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Abstract
This paper presents a test based on the principle of Lagrange Multipliers to identify spatial
instability in the constant coefficient of regression models including substantive spatial dependence.
The test has been adapted to the Scan methodology. Its main advantage is that it identifies areas
with differential behavior without the need to provide information about their location, shape,
or size. The study shows the utility of the test, reconsidering the results obtained by Mur et al.
(2008) about instability in the distribution of per capita income in European regions.

Article History: Received: July 07 2020 / Revised: August 07 2020 / Accepted: April 06 2021
Keywords: Parametric instability; Hypothesis test; Lagrange Multipliers; Scan methodology;
Spatial autocorrelation

JEL Classification: C01, C52

Acknowledgements

The authors would like to thank the professor Jesús Mur (Zaragoza University) for his help in obtaining the
derivates of the Scan-LM test. This work has been partially funded by the Spanish Ministry of Economy
and Competitiveness Grants PID2019-107800GB-I00 and the Seneca Foundation Grant 19884/GERM/15.

https://doi.org/10.18800/economia.202101.005

http://www.fondoeditorial.pucp.edu.pe
http://revistas.pucp.edu.pe/economia
mailto:fernando.lopez@upct.es
mailto:roman.Minguez@uclm.es
https://doi.org/10.18800/economia.202101.005


The Scan-LM to Test Instability in the Constant Coefficient of Spatial... 75

1. Introduction

There is broad consensus that spatial dependence and heterogeneity are fundamental charac-
teristics of spatial data (Griffith, 2003). The literature has largely focused on the former, spatial
dependence, with numerous publications considering both testing and modeling issues. Spatial
heterogeneity, however, has received less attention, even though there is considerable evidence
that relationships tend to be unstable, making a degree of heterogeneity natural in cross-sectional
models.

One of the possible sources of spatial heterogeneity is the presence of spatial structures in
the model’s coefficients. If this instability is not correctly included in the model, it can lead
to spurious spatial autocorrelation (see, for instance, Lauridsen and Kosfeld, 2011). Assuming
models have constant parameters is therefore somewhat unreal (Fotheringham et al., 1999).
A large number of alternatives have been proposed to include instability in regression model
parameters (such as Brunsdon et al., 1996; or, more recently, Lee et al., 2017), and several
contributions include these instabilities in spatial regression models (for example, Basile et al.,
2014 and Billé et al., 2017).

In general, two alternatives can be considered for including parametric instability in cross-
sectional regression models: models in which parametric changes are continuous (such as Spline
Regression Models) or discrete ruptures. This study is concerned with the latter. Only the recent
contribution by Billé et al. (2017) is in the same line, proposing a two-step method that first
identifies spatial regimes and then introduces spatial dependence.

The spatial heterogeneity problem in terms of the spatial variation of a model’s parameters
has been of interest in the spatial econometrics field. The literature contains several tests aimed
at evaluating the stability of coefficients, largely based on the principle of Lagrange Multipliers
(such as Lauridsen and Kosfeld, 2011) but, unfortunately, once the instability of coefficients is
detected, there are no tools to suggest how to correctly model or identify which spatial regimens
should be considered.

The starting point of our discussion is the paper by Mur et al. (2008), who considered an
instability test in the spatial autocorrelation parameter. The authors maintain that the intensity
of the occurrence of overflow effects between neighboring units cannot be considered constant.
To illustrate how the test behaves, they contemplate a model that explains the per capita Gross
Domestic Product (GDP) in European regions, identifying a spatial cluster of 611 regions (NUTS
3) in central Europe in which this intensity is greater than in the peripheral regions. Mentioned
cluster is shown in Figure 1 (Figure 5 in Mur et al., 2008).

This study focuses on how the set of compact regions in central Europe was identified. The
authors present evidence of the different behavior of spatial dependence structures, obtaining
different Moran’s I values for each country in the European Union (Mur et al., 2008, p. 195). In
addition, they use an exploratory tool that they call Zoom Estimation to replicate the estimation
of a model with local spatial effects for each region, considering only the closest regions (in terms
of geographically weighted regressions, this would be the bandwidth). The different values of the
spatial dependence parameter, ρ (called ρ(i)), obtained using Zoom Estimation are charted on a
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Source: Figure 5 in Mur et al. (2008), p. 199.

Figure 1. Center and periphery of European regions in Mur et al. (2008).

map. Figure 2 shows the map published in Mur et al. (2008), with all the ρ(i) values (Figure 3
in Mur et al., 2008).

This map constitutes the basis of decisions regarding the elements that configure the spatial
cluster of differently behaving regions. Figure 1 shows the set of Central European regions with
greater spatial dependence levels than the rest.

This is one more example of the methods based on map observation found in the literature
to identify spatial clusters or areas with differential behavior. In other studies, it is also common
to find the local Getis and Ord (1992) G∗

i statistic used to identify such clusters. Fischer and
Stirböck (2006), for instance, or Le Gallo and Dall’Erba (2006), identify beta convergence clubs
in European regions using this local indicator. Ramajo et al. (2008) also estimate a model with
autocorrelation and spatial heterogeneity by selecting a set of regions not only guided by economic
criteria but also considering the recommendation by Abreu et al. (2005), who suggest the use of
Exploratory Spatial Data Analysis (ESDA) to select spatial regimes: “In some sense, we follow
the suggestion of Abreu et al. (2005) of basing the choice of regimes using ESDA information
and a priori theoretical/political/geographical/economic considerations”

This study contemplates a statistical methodology to identify clusters of regions/observations
of differential behavior, free from the subjective criteria used in previous studies. The basis
is the Scan statistic (see, for instance, Kulldorff and Nagarwalla, 1995), which has been used
in spatial econometrics by various authors (López et al., 2015; Chasco et al., 2018; Le Gallo
et al., 2020; Cucala, 2016). Our proposal focuses on the identification of spatial clusters in
the mean of a spatial process specifically when instability lies in the independent term of the
regression equation. This methodology can easily be used to identify instability in the coefficients
of explanatory variables.
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Source: Figure 3 in Mur et al. (2008), p. 197.

Figure 2. Center and periphery of European regions in Mur et al. (2008).

2. The Scan-LMα Test

We start with the specification of a SAR (Simultaneous Autoregressive Regression) autore-
gressive spatial model:

y =Xβ + ρWy + u,

where β is a vector (kx1) of the coefficients of the explanatory variables X (nxk); W is the
classic connection matrix (nxn); ρ is the spatial autocorrelation parameter and we assume that
the residuals are homoscedastic and normal: u ∼ N(0, σ2In).

Based on the alternative hypothesis, we contemplate instability in the equation’s constant1,

y =Xβ +Zθ + ρWy + u,

where Z is a variable with a value of 1 for some observations and 0 for the rest. The initial test
considered is:

H0 ∶ θ = 0

HA ∶ θ ≠ 0.

The general expression of the test based on the Lagrange Multipliers LM is (the test is shown
in detail in Appendix A):

LMα = [g (θ) ∣
H0

]
′

[MI (θ) ∣
H0

]
−1

[g (θ) ∣
H0

] ∼ χ2
1,

where g is the gradient of the model’s likelihood function based on the null hypothesis and MI
is the information matrix.

1In this case, we assume that the first column of X is the unit vector. It can easily be applied to instabilities
in the explanatory variables.
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To be computationally efficient, it is essential to find a closed expression that enables us to
distinguish between terms that depend on Z and terms that do not. The final expression after
some calculations (see Appendix A) is:

LMα =
1

σ2
Z ′u [Z ′Z − b′A−1b]u′Z.

See Appendix A for a full definition of terms.
In this situation, in order to perform the test, the investigator needs to first formulate a

hypothesis about the elements forming the cluster, defining Z a priori. The investigator’s choice
of Z is critical, as a test with several alternative definitions of Z could be affected by the multiple
comparison problem.

The alternative proposed here is to adapt the test to the Scan methodology, proposing these
hypotheses:

H0 ∶ θ = 0 (∀ΘZ ∈ Θ)
HA ∶ ∃ΘZ ∈ Θ where θ ≠ 0 (or θ > 0;or θ < 0),

where Θ is the set of all possible connected regions that can be considered in the study area and
ΘZ is the set of connected regions selected in the dummy variable Z. For practical purposes,
this set Θ is usually limited to circular and/or elliptical regions, although flexibly shaped spatial
clusters can also be considered (Tango and Takahashi, 2005).

The statistic proposed to test this hypothesis is:

Scan-LMα =maxΘZ∈Θ{LMα}.

3. Significance of the Statistic

The theoretical distribution of the Scan statistic based on the null hypothesis is unknown.
Resampling techniques are therefore required to evaluate its significance. This resampling method
will provide a pR−value comparing the value of the statistic for the set of real data with the
empirical distribution of R spatial reorders of the sample. The process is as described below:

1. Calculate the Scan-LMα statistic for the original data set {yi,Xi}i∈S , where S is a set of
spatial locations determined by their latitudinal and longitudinal coordinates.

2. Reorder the set of observations by permutation, randomly assigning observations to loca-
tions, and thus obtaining {yri ,Xr

i }i∈S where r is the index of the replica.

3. Perform the same permutation on the rows and columns of the W matrix, obtaining W r,
thus breaking the structure of Z as a cluster, while maintaining exactly the same spatial
dependence structure.

4. Perform the Scan-LM(ri)α test on the permuted sample {yri ,Xr
i }i∈S with matrix W r.

5. Repeat steps 2 and 4 (R−1) times to obtain the statistic a total ofR times {Scan-LM(ri)α}Ri=1.
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6. Calculate the p-pseudo value of the statistic as:

pR−value =
1

R

R−1
∑
i=1
I(Scan-LMα > Scan-LM(ri)α),

where I(⋅) is an indicating function that assigns a value of 1 if inequality is true and 0

otherwise.

Reject the null hypothesis if pB−value < α for a nominal value α. See Le Gallo et al. (2020)
for more details about this procedure.

3.1 A Graphic Example of the Spatial Bootstrap

Figures 3a, 3b graphically show the resampling method described in Section 3. In Figure 3a,
the Scan test identifies a spatial cluster of 8 observations with differential behavior (in black).
The lines represent the system of connections defined by W . Through the scanning procedure, a
total of #(θ) dummy variables Z (windows) are considered, covering all the possible clusters of
observations. The LMα statistic should present the maximum value when the dummy variables
identify those 8 observations. The significance of the statistic is evaluated by means of a random
permutation of the observations (sampling without replacement) and the vector of explanatory
variables X and matrix W . Figure 3b shows the spatially permuted observations yp, and the
lines show the new configuration of matrix W once permuted, Wp. Note that the rows and
columns of matrix W are permuted in the same order, thus maintaining the initially established
neighborhood criterion. The scanning processes are again initiated for this permutation, using
all the windows predefined in θ but, in this case, a cluster is not identified and the values of the
LMα statistic are (in general) lower than those obtained with the original data. Note that the
estimation of the SAR model has not varied as only the order of the observations has changed
with the same permutation used for the vectors y, Xs, and matrix W .

Numerically speaking, the problem is the same as calculating the maximum of the LMα tests

(a) Original cluster (circles in black).
Lines indicate links.

(b) Spatial permutation of original
observations. The cluster has dissolved.
The links have been maintained.

Figure 3. Permutation resampling in a spatial environment.
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for the connected windows with the distribution of the maximum LMα statistic for B sets of
unconnected windows.

3.2 Secondary Clusters

If the test rejects the null hypothesis and identifies a significant cluster, a natural question
would be to ask if there is another cluster, not overlapping the Most Likely Cluster (MLC). These
clusters are the so-called secondary clusters. Zhang et al. (2010) suggest an iterative method
based on eliminating the observations included in the MLC from the sample and re-obtaining
the value of the statistic with this subsample. Zhang et al. (2010) confirm that this procedure
offers more power to identify secondary clusters. This will, therefore, be the method used in this
paper.

4. The Reformulated Application of Mur et al. (2008)

In this section we will show the use of the Scan-LMα statistic together with other tests based
on the Scan methodology (López et al., 2015; Chasco et al., 2018; Le Gallo et al., 2020). The
objective is only to show how this methodology can be used to ensure the correct specification
of the econometric model with spatial effects.

The proposed econometric model is as contemplated in Mur et al. (2008), estimating the
per capita GDP of the European regions in 1998 using two explanatory factors: population
density (dens) and the percentage weight of the primary sector in the GDP (wag). It considers
a total of 1,274 regions corresponding to NUTS 3 in the 27 European Union countries (now 28).
The contact matrix W that encodes the relations among regions is based on a mixed criterion
(distance between centroids and the closest neighbor). Additional information about the design
of the model can be found in Mur et al. (2008).

The first model estimated in this section is a simple estimation using OLS.

Model 1: y = β0 + β1dens + β2wag + u; u ∼ N(0, σ2I).

The results of the estimation are shown in Table 1 (first column). The residuals of the OLS
model show clear symptoms of presenting spatial structure. All the spatial autocorrelation tests
(MI and ML) broadly reject the null hypothesis of independence. It is also rejected by the Scanσ
test (Chasco et al., 2018) and both effects (SGHW and spatial autocorrelation) are probably
present in the model. The Scanσ test provides additional information (Figure 4) identifying two
clusters, one with high variance (214 regions, in red) and one with low variance (626 regions, in
green). The specification clearly requires improvement.

We decided to solve the presence of spatial autocorrelation by including a spatial challenge
to the endogenous autocorrelation. The SAR model with the matrix W described in Mur et al.
(2008) has the following formulation:

Model 2: y = β0 + ρWy + β1dens + β2wag + u; u ∼ N(0, σ2I).
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Source: own construction using QGIS.

Figure 4. Clusters identified in the residuals of Model 1.

The second column of Table 1 shows the results of the estimation. The spatial autocorrelation
parameter presents a high value ρ = 0.645 but the diagnostic tests still show specification prob-
lems. The marginal LMλ∣ρ test rejects the null hypothesis, showing that the spatial dependence
that the residuals of Model 2 presented remain unsolved and that including the term Wy was
insufficient. There are also symptoms of instability in ρ as LMSAR

Break(cb) = 34.91 rejects the null
hypothesis of homogeneity in the parameter of spatial dependence.

The null hypothesis is also rejected by the Scan-LMSGWH
SAR test (Le Gallo et al., 2020), showing

that there are symptoms of Spatial GroupWise Heteroskedasticity (SGWH) in the residuals of
the SAR model. The additional information provided by this test about the patterns of SGWH
is shown in Figure 5. There are two clusters, one with maximum variance (198 regions, in red)
and one with low variance (229 regions, in green). It is clear that the inclusion of spatial effects
has reduced the spatial structure problems in the residuals of the model.

This could be affected by several issues: (i) incorrect selection of Xs; (ii) incorrect selection
of matrix W ; (iii) SGWH problems; (iv) instability in the spatial autocorrelation.

The Scan-LMα test suggests issue (i), showing instability problems in the constant of the
equation. The cause or causes of the problem cannot be identified at this point.

The Scan-LMα test suggests a total of 6 ruptures in the intercept of the model (parameter
α), (see Figure 6). With this information, we decided to include the respective dummy variables
suggested by the Scan-LMα test to correct the instability problems in the mean of the process.
We define the matrix Z of dimension (nx6), where each column (named Zi) is a dummy variable
to identify each cluster. The elements of the first column of the matrix Z (named Z1) is a dummy
variable to identify the regions included in the Most Likely cluster; Z2 is the dummy variable
to identify the regions selected in the first secondary cluster (see subsection 3.2); and Z3 is the
dummy variable to identify the regions in the second secondary cluster. The same procedure
is used to define Z4, Z5, and Z6. With the information obtained using the Scan-LMα test, the
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Source: own construction using QGIS.

Figure 5. Clusters identified in the residuals of Model 2.

Source: own construction using QGIS.

Figure 6. Ruptures suggested by Scan-LMα.

following specification is estimated:

Model 3: y = β0 +
6

∑
k=1

θkZk + ρWy + β1dens + β2wag + u; u ∼ N(0, σ2I),

where Zk is the dummy variable with a value of 1 if the region is in cluster k and 0 otherwise.
The third column of Table 1 shows the results of the estimation of Model 3. The most

significant result is the drastic drop in the spatial dependence coefficient, which now has a value
of ρ = 0.378, showing that part of the spatial structure identified in Model 2 was probably due to
instabilities of the mean. This result confirms the statement published by Billé et al. (2017, p.
3), “the spatial heterogeneity might generate part of the spatial autocorrelation effect, or in other
words, that the autoregressive coefficient is sometimes overestimated ”. The LMλ∣ρ test continues
to show that part of the spatial dependence has not yet been included in the model, although
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Source: own construction using QGIS.

Figure 7. Clusters identified in the residuals of Model 3.

with a lower value of the statistic (28.06 in Model 3 vs. 119.52 in Model 2). The LMSAR
Break(cb)

= 11.09 test also shows instability in the spatial autocorrelation parameters, although with a
lower value than that obtained for the residuals of Model 2 (11.09 vs. 34.91). The Scan-LMSGWH

SAR

test also rejects the null hypothesis, showing the possible presence of SGWH.

We again make use of the information provided by the Scan-LMSGWH
SAR test, now identifying

(see Figure 7) a cluster with low incidence (235 regions, in green) and a small cluster (57 regions,
in red).

Finally, following Mur et al. (2008), we decided to model the instability in the spatial depen-
dence parameters. Model 4 is expressed as:

Model 4: y = β0 +
6

∑
k=1

θkZk + ρWy + γW ∗y + β1dens + β2wag + u; u ∼ N(0, σ2I).

We will use matrix W ∗ to identify the set of regions with peculiarities measured by the
parameter γ. The W ∗ matrix must exactly reproduce a certain part of matrix W (the rows and
columns associated with the case that we want to test, while the other elements are zero). In this
case, the rupture area is the same as presented in Mur et al. (2008). The last column of Table
1 shows the results of the estimation of the model. The two spatial dependence parameters are
significant, and Model 4 improves on Model 2 in terms of likelihood.

Finally, the Scanσ test is used on the residuals to evaluate the reduction in instability. Figure
8 shows the test’s output. Only a low variance cluster (142 observations, in green) is identified
in this case. It is clear that the instability in ρ was the cause of part of the problems present in
the previous models.

An optimal solution appears to be out of reach, as it is always possible to identify a degree
of instability in the residuals.
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Source: own construction using QGIS.

Figure 8. Clusters identified in the residuals of Model 4.

Table 1
Results of the estimation.

Model 1 Model 2 Model 3 Model 4
β0 9.820∗∗∗ 3.470∗∗∗ 6.083∗∗∗ 6.258∗∗∗

β1 (dens) 0.075∗∗∗ 0.089∗∗∗ 0.092∗∗∗ 0.093∗∗∗

β2 (wag) −0.050∗∗∗ −0.021∗∗∗ −0.022∗∗∗ −0.022∗∗∗

θ1 – – −0.341∗∗∗ −0.338∗∗∗

θ2 – – −0.186∗∗∗ −0.165∗∗∗

θ3 – – 0.134∗∗∗ 0.111∗∗∗

θ4 – – −0.247∗∗∗ −0.227∗∗∗

θ5 – – −0.207∗∗∗ −0.208∗∗∗

θ6 – – 0.109∗∗∗ 0.102∗∗∗

ρ – 0.645∗∗∗ 0.378∗∗∗ 0.356∗∗∗

γ – – – 0.006∗∗∗

Log Likelihood −92.92 26.60 32.63

Diagnostic tests

LMγ∣ρ 119.52∗∗∗ 28.06∗∗∗ –
Scanσ 234.67∗∗∗ – – 32.49∗∗∗

Scan-LMSGWH
SAR – 123.44∗∗∗ 47.12∗∗∗ –

Scan-LMα – 64.58∗∗∗ – –
Scan-LMLag

Break(cb
1) – 34.91∗∗∗ 11.09∗∗∗ –

I Moran 29.11∗∗∗ – – –
LM-err 834.98∗∗∗

LM-EL 174.57∗∗∗

LM-lag 739.50∗∗∗

LM-LE 79.09∗∗∗

LM-SARMA 914.07∗∗∗

Notes: Scanσ is the Scan test for the residual (Chasco et al., 2018);
Scan-LMSGWH

SAR is the Scan test of SGWH (Le Gallo et al., 2020);
Scan-LMLag

Break is the LM test for instability of spatial dependence in
SAR (Mur et al., 2008).
1cb is the area identified in Mur et al. (2008) formed by 611 regions.
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5. Conclusions

It is our impression that both types of structure (spatial autocorrelation and spatial het-
eroskedasticity) must be tested for correct specification. This information, moreover, is vital
to improve the specification of the model, so a combination of spatial autocorrelation tests and
SGWH must be used in any exercise modeling cross-sectional data (Chasco et al., 2018). The
way in which these tests should be used is to be approached in future research.

The Scan methodology is widely used in a number of fields, and it has recently been incor-
porated into the area of spatial econometrics (López et al., 2015; Chasco et al., 2018, 2020).
Compared to other contrast methodologies, the main advantage of the Scan methodology is its
subproduct. Not only does statistically contrast the hypothesis about the instability parameter
but it also identifies the spatial clusters of differential behavior. This second aspect is completely
new since it substitutes decisions made by the researcher. In any case, the information provided
by the contrast identifying the cluster(s) can always complement researchers’ intuition when
identifying structural changes.

This work has been developed only to identify structural changes in the constant of SAR
spatial regression models. Amplifications to identify structural changes in the other types of
spatial regression models are obvious and will occupy a part of our research agenda in the
coming years.

Appendix A - Model

For the derivation of the test based on the Lagrange Multipliers, the first derivatives are
necessary,

∂1

∂β
= 1

σ2
(By −Xβ −Zθ)′X = 1

σ2
u′X

∂1

∂θ
= 1

σ2
(By −Xβ −Zθ)′Z = 1

σ2
u′Z

∂1

∂ρ
= −trB−1W + 1

σ2
(By −Xβ −Zθ)′Wy = −trB−1W + 1

σ2
u′Wy

∂1

∂σ2
= −n

2

1

σ4
− 1

2σ6
u′u

where B = (I − ρW ), and with the gradient under the null hypothesis being

g(β, θ, ρ, σ2)∣
H0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂1

∂β

∂1

∂θ

∂1

∂ρ

∂1

∂σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣
H0

= 1

σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

u′Z

0

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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The information matrix is:

MI ∣
H0

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂1

∂β∂β

∂1

∂β∂θ

∂1

∂β∂ρ

∂1

∂β∂σ2

−− ∂1

∂θ∂θ

∂1

∂θ∂ρ

∂1

∂θ∂σ2

−− −− ∂1

∂ρ∂ρ

∂1

∂ρ∂σ2

−− −− −− ∂1

∂σ2∂σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∣
H0

In this case, we can express it as:

MI ∣
H0

= 1

σ2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ′X X ′Z ((B−1Xβ)′WX)′ 0

−− Z ′Z (B−1Xβ)′WZ 0

−− −− σ2trB−1WB−1W+ trWB−1

+[β′X ′W ′WXβ + σ2trW ′W ]

−− −− −− n

σ2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The general expression for the LM test is:

Scan-LMα = [g∣H0]
′ [MI ∣H0]

−1 [g∣H0] ,

that after some calculations, permuting the fourth and second rows of the gradient and the second
and fourth rows and columns of the information matrix and taking into account the expression
of the inverse of a block matrix, we get:

1

σ2
[0 0 0 Z ′u]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ′X 0 ((B−1Xβ)′WX)′ X ′Z

0
n

σ2
trWB−1 0

(B−1Xβ)′WX trWB−1 σ2trB−1WB−1W+ ((B−1Xβ)′WZ)′

+[β′X ′W ′WXβ + σ2trW ′W ]

Z ′X 0 (B−1Xβ)′WZ Z ′Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

0

u′Z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and
Scan-LMα =

1

σ2
Z ′u [Z ′Z − b′A−1b]u′Z,

with

b =

⎡⎢⎢⎢⎢⎢⎢⎣

X ′Z

0

((B−1Xβ)′WZ)′

⎤⎥⎥⎥⎥⎥⎥⎦

; A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X ′X 0 ((B−1Xβ)′WX)′

0
n

σ2
trWB−1

(B−1Xβ)′WX trWB−1 σ2trB−1WB−1W+
+[β′X ′W ′WXβ + σ2trW ′W ]

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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