
www.fondoeditorial.pucp.edu.pe

2022, Volume 45, Issue 89, 150-183 / ISSN 2304-4306

E C O N O M Í A

revistas.pucp.edu.pe/economia

A Power Booster Factor for Out-of-Sample Tests of Predictability

Pablo Pincheira Browna

aSchool of Business, Universidad Adolfo Ibáñez
B pablo.pincheira@uai.cl

Abstract
In this paper we introduce a “power booster factor” for out-of-sample tests of predictability. The
relevant econometric environment is one in which the econometrician wants to compare the pop-
ulation Mean Squared Prediction Errors (MSPE) of two models: one big nesting model, and
another smaller nested model. Although our factor can be used to improve finite sample proper-
ties of several out-of-sample tests of predictability, in this paper we focus on the widely used test
developed by Clark and West (2006, 2007). Our new test multiplies the Clark and West t-statistic
by a factor that should be close to one under the null hypothesis that the short nested model is
the true model, but that should be greater than one under the alternative hypothesis that the big
nesting model is more adequate. We use Monte Carlo simulations to explore the size and power of
our approach. Our simulations reveal that the new test is well sized and powerful. In particular,
it tends to be less undersized and more powerful than the test by Clark and West (2006, 2007).
Although most of the gains in power are associated to size improvements, we also obtain gains
in size-adjusted-power. Finally we illustrate the use of our approach when evaluating the ability
that an international core inflation factor has to predict core inflation in a sample of 30 OECD
economies. With our “power booster factor” more rejections of the null hypothesis are obtained,
indicating a strong influence of global inflation in a selected group of these OECD countries.
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1. Introduction

In this paper we introduce a “power-booster-factor” for out-of-sample tests of predictability.
The relevant econometric environment is one in which the econometrician wants to test for
the difference between the population Mean Squared Prediction Errors (MSPE) of two models:
one big nesting model, and another smaller nested model. The standard application of such
comparisons is found in the exchange rate literature, where an economic model is used to generate
forecasts that are compared to forecasts coming from the simple random walk.

Our “power-booster-factor” can be used to improve finite sample properties of several out-of-
sample tests of predictability. Yet, in this paper, we focus on the widely used test developed
by Clark and West (2006, 2007) (hereafter CW). We construct a new test multiplying the CW
t-statistic by our “power-booster-factor”. The key idea relies on the fact that this factor should
be close to one under the null hypothesis that the short nested model is correct, but should be
greater than one under the alternative hypothesis that the big nesting model is more adequate.
This new test displays two interesting features. First, standard normal critical values seem to
work well, meaning that the test is correctly sized, and second, the test is relatively powerful
when compared to the widely used CW test.

Out-of-sample analyses have become fairly usual in time series econometrics to compare either
different forecasting methods or the adequacy of economic models. Accordingly, during the last
two decades several papers have proposed different out-of-sample testing strategies. For instance,
Diebold and Mariano (1995) and West (1996) are leading articles in this literature.

When the objective is to compare population MSPE of two models, and one of them is
nested in the other, a vast literature has documented that the traditional methods proposed
by Diebold and Mariano (1995) and West (1996) are inadequate, see for instance West (1996,
2006). In particular McCracken (2007) derives the correct asymptotic distribution of traditional
comparisons of MSPE between nested models concluding that, in general, usual tests are not
normal. Moreover, McCracken (2007) provides the asymptotic distribution of four widely used
statistics to compare population MSPE in nested environments. The extension to direct multistep
ahead forecasts is made in Clark and McCracken (2005). In general terms the tests follow a non-
standard distribution.

An alternative approach is presented by CW, who show that the asymptotic distribution of
a simple encompassing t-statistic is well approximated by a standard normal distribution under
the null hypothesis. In the particular case in which the null model posits a martingale process
for the predictand and estimates of the parameters are updated in rolling windows, CW shows
that the correct asymptotic distribution is indeed standard normal.

One important shortcoming of out-of-sample analyses is the need for splitting the available
sample in two shares: one for estimation and one for forecast evaluation. One undesired conse-
quence of this approach is the reduced number of observations for parameter estimation. This
problem is typically associated to low power of out-of sample tests, see for instance Inoue and
Kilian (2005). In addition, in many applications it is possible to think that the relevant alter-
native and null models are relatively close to each other. For instance, given that in relatively
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efficient asset markets we could expect little or no predictability of returns, it is critical to rely on
high power tests, so they can detect this presumably little evidence against the null hypothesis.

The joint use of the CW test and our “power-booster-factor” allows us to propose a new test
with relatively high power based on asymptotically normal critical values, which are very simple
to use.

