
n (θ̂ig2sls,n − θ0)

dÐ→ N (0,Σig2sls), where

Σig2sls = σ2e lim
n→∞ [ 1

n
Co

′

n Ω−1
n (λ0)Qon (Qo

′

nΩ−1
n (λ0)Qon)

−1
Qo

′

nΩ−1
n (λ0)Con]

−1
.

Best Generalized Two-Stage Least Squares Estimator with Imputation (IBG2SLS)

Here we derive an optimal instrument matrix that can be used to obtain the best estimator,
where “best” is defined as the most efficient estimator of its kind.2

For the variance of IG2SLS to be minimal, the term in brackets in Σig2sls should be maximal.
Replacing Ω−1

n (λ0) by K
′

nKn, we obtain Co
′

n K
′

nKnQ
o
n (Qo′nK

′

nKnQ
o
n)

−1
Qo

′

nK
′

nKnC
o
n. Defin-

ing An = (KnC
o
n)

′

, Xn = KnQ
o
n and Vn = In, and applying the Generalized Cauchy-Schwarz

Inequality,3 we obtain:

(KnC
o
n)

′

In (KnC
o
n) ≥ (KnC

o
n)

′

(KnQ
o
n) [(KnQ

o
n)

′

In (KnQ
o
n)]

−1
(KnQ

o
n)

′

(KnC
o
n)

≥ Co
′

n K
′

nKnQ
o
n (Qo

′

nK
′

nKnQ
o
n)

−1
Qo

′

nK
′

nKnC
o
n,

where (KnC
o
n)

′

(KnC
o
n) is the upper bound of the term we want to maximize. Such bound is

reached when Qon = Con, which implies that the instrument matrix that minimizes the variance
of IG2SLS is Qo∗n = Con.

2See appendix C for details.
3The Generalized Cauchy-Schwarz Inequality states that if Vn is an (n × n) positive-definite and symmetric

matrix, An and X
′

n are (n × k) matrices, and Xn is of rank k, then AnVnA
′

n ≥ AnXn (X
′

nV
−1
n Xn)

−1
X
′

nAn.
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Considering the above, the IBG2SLS estimator is given by:

θ̂ibg2sls,n = [Z̃o
′

n Ω−1
n (λ0)Qo∗n (Qo∗

′

n Ω−1
n (λ0)Qo∗n )

−1
Qo∗

′

n Ω−1
n (λ0) Z̃on]

−1

Z̃o
′

n Ω−1
n (λ0)Qo∗n (Qo∗

′

n Ω−1
n (λ0)Qo∗n )

−1
Qo∗

′

n Ω−1
n (λ0) yon. (10)

The Asymptotic distribution of IBG2SLS is the same as that of IG2SLS, the only differ-
ence being that we define Qo∗n = Con as instrument matrix, which causes some terms to vanish
asymptotically.

Proposition 3: Under assumptions 1-4 and 6, θ̂ibg2sls,n is a consistent estimator of θ0, and
√
n (θ̂ibg2sls,n − θ0)

dÐ→ N (0,Σibg2sls), where

Σibg2sls = σ2e limn→∞ [ 1

n
Co

′

n Ω−1
n (λ0)Con]

−1
.

Series-Type Efficient Two-Stage Estimator with Imputation (IST2SLS)

The optimal instrument matrix derived above is the same optimal instrument matrix proposed
in Kelejian and Prucha (1998). In a later work (Kelejian et al., 2004), the authors developed
an estimator based on an approximation of such optimal matrix, named “Series-Type Efficient
IV estimator”. We propose to use that approximation to obtain an alternative estimator named
“Series-Type Efficient Two- Stage Estimator with Imputation”, IST2SLS.

Approximation to the optimal instrument matrix: Given assumption 3, we can ex-
press E (yn) = ∑∞k=0 λk0W k

nXnβ0. Replacing the latter into the optimal instrument matrix,
we obtain E (Zn) = [WnE (yn)Xn] = [∑∞k=0 λk0W k+1

n Xnβ0Xn]. Kelejian et al. (2004) state
that, if rn is a sequence of natural numbers, such that rn ↑∞, the optimal instrument ma-
trix can be approximated by Q̂kpn = [∑rnk=0 λ̂

k
0W

k+1
n Xnβ̂0Xn], where θ̂ = (λ̂0 β̂

′

0)
′

should be a
√
n-consistent estimator of θ.

Following the above, the IST2SLS estimator is given by:

θ̂ist2sls,n = [Z̃o
′

n Ω−1
n (λ0) Q̂okpn (Q̂okp

′

n Ω−1
n (λ0) Q̂okpn )

−1
Q̂okp

′

n Ω−1
n (λ0) Z̃on]

−1

Z̃o
′

n Ω−1
n (λ0) Q̂okpn (Q̂okp

′

n Ω−1
n (λ0) Q̂okpn )

−1
Q̂okp

′

n Ω−1
n (λ0) yon,

where Q̂okpn = JonQ̂
kp
n = [Jon∑rnk=0 λ̂

k
nlsW

k+1
n Xnβ̂nlsJ

o
nXn].

The asymptotic distribution of IST2SLS is the same as that of IG2SLS, but considering that
we use Qon = Q̂

okp
n as instrument matrix, and given that 1

nQ̂
okp
n

p
Ð→ 1

nC
o
n, we arrive at the following

proposition:

Proposition 4: Under assumptions 1-4 and 6, and considering that
√
n (λ̂nls − λ0) = Op (1)

with ∣λ0∣ < 1; that (β̂nls − β0) = op(1); and that rn is a sequence of natural numbers with
0 ≤ rn ≤ n, rn ↑ ∞ and rn = o (

√
n), then θ̂ist2sls,n is a consistent estimator of θ0 and

√
n (θ̂ist2sls,n − θ0)

dÐ→ N (0,Σist2sls), where

Σist2sls = σ2e lim
n→∞ [ 1

n
Co

′

n Ω−1
n (λ0)Con]

−1
.
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Asymptotic Best Generalized Two-Stage Least Squares Estimator with Impu-
tation (AIBG2SLS)

The following estimator results from an asymptotic property known as asymptotic equivalence.
The AIBG2SLS estimator is given by:

θ̂aibg2sls,n = (Co
′

n Ω−1
n (λ0)Con)

−1
Co

′

n Ω−1
n (λ0) yon.

Given that4
√
n (θ̂ibg2sls,n − θ̂aibg2sls,n) = op (1), the estimators IBG2SLS and AIBG2SLS are

both
√
n−equivalent, and therefore have the same asymptotic distribution.

Proposition 5: Under assumptions 1-4 and 6, θ̂aibg2sls,n is a consistent estimator of θ0,

and
√
n (θ̂aibg2sls,n − θ0)

dÐ→ N (0,Σaibg2sls), where

Σaibg2sls = σ2e limn→∞ [ 1

n
ConΩ−1

n (λ0)Con]
−1
.

3.2 Error Variance Estimator

In this section we present an estimator of the error variance, σ2e , which is based on a non-linear
least squares estimation.

The model Jonyn = JonS−1n (λ0)Xnβ0 + JonS−1n (λ0) en can be estimated using NLS. Its variance
is given by σ2eΣn (λ0), where Σn (λ0) = [JonS−1n (λ0)S−1

′

n (λ0)Jo
′

n ].
Using the Cholesky decomposition, we obtain Σ−1

n (λ0) = T
′

n (λ0)Tn (λ0), where Tn (λ0) is an
(no × no) lower triangular matrix. Multiplying the error term by Tn (λ0), we obtain:

E [Tn (λ0)JonS−1n (λ0) en] = 0, V ar [Tn (λ0)JonS−1n (λ0) en] = σ2eIn, and

cov [Tn (λ0)JonS−1n (λ0) en] = 0.

Given that vi is the i − th element of vn = Tn (λ0)JonS−1n (λ0) en, by the weak law of large
numbers we obtain 1

n ∑
n
i=1 v2i

p
Ð→ 1

n ∑
n
i=1E (v2i ) = σ2e . Therefore, the proposed estimator for the

error term variance is:
σ̂2e =

1

n

n

∑
i=1
v̂2i ,

which is a consistent estimator of σ2e . See appendix F.

4. Finite Sample Properties

To investigate the performance of the proposed estimators with finite samples, we conduct
a Monte Carlo experiment5 designed as follows. The model is y = λWy + β1 + β2X2 + e, with
β1 = β2 = 1, λ = 0.4, and both X2 and e ∼ N (0,1In). We consider three sample sizes: small
(n = 67), medium (n = 217), and large (n = 417). For all sample sizes we fixed three missing
rates, namely, 10%, 25%, and 50%. The number of repetitions is 500.

4See appendix E for details.
5We use the R software, which can be freely downloaded from http://www.r-project.org/.

http://www.r-project.org/
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The contiguity matrices W were constructed as follows. For each repetition we simulate pairs
of latitude and longitude points (n points) using two uniform distributions U(0,1). Once we
have the n coordinates (spatial locations), we create W following the k nearest neighborhood
criteria, with k = {4,8}. We set two different values for k to assess the density impact.6

We compare the estimation results for IBG2SLS, IST2SLS, and IBG2SLSA. For compari-
son, we also report the results of one of the estimators proposed in Wang and Lee (2013), the
IBG2SLS(W-L). As pointed out previously, the only difference between our proposed estimators
and IBG2SLS(W-L) is that we impute the unobserved y′s in the spatial lag, JonWnyn, while
IBG2SLS(W-L) imputes all unobserved y′s; i.e., all yun.

Regarding the IST2SLS estimator, we need to set a value for rn. In their simulations, Kelejian
et al. (2004) try different values for rn and show that setting rn = nα, with α = 0.25, yields good
enough results, so we follow this criterion.

4.1 Results

For the IBG2SLS, IST2SLS, and IBG2SLSA estimations we report bias, root mean square
error (RMSE), and true and estimated standard deviation (except for σe). For comparison we
also report bias and RMSE for IBG2SLS(W-L).7

Table 1 presents the results for k = 4. Regarding samples sizes, the results are as expected;
i.e., the larger the sample size, the smaller the bias and variability. One thing to note is that a
missing rate appears not to be as important as the total number of observed data; e.g., if we test
for bias and RSME for n = 417, we see that the larger missing rate has better results than any
missing rate for n = 217.

For the smaller sample size, the AIBG2SLS shows slightly better results in terms of variability,
although for the rest of samples sizes and missing rates, the results for all estimations are quite
similar.

For medium and large sample sizes, the estimated standard deviation and the true one are
mostly equal; and as the observed data grows, they mostly match with RSME.

Table 2 reports results for k = 8. First, as the literature suggests, density is positively and
highly related with bias and variability; and all results are greater than for k = 4. Despite
this fact, the results are quite similar to the previous ones; i.e., as sample sizes grow, bias and
variability decrease, and the total number of observed data becomes more relevant than the
missing rate. For the smaller sample size, AIBG2SLS shows better results in terms of both bias
and variability.

Summarizing, the only significant difference between estimators is that AIBG2SLS performs
better for smaller samples, while for larger samples the performance of all four estimators is
practically the same.

6Some works show that density negatively impacts on bias and inference. See Smith (2009); Farber et al.
(2010), among others.

7We do not report the standard deviation for IBG2SLS(W-L), as we only seek to compare its empirical
variability.
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Table 1
Simulation for k = 4.

n no IBG2SLS(W-L) IBG2SLS IST2SLS AIBG2SLS
Bias RMSE Bias RMSE SD Bias RMSE SD Bias RMSE SD

67

33

λ0 0.073 0.357 0.072 0.363 0.276 (0.263) 0.072 0.338 0.276 (0.263) 0.069 0.352 0.277 (0.263)
β1 -0.126 0.614 -0.124 0.626 0.483 (0.461) -0.124 0.582 0.483 (0.461) -0.119 0.607 0.484 (0.461)
β2 0.012 0.205 0.013 0.206 0.185 (0.190) 0.008 0.201 0.185 (0.190) 0.012 0.204 0.185 (0.190)
σe - - 0.055 0.267 - 0.055 0.267 - 0.055 0.267 -

51

λ0 0.048 0.295 0.047 0.299 0.237 (0.228) 0.047 0.247 0.237 (0.228) 0.048 0.301 0.238 (0.228)
β1 -0.090 0.534 -0.088 0.542 0.424 (0.404) -0.088 0.499 0.424 (0.404) 0.090 0.546 0.425 (0.404)
β2 0.017 0.149 0.017 0.150 0.146 (0.148) 0.015 0.148 0.146 (0.148) 0.017 0.150 0.146 (0.148)
σe - - 0.020 0.217 - 0.020 0.217 - 0.020 0.217 -

61

λ0 0.024 0.260 0.023 0.263 0.215 (0.212) 0.023 0.241 0.215 (0.212) 0.025 0.264 0.215 (0.212)
β1 -0.029 0.457 -0.028 0.462 0.381 (0.377) -0.031 0.425 0.381 (0.377) -0.031 0.464 0.382 (0.377)
β2 0.018 0.137 0.019 0.137 0.133 (0.133) 0.018 0.134 0.133 (0.133) 0.018 0.137 0.133 (0.133)
σe - - 0.004 0.198 - 0.004 0.198 - 0.004 0.198 -

217

109

λ0 0.009 0.141 0.008 0.141 0.137 (0.136) 0.008 0.140 0.137 (0.136) 0.009 0.141 0.137 (0.136)
β1 -0.014 0.248 -0.012 0.248 0.242 (0.242) -0.012 0.246 0.242 (0.242) -0.013 0.248 0.243 (0.242)
β2 0.004 0.100 0.005 0.100 0.100 (0.101) 0.005 0.101 0.100 (0.101) 0.004 0.100 0.100 (0.101)
σe - - 0.015 0.146 - 0.015 0.146 - 0.015 0.146 -

163

λ0 0.005 0.120 0.004 0.120 0.118 (0.117) 0.004 0.122 0.118 (0.117) 0.004 0.120 0.118 (0.117)
β1 -0.009 0.214 -0.008 0.214 0.210 (0.208) -0.008 0.217 0.210 (0.208) -0.008 0.214 0.210 (0.208)
β2 0.007 0.083 0.007 0.083 0.080 (0.080) 0.008 0.085 0.080 (0.080) 0.007 0.083 0.080 (0.080)
σe - - 0.001 0.121 - 0.001 0.121 - 0.001 0.121 -

195

λ0 -0.003 0.109 -0.003 0.109 0.111 (0.110) -0.001 0.110 0.111 (0.110) -0.003 0.109 0.111 (0.110)
β1 0.007 0.195 0.007 0.195 0.198 (0.196) 0.005 0.199 0.198 (0.196) 0.007 0.195 0.198 (0.196)
β2 0.010 0.075 0.010 0.075 0.073 (0.073) 0.010 0.075 0.073 (0.073) 0.010 0.075 0.073 (0.073)
σe - - -0.019 0.108 - -0.019 0.108 - -0.019 0.108 -

417

209

λ0 0.004 0.098 0.003 0.098 0.097 (0.097) 0.005 0.098 0.097 (0.097) 0.004 0.098 0.097 (0.097)
β1 -0.008 0.165 -0.007 0.165 0.171 (0.170) -0.009 0.167 0.171 (0.170) -0.007 0.165 0.171 (0.170)
β2 0.000 0.075 0.001 0.075 0.072 (0.073) 0.001 0.076 0.072 (0.073) 0.001 0.075 0.072 (0.073)
σe - - 0.007 0.103 - 0.007 0.103 - 0.007 0.103 -

313

λ0 0.005 0.089 0.005 0.089 0.083 (0.083) 0.005 0.090 0.083 (0.083) 0.005 0.089 0.083 (0.083)
β1 -0.007 0.159 -0.006 0.159 0.149 (0.148) -0.008 0.161 0.149 (0.148) -0.006 0.159 0.149 (0.148)
β2 0.000 0.059 0.000 0.059 0.058 (0.058) 0.000 0.060 0.058 (0.058) 0.000 0.059 0.058 (0.058)
σe - - -0.009 0.087 - -0.009 0.087 - -0.009 0.087 -

376

λ0 0.002 0.078 0.002 0.079 0.078 (0.078) 0.003 0.079 0.078 (0.078) 0.002 0.078 0.078 (0.078)
β1 -0.006 0.139 -0.005 0.139 0.140 (0.139) -0.006 0.140 0.140 (0.139) -0.005 0.139 0.140 (0.139)
β2 0.000 0.056 0.000 0.056 0.053 (0.052) 0.000 0.056 0.053 (0.052) 0.000 0.056 0.053 (0.052)
σe - - -0.017 0.078 - -0.017 0.078 - -0.017 0.078 -

Notes: True standard errors in parenthesis.
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Table 2
Simulation for k = 8.

n no IBG2SLS(W-L) IBG2SLS IST2SLS AIBG2SLS
Bias RMSE Bias RMSE SD Bias RMSE SD Bias RMSE SD

67

33

λ0 0.162 0.627 0.177 0.722 0.427 (0.402) 0.143 0.549 0.427 (0.402) 0.176 0.966 0.438 (0.402)
β1 -0.285 1.084 -0.304 1.170 0.738 (0.691) -0.255 0.973 0.738 (0.691) -0.298 1.468 0.756 (0.691)
β2 0.026 0.204 0.028 0.210 0.178 (0.185) 0.026 0.199 0.178 (0.185) 0.032 0.231 0.179 (0.185)
σe - - 0.090 0.259 - 0.090 0.259 - 0.090 0.259 -

51

λ0 0.114 0.491 0.109 0.476 0.359 (0.339) 0.100 0.417 0.359 (0.339) 0.129 0.704 0.360 (0.339)
β1 -0.203 0.843 -0.197 0.829 0.623 (0.584) -0.185 0.755 0.623 (0.584) -0.223 1.060 0.626 (0.584)
β2 0.022 0.151 0.022 0.150 0.143 (0.146) 0.020 0.147 0.143 (0.146) 0.024 0.165 0.143 (0.146)
σe - - 0.049 0.206 - 0.049 0.206 - 0.049 0.206 -

61

λ0 0.067 0.417 0.067 0.420 0.320 (0.314) 0.056 0.355 0.320 (0.314) 0.070 0.436 0.321 (0.315)
β1 -0.102 0.685 -0.102 0.687 0.548 (0.540) -0.090 0.590 0.548 (0.540) -0.108 0.716 0.550 (0.540)
β2 0.003 0.144 0.003 0.144 0.131 (0.133) 0.002 0.142 0.131 (0.133) 0.003 0.144 0.131 (0.133)
σe - - 0.025 0.194 - 0.025 0.194 - 0.025 0.194 -

217

109

λ0 0.029 0.220 0.028 0.221 0.195 (0.190) 0.030 0.218 0.195 (0.190) 0.029 0.220 0.195 (0.190)
β1 -0.047 0.380 -0.048 0.381 0.338 (0.328) -0.051 0.377 0.338 (0.328) -0.048 0.380 0.338 (0.328)
β2 0.003 0.097 0.004 0.097 0.098 (0.099) 0.003 0.097 0.098 (0.099) 0.003 0.097 0.098 (0.099)
σe - - 0.018 0.145 - 0.018 0.145 - 0.018 0.145 -

163

λ0 0.036 0.189 0.035 0.189 0.168 (0.163) 0.035 0.188 0.168 (0.163) 0.035 0.189 0.168 (0.163)
β1 -0.066 0.331 -0.065 0.332 0.291 (0.282) -0.064 0.330 0.291 (0.282) -0.065 0.332 0.291 (0.282)
β2 0.000 0.078 0.000 0.078 0.078 (0.078) -0.001 0.078 0.078 (0.078) 0.000 0.078 0.078 (0.078)
σe - - -0.002 0.116 - -0.002 0.116 - -0.002 0.116 -

195

λ0 0.014 0.168 0.014 0.168 0.157 (0.154) 0.016 0.168 0.157 (0.154) 0.014 0.168 0.157 (0.154)
β1 -0.017 0.281 -0.016 0.281 0.270 (0.267) -0.021 0.282 0.270 (0.267) -0.017 0.281 0.270 (0.267)
β2 0.005 0.073 0.005 0.073 0.072 (0.072) 0.005 0.074 0.072 (0.072) 0.005 0.073 0.072 (0.072)
σe - - -0.004 0.104 - -0.004 0.104 - -0.004 0.104 -

417

209

λ0 0.014 0.143 0.013 0.143 0.135 (0.133) 0.014 0.142 0.135 (0.133) 0.013 0.143 0.135 (0.133)
β1 -0.024 0.245 -0.023 0.245 0.232 (0.230) -0.024 0.245 0.232 (0.230) -0.023 0.245 0.232 (0.230)
β2 -0.001 0.073 -0.002 0.073 0.070 (0.071) -0.001 0.074 0.070 (0.071) -0.002 0.073 0.070 (0.071)
σe - - 0.014 0.100 - 0.014 0.100 - 0.014 0.100 -

313

λ0 0.003 0.118 0.002 0.118 0.115 (0.115) 0.004 0.118 0.115 (0.115) 0.003 0.118 0.115 (0.115)
β1 -0.007 0.207 -0.007 0.207 0.200 (0.200) -0.009 0.208 0.200 (0.200) -0.007 0.207 0.200 (0.200)
β2 0.001 0.060 0.001 0.060 0.057 (0.057) 0.000 0.060 0.057 (0.057) 0.001 0.060 0.057 (0.057)
σe - - 0.006 0.082 - 0.006 0.082 - 0.006 0.082 -

376

λ0 0.006 0.121 0.006 0.121 0.109 (0.109) 0.009 0.122 0.109 (0.109) 0.006 0.121 0.109 (0.109)
β1 -0.009 0.209 -0.008 0.209 0.189 (0.188) -0.013 0.210 0.189 (0.188) -0.009 0.209 0.189 (0.188)
β2 0.003 0.052 0.003 0.052 0.052 (0.052) 0.003 0.052 0.052 (0.052) 0.003 0.052 0.052 (0.052)
σe - - 0.000 0.071 - 0.000 0.071 - 0.000 0.071 -

Notes: True standard errors in parenthesis.
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At the same time, although we do not present results for different values of σe, we can expect
that, given the model, the smaller the σe, the better the estimations; and, given that the goodness
of fit is negatively related with σe, the estimation performance improves with a better model fit.8

We do not find any regularities between the value of the spatial correlation coefficient and the
estimators’ performance.

5. Conclusions

The aim of this work is to present a series of estimators for dealing with random missing data
in the dependent variable within a Spatial Lag Model. We propose three alternatives based on
a Two-Stage Least Squares estimation methodology; derive the optimal instrument matrix to
maximize efficiency; and present an approximation for it.

All estimators require to impute some missing data and this partial imputation (in contrast
with total imputation) is the key difference relative to the estimators proposed in Wang and
Lee (2013). Partial imputation gives rise to the possibility of working only with complete data,
since our proposed estimators only require knowing the spatial lag for the observed dependent
variable. If we observe JonWnyn, we do not need to perform any imputations.

Given that the analytical results are for large samples (asymptotic results), we carry out
a Monte Carlo simulation to assess the estimators’ performance for finite samples sizes. The
results show that there is no gain in imputing all unobserved data. Although in small samples
our estimator AIBG2SLS shows better results in terms of bias and variability, for medium and
large samples all estimators (including the one with total imputation) show a similar behaviour.

Imputation requires a previous estimation of the parameters. In this case we use Non-Linear
Least Squares to obtain an initial estimation. This is not a constraint: many results are main-
tained if we use another initial estimation; the only requirement is that the estimator should be
consistent.

A key assumption is that missing data are random. In some empirical applications, missing
data are spatially grouped (e.g., missing data for a complete region or state). If we can assume
that the missing data process is random (i.e., not related to the problem under analysis), the
proposed estimators can be applied.

At the same time, as stated in Mur et al. (2008), spatial heterogeneity has not received
much attention in literature, even considering that there is wide evidence that spatial behavioral
relations tend to be unstable. Further research should seek to develop estimators under missing
data conditions considering spatial heterogeneity.

8Thinking in the goodness of fit as the correlation between y and ŷ.
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Appendix A - Model

Equation (4): The vector of observed and unobserved variables can be expressed as:

⎛
⎝
yon
yun

⎞
⎠
=
⎡⎢⎢⎢⎢⎣

⎛
⎝

yon
F (θ0)

⎞
⎠
+
⎛
⎝

0

yun − Fn (θ0)
⎞
⎠

⎤⎥⎥⎥⎥⎦
.

Replacing this equality into (3) and distributing terms, we obtain:

yon = Jonλ0Wn
⎛
⎝

yon
Fn (θ0)

⎞
⎠
+ JonXnβ0 + Jonλ0Wn

⎛
⎝

0

yun − Fn (θ0)
⎞
⎠
+ Jonen.

Given that (yun − Fn (θ0)) = JunS−1n (λ0) en, withSn (λ0) = (In − λ0Wn) , and

⎛
⎝

0

yun − Fn (θ0)
⎞
⎠
= Ju

′

n J
u
nS

−1
n (λ0) en,

then:

Jonλ0Wn
⎛
⎝

0

yun − Fn (θ0)
⎞
⎠
+ Jonen = [λ0WnJ

u′

n J
u
nS

−1
n (λ0) + In] en = un,

and so we obtain equation (4).

Equation (5): Given that
⎛
⎝

yon
Fn (θ0)

⎞
⎠
=
⎡⎢⎢⎢⎢⎣

⎛
⎝

yon
F (θ̂)

⎞
⎠
−
⎛
⎝

0

Fn (θ̂) − Fn (θ0)
⎞
⎠

⎤⎥⎥⎥⎥⎦
,

and replacing on the right hand side of equation (4), we obtain:

yon = Jonλ0Wn
⎛
⎝

yon
Fn (θ̂)

⎞
⎠
+ JonXnβ0 − Jonλ0Wn

⎛
⎝

0

Fn (θ̂) − Fn (θ0)
⎞
⎠
+ Jonun.

Given that
⎛
⎝

0

Fn (θ̂) − Fn (θ0)
⎞
⎠
= Ju′n Jun [(S−1n (λ̂)Xnβ̂) − (S−1n (λ0)Xnβ0)], we arrive at (5).

Equation (6): Consider Sn (λ0) − Sn (λ̂) = (In − λ0Wn) − (In − λ̂Wn) = (λ̂ − λ0)Wn.

Based on this equality, we obtain:

[S−1n (λ̂) − S−1n (λ0)] = S−1n (λ̂) [Sn (λ0) − Sn (λ̂)]S−1n (λ0) = S−1n (λ̂) (λ̂ − λ0)WnS
−1
n (λ0) .

Given that WnS
−1
n (λ0) = Gn, and considering that (λ̂ − λ0) is a scalar, we obtain:

[S−1n (λ̂) − S−1n (λ0)] = (λ̂ − λ0)S−1n (λ̂)Gn.

Given the above, we arrive at:

[S−1n (λ̂)Xnβ̂ − S−1n (λ0)Xnβ0] = [(λ̂ − λ0)S−1n (λ̂)Gn]Xnβ̂ + S−1n (λ0)Xn (β̂ − β0)

= [S−1n (λ̂)GnXnβ̂S
−1
n (λ0)Xn]

⎡⎢⎢⎢⎢⎣

(λ̂ − λ0)
(β̂ − β0)

⎤⎥⎥⎥⎥⎦
= S−1n (λ0)Cn (θ̂ − θ0) +R (λ̂ − λ0) , (11)
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with (θ̂ − θ0) =
⎡⎢⎢⎢⎢⎣

(λ̂ − λ0)
(β̂ − β0)

⎤⎥⎥⎥⎥⎦
, Cn = (GnXnβ0Xn) and R = [S−1n (λ̂)GnXnβ̂ − S−1n (λ0)GnXnβ0].

Replacing the term in brackets for ũn in (5) by its equivalent (11), distributing, and ordering
terms, we obtain (6).

Equation (8): Replacing (7) into (6), we arrive at:

ũn = un−λ0WnJ
u′

n J
u
nS

−1
n (λ0)Cn [[C

′

nB
′

nBnCn]
−1
C

′

B
′

nBnen + op(
1√
n
)]+λ0WnJ

u′

n J
u
nRn (λ̂ − λ0) .

Replacing un by its equivalent, reordering, and distributing terms, we obtain:

ũn = {λ0WnJ
u′

n J
u
nS

−1
n + In − λ0WnJ

u′

n J
u
nS

−1
n (λ0)Cn [C

′

nB
′

nBnCn]
−1
C

′

B
′

nBn} en +R∗,

with R∗ = λ0WnJ
u′
n J

u
n [Rn (λ̂ − λ0) − S−1n (λ0)Cnlkop( 1√

n
)], where lk is a k + 1 vector of unit

values.
Given the above, by imputing θ with θ̂nls, model (5) can be expressed as (8).

Appendix B - I2SLS Estimator

Proof of proposition 1: Consistency

Considering that:

θ̂2sls,n − θ0 = [ 1

n
Z̃o

′

n Q
o
n ( 1

n
Qo

′

nQ
o
n)

−1 1

n
Qo

′

n Z̃
o
n]

−1
1

n
Z̃o

′

n Q
o
n ( 1

n
Qo

′

nQ
o
n)

−1 1

n
Qo

′

n ũ
o
n,

and ũon = Jonũn, we need to prove that [ 1
n Z̃

o′
n Q

o
n ( 1

nQ
o′
nQ

o
n)

−1 1
nQ

o′
n Z̃

o
n]

−1
converges to a well-defined

limit with full rank.
Given assumption 5, limn→∞ 1

nQ
o′
nQ

o
n is well-defined, so we only need to prove that 1

nQ
o′
n Z̃

o
n =

[ 1
nQ

o′
n J

o
nWnỹn

1
nQ

o′
n J

o
nXn] converges to a well-defined limit with full rank.

Given that ỹn = Jo′n JonS−1n (λ0) (Xnβ0 + en) + Ju
′

n J
u
nS

−1
n (λ̂)Xnβ̂ and Jo

′

n J
o
n = In − Ju

′

n J
u
n , we

obtain:

Qo
′

n J
o
nWnỹn = Qo

′

n J
o
nWnS

−1
n (λ0)Xnβ0 +Qo

′

n J
o
nWnJ

o′

n J
o
nS

−1
n (λ0) en

+Qo
′

n J
o
nWnJ

u′

n J
u
nAn,

with An = [S−1n (λ̂)Xnβ̂ − S−1n (λ0)Xnβ0]. Given the consistency of (λ̂, β̂), An = op (1). Further-
more, 1

nQ
o′
n J

o
nWnJ

o′
n J

o
nS

−1
n (λ0) en = op (1).

Given the above,

lim
n→∞

1

n
Qo

′

n Z̃
o
n = lim

n→∞
1

n
Qo

′

n [JonGnXnβ0 + op (1)JonXn]

p
Ð→ lim

n→∞
1

n
Qo

′

n [JonGnXnβ0J
o
nXn] (12)

Under assumption 5 this limit is well-defined.
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With the previous results, [ 1
n Z̃

o′
n Q

o
n ( 1

nQ
o′
nQ

o
n)

−1 1
nQ

o′
n Z̃

o
n]

−1
converges in probability to a non-

singular matrix.
At the same time:

1

n
Qo

′

n ũ
o
n = 1

n
Qo

′

n {[λ0WnJ
u′

n J
u
nS

−1
n + In] en − λ0WnJ

u′

n J
u
n [(S−1n (λ̂)Xnβ̂) − (S−1n (λ0)Xnβ0)]}

= op (1) . (13)

Given (12) and (13), then (θ̂2sls,n − θ0)
p
Ð→ 0.

Proof of proposition 1: Asymptotic Distribution

Given that:

√
n (θ̂2sls,n − θ0) = [ 1

n
Z̃o

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

n Z̃
o
n]

−1
Z̃o

′

n Q
o
n (Qo

′

nQ
o
n)

−1 1√
n
Qo

′

n ũ
o
n, (14)

in order to derive the asymptotic distribution of
√
n (θ̂2sls,n − θ0) we need to obtain first the

asymptotic distribution of 1√
n
Qo

′

n ũ
o
n.

1√
n
Qo

′

n ũ
o
n =

1√
n
Qo

′

n J
o
n (Hn (λ0) en +R∗) = 1√

n
Qo

′

n J
o
nHn (λ0) en +

1√
n
Qo

′

n J
o
nR

∗. (15)

Working on the second term in the last equality, we obtain:

1√
n
Qo

′

n J
o
nR

∗ = 1√
n
Qo

′

n J
o
n {λ0WnJ

u′

n J
u
n [Rn (λ̂ − λ0) − S−1n (λ0)Cnlkop(

1√
n
)]}

= 1

n
Qo

′

n J
o
nλ0WnJ

u′

n J
u
nRn

√
n (λ̂ − λ0) −

1

n
Qo

′

n J
o
nS

−1
n (λ0)Cnlkop(1)

= op (1) .

Given Rn, the consistency of θ̂, and considering that the terms 1
nQ

o′
n J

o
nλ0WnJ

u′
n J

u
n and

√
n (λ̂ − λ0) are Op (1), then 1

nQ
o′
n J

o
nλ0WnJ

u′
n J

u
nRn = op ( 1

n
).

Additionally, 1
nQ

o′
n J

o
nS

−1
n (λ0)Cnlk = Op (1); thus, 1

nQ
o′
n J

o
nS

−1
n (λ0)Cnlkop(1) = op (1).

Given the above, we obtain:

1√
n
Qo

′

n ũ
o
n =

1√
n
Qo

′

nH
o
n (λ0) en + op (1) ,

with Ho
n (λ0) = JonHn (λ0). Therefore, 1√

n
Qo

′

n ũ
o
n − 1√

n
Qo

′

nH
o
n (λ0) en

p
Ð→ 0.

Given this, based on the asymptotic equivalence lemma, the asymptotic distribution of
1√
n
Qo

′

nH
o
n (λ0) en is the same as that of 1√

n
Qo

′

n ũ
o
n.

Given that Hn (λ0) is absolutely summable, then Qo
′

nH
o
n (λ0) = Do

n is bounded. Assuming
that limn→∞ 1

nD
o
nD

o′
n is finite and positive definite,9 given assumption 1, and using the Central

Limit Theorem for triangular arrays presented in Kelejian and Prucha (1999) or Lee (2003), we
obtain:

1√
n
Qo

′

nH
o
n (λ0) en

dÐ→ N (0, σ2e lim
n→∞

1

n
Qo

′

nH
o
n (λ0)Ho′

n (λ0)Qon) .

9Kelejian and Prucha (1999) prove that, given that A and B are two absolutely summable matrices, so is AB.
Furthermore, given that Z is a bounded matrix, then Z

′

AZ = O (n). Therefore, Do
nD

o′

n = O (n) .
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Given the above, and considering (14), then:

√
n (θ̂i2sls,n − θ0)

dÐ→ N (0,Σi2sls) ,

with

Σi2sls = σ2e lim
n→∞ [ 1

n
Co

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

nC
o
n]

−1

[ 1

n
Co

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

nH
o
n (λ0)Ho′

n (λ0)Qon (Qo
′

nQ
o
n)

−1
Qo

′

nC
o
n]

[ 1

n
Co

′

n Q
o
n (Qo

′

nQ
o
n)

−1
Qo

′

nC
o
n]

−1
.

In the variance equation we consider that limn→∞ 1
nQ

o′
n Z̃

o
n

p
Ð→ limn→∞ 1

nQ
o′
nC

o
n.

Appendix C - IG2SLS Estimator

Under assumption 6, Ωn (λ0) =Ho
n (λ0)Ho′

n (λ0) is an (no × no) definite positive and invertible
matrix, so we can apply the Cholesky decomposition and express it as Ω−1

n (λ0) = K
′

nKn, where
Kn is an (no × no) invertible lower triangular matrix. Multiplying both sides of model (8) by
Kn, we obtain:

Kny
o
n = KnZ̃

o
nθ0 +KnJ

o
n (Hn (λ0) en +R∗) =KnZ̃

o
nθ0 +Knũ

o
n.

Since our transformed model is a function of yo∗n = Kny
o
n, Z̃o∗n = KnZ̃

o
n, and ũo∗n = Knũ

o
n, the

instrument matrix will not be the same as before.
Given that:

Kny
o
n = Kn (JonXnβ0 + λ0JonWnXnβo + λ20JonW 2

nXnβo +⋯) +KnJ
o
n (In − λ0Wn)−1 en,

the instrument matrix is now given by Qo∗n =KnQ
o
n. The IG2SLS estimator is:

θ̂ig2sls,n = [Z̃o∗
′

n Qo∗n (Qo∗
′

n Qo∗n )
−1
Qo∗

′

n Z̃o∗n ]
−1
Z̃o∗

′

n Qo∗n (Qo∗
′

n Qo∗n )
−1
Qo∗

′

n Z̃o∗n y
o∗
n

= [Z̃o
′

n Ω−1
n (λ0)Qon (Qo

′

nΩ−1
n (λ0)Qon)

−1
Qo

′

nΩ−1
n (λ0) Z̃on]

−1

Z̃o
′

n Ω−1
n (λ0)Qon (Qo

′

nΩ−1
n (λ0)Qon)

−1
Qo

′

nΩ−1
n (λ0) yon.

Proof of proposition 2: Consistency and Asymptotic Distribution

We provide the complete proof in appendix B. The difference between IG2SLS and I2SLS
is that the former considers a weights matrix, Ω−1

n (λ0). As before, we need to prove that
1
nQ

o′
nΩ−1

n (λ0) Z̃on converges to a well-defined limit with full rank. Introducing Ω−1
n (λ0) into

the derivation of (12), we arrive at 1
nQ

o′
nΩ−1

n (λ0) Z̃on = 1
nQ

o′
nΩ−1

n (λ0) [JonGnXnβ0 + op (1)JonXn];
and from this equality we obtain 1

nQ
o′
nΩ−1

n (λ0) Z̃on
p
Ð→ limn→∞ 1

nQ
o′
nΩ−1

n (λ0) [JonGnXnβ0J
o
nXn].

Under assumption 6, this limit is well-defined. Following the derivations in appendix B, but
considering Ω−1

n (λ0) and assuming it is an absolutely summable matrix, we can derive that
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1√
n
Qo

′

nΩ−1
n (λ0) ũon

dÐ→ N (0, σ2e limn→∞ 1
nQ

o′
nΩ−1

n (λ0)Qon). This implies that
√
n (θ̂ig2sls,n − θ0)

dÐ→
N (0,Σig2sls), where

Σig2sls = σ2e lim
n→∞ [ 1

n
Co

′

n Ω−1
n (λ0)Qon (Qo

′

nΩ−1
n (λ0)Qon)

−1
Qo

′

nΩ−1
n (λ0)Con]

−1
.

Appendix D - IST2SLS Estimator

Proof of proposition 4:

Given assumptions 1-4 and 6 and the states in proposition 4, Kelejian et al. (2004) prove that
n−1a

′

n (ỹn −Eyn) = op (1) , where Eyn =Wn (In − λ0Wn)−1Xnβ, and ỹn = ∑rnk=0 λ̂
k
0W

k+1
n Xnβ̂0.

Given that an = (a1,n, . . . , an.n)
′

is a sequence of (n × 1) constant vectors whose elements are
uniformly bounded in absolute value, then, given that an = (ai,n, . . . , an,n)

′

, where ai,n is a vector
whose i − th element is one and zero otherwise,

n−1 (ỹn −Eyn) = (op(1) . . . op(1))′ . (16)

Given that Q̂kpn = (ỹn Xn), and Cn = (Eyn Xn) , then 1
nQ̂

kp
n

p
Ð→ 1

nCn. Therefore, it is also true
that 1

nJ
o
nQ̂

kp
n

p
Ð→ 1

nJ
o
nCn, since Jon is a non-stochastic selection matrix.

The asymptotic distribution variance of IG2SLS, using the instrument matrix Q̂kpn , is equiv-
alent to the following expression:

Σiste = σ2e lim
n→∞ [ 1

n
Co

′

n Ω−1
n (λ0)

1

n
Q̂okpn ( 1

n
Q̂okp

′

n Ω−1
n (λ0)

1

n
Q̂okpn )

−1 1

n
Q̂okp

′

n Ω−1
n (λ0)Con]

−1

= σ2e lim
n→∞( 1

n
Co

′

n ,Ω
−1
n (λ0)Con)

−1
.

Appendix E - Asymptotic Equivalence of θ̂ibg2sls,n and θ̂aibg2sls,n

In order to prove that θ̂ibg2sls,n and θ̂aibg2sls,n are
√
n−equivalent, we need to prove that

√
n (θ̂ibg2sls,n − θ̂aibg2sls,n) = op (1). Since IBG2SLS uses the optimal instrument matrix

Qo∗n = Con, we obtain:

√
n (θ̂ibg2sls,n − θ̂aibg2sls,n) = [ 1

n
Z̃o

′

n Ω−1
n (λ0)Con ( 1

n
Co

′

n Ω−1
n (λ0)Con)

−1 1

n
Co

′

n Ω−1
n (λ0) Z̃on]

−1

1

n
Z̃o

′

n Ω−1
n (λ0)Con ( 1

n
Co

′

n Ω−1
n (λ0)Con)

−1 1√
n
Co

′

n Ω−1
n (λ0) yon

−( 1

n
Co

′

n Ω−1
n (λ0)Con)

−1 1√
n
Co

′

n Ω−1
n (λ0) yon.

From proposition 2 we know that 1
nQ

o′
nΩ−1

n (λ0) Z̃on
p
Ð→ 1

nQ
o′
nΩ−1

n (λ0)Con. Replacing Qon by
Qo∗n = Con, we obtain 1

nC
o′
n Ω−1

n (λ0) Z̃on
p
Ð→ 1

nC
o′
n Ω−1

n (λ0)Con. Replacing the previous equalities and
cancelling terms, we obtain:

√
n (θ̂ibg2sls,n − θ̂ibg2slsa,n)

p
Ð→ 0.
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Appendix F - Variance Error Estimator

We need to prove that JonS−1n (λ̂) ên = Jonyn − JonS−1n (λ̂)Xnβ̂ is a consistent estimator of
JonS

−1
n (λ0) en.
Consider that:

JonS
−1
n (λ̂) ên = JonS

−1
n (λ0)Xnβ0 + JonS−1n (λ0) en − JonS−1n (λ̂)Xnβ̂

= [JonS−1n (λ0)Xnβ0 − JonS−1n (λ̂)Xnβ̂] + JonS−1n (λ0) en
= op (1) + JonS−1n (λ0) en.

These equivalences are based on the consistence of θ̂ = (λ̂, β̂′)
′

, which makes the term in
brackets be op (1). Furthermore, Σ−1

n (λ̂)
p
Ð→ Σ−1

n (λ0) .
Given the above derivations, we obtain that

v̂n = Tn (λ̂)JonS−1n (λ̂) ên
p
Ð→ vn = Tn (λ0)JonS−1n (λ0) en,

and therefore σ̂2e = 1
n ∑

n
i=1 v̂2i

p
Ð→ σ2e .



Estimation of Spatial Lag Model Under Random Missing Data... 19

References

Anselin, L. (1988). Spatial Econometrics: Methods and Models, vol. 4. Boston: Kluwer.
Cressie, N. (1993). Statistics for Spatial Data. New York: John Wiley & Sons.
Farber, S., Páez, A., and Volz, E. (2010). Topology, Dependency Tests and Estimation Bias in

Network Autoregressive Models. In A. Páez, J. Gallo, R. N. Buliung, and S. Dall’erba
(Eds.), Progress in Spatial Analysis - Methods and Applications (pp. 29–57). Berlin,
Heidelberg: Springer.

Florax, R., and Van der Vlist, A. (2003). Spatial Econometric Data Analysis: Moving Beyond
Traditional Models. International Regional Science Review 26(3), 223–243.

Fujita, M., Krugman, P., and Venables, A. (1999). The Spatial Economics: Cities, Regions and
International Trade. Cambridge, MA: MIT Press.

Kelejian, H., and Prucha, I. (1998). A Generalized Spatial Two-Stage Least Squares Procedure
for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances. The
Journal of Real Estate Finance and Economics 17 (1), 99–121.

Kelejian, H., and Prucha, I. (1999). A Generalized Moments Estimator for the Autoregressive
Parameter in a Spatial Model. International Economic Review 40(2), 509–533.

Kelejian, H., and Prucha, I. (2007). The relative efficiencies of various predictors in spatial
econometric models containing spatial lags. Regional Science and Urban Economics 37 (3),
363–374.

Kelejian, H., and Prucha, I. (2010). Spatial models with spatially lagged dependent variables
and incomplete data. Journal of geographical systems 12(3), 241–257.

Kelejian, H., Prucha, I., and Yuzefovich, Y. (2004). Instrumental Variable Estimation of a Spatial
Autoregressive Model with Autoregressive Disturbances: Large and Small Sample Results.
In J. LeSage and R. Pace (Eds.), Advances in Econometrics: Spatial and Spatiotemporal
Econometrics, vol. 18 (pp. 163–198). Bingley: Emerald Group Publishing Limited.

Krugman, P. (1991). Geography and trade. Cambridge, MA: MIT Press.
Lee, L. F. (2003). Best Spatial Two-Stage Least Squares Estimators for a Spatial Autoregressive

Model with Autoregressive Disturbances. Econometric Reviews 22 (4), 307–335.
LeSage, J., and Pace, R. (2004). Models for Spatially Dependent Missing Data. The Journal of

Real Estate Finance and Economics 29 (2), 233–254.
Little, R. (1992). Regression With Missing X’s: A Review. Journal of the American Statistical

Association 87(420), 1227–1237.
Mur, J., López, F., and Angulo, A. (2008). Symptoms of Instability in Models of Spatial Depen-

dence. Geographical Analysis 40 (2), 189–211.
Smith, T. (2009). Estimation Bias in Spatial Models with Strongly Connected Weight Matrices.

Geographical Analysis 41 (3), 307–332.
Wang, W., and Lee, L. F. (2013). Estimation of spatial autoregressive models with randomly

missing data in the dependent variable. The Econometrics Journal 16 (1), 73–102.


	Introduction
	Missing Data Model
	Model

	Estimators
	Assumptions
	Error Variance Estimator

	Finite Sample Properties
	Results

	Conclusions