We use Monte Carlo simulations to explore size, power and size-adjusted-power of our new
test when forecasting one-step-ahead. We are interested in its performance both absolutely and
relative to CW, which is the other usual asymptotically normal test used in nested environments.
In our simulations, we calibrate our parameters and sample sizes to macro applications based on
monthly exchange rates or monthly CPI inflation.

Simulation results reveal that our new test behaves as expected: it is, in general, correctly
sized and more powerful than CW. Notice, however, that improvements in size-adjusted-power
are moderate, and gains in power are mostly induced by our new test being less undersized than
CW.

While our test may display adequate size and high power, there are plenty of subtleties
that deserve mentioning: First, our approach tends to be slightly undersized when carrying out
inference at the 10% level, but it is a little oversized at the 1% level. Second, in applied work
the researcher needs to make a decision about one free parameter. We provide some suggestions
on how to pick that parameter, but more should be done in the future.

We emphasize that we are testing equal population forecasting ability. In other words we
use forecast comparisons as a model evaluation technique. We leave as an extension for future
research the connection of our test with procedures to obtain good forecasts on a given sample.
See Giacomini and White (2006) for an interesting discussion about the differences in evaluating
forecasting methods and models. Finally we illustrate the use of our approach when evaluating
the ability that an international core inflation factor has to predict core inflation in a sample
of 30 OECD economies. With our “power-booster-factor” more rejections of the null hypothesis
are obtained, indicating a strong influence of global inflation in a selected group of these OECD
countries.

The rest of the paper is organized as follows. Section 2 outlines the general econometric
environment, the CW test, the “power-booster-factor ” and the construction of our new test.
Section 3 shows some asymptotic and finite sample results and observations. In Section 4 we
describe our DGPs and the simulation setup. Results of the Monte Carlo experiment are shown
in Section 5. Section 6 illustrates the use of our test in an empirical application and Section 7
concludes.

2. Econometric Setup and Forecast Evaluation Framework

2.1 Basic Econometric Setup

We use a linear econometric setup considering nested specifications for a scalar dependent
variable yt+1 as follows:
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(model 1: null model) ∶ yt+1 =X
′
tβ + e1t+1, (2.1)

(model 2: alternative model) ∶ yt+1 =X
′
tβ +Z

′
tγ + e2t+1, (2.2)

where e1t+1 and e2t+1 are zero mean martingale difference sequences meaning that E(eit+1∣Ft) = 0

for i = 1,2. Here Ft represents the sigma-field generated by current and past values of Xt, Zt
and eit for i = 1,2.

We are interested in evaluating the following null hypothesis: H0 ∶ γ = 0. When this hypothesis
is true, model 2 and model 1 are the same. This means that in population, forecasts, forecast
errors and Mean Squared Prediction Errors (MSPE) are the same in both models. Under the
alternative, γ ≠ 0, and forecasts will be different in both models. In particular, since model 2
includes relevant information for explaining yt, the population forecasts from model 2 will be
superior to those of model 1, meaning that model 2 will have a lower MSPE than model 1.

We focus on the evaluation of our proposed test when comparing one-step-ahead forecasts.
Let ŷ1,t+h∣t and ŷ2,t+h∣t represent h period ahead forecasts from each of the two models. Let β̂1t be
a least squares estimate of model 1 that only uses data up to period t, with β̂2t and γ̂2t the model
2 counterparts. Then one-step-ahead forecasts and forecasts errors are given by the following
expressions

ŷ1,t+1∣t =X
′
tβ̂1t, ŷ2,t+1∣t =X

′
tβ̂2t +Z

′
tγ̂2t. (2.3)

ê1,t+1∣t ≡ yt+1 −X
′
tβ̂1t, ê2,t+h∣t ≡ yt+1 −X

′
tβ̂2t −Z

′
tγ̂2t. (2.4)

2.2 The Test by Clark and West

As our “power-booster-factor” is heavily based on the CW test, it will be useful to explain
in some detail the rationale behind this widely used test. To that end we need to describe our
out-of-sample exercises. Let us assume that we have a total of T +1 observations on yt. The end
point of the first sample used to estimate regression parameters is observation R. We generate a
sequence of P one-step-ahead forecasts estimating the models in either rolling windows of fixed
size R or recursive windows of size equal or greater than R.

For rolling windows, to generate the first set of forecasts we estimate our models with the
first R observations of our sample. Thus, these forecasts are built with information available
only at time R and are compared to the observation yR+1. Next, we estimate our models with
the second rolling window of size R that includes observations 2 through R + 1. These forecasts
are compared to observation yR+2. We continue until the last forecasts are built using the last
R available observations for estimation. These forecasts are compared to observation yT+1.

When recursive or expanding windows are used instead, the only difference with the proce-
dure described in the previous paragraph relates to the size of the estimation windows. In the
recursive scheme, the estimation window size grows with the number of available observations
for estimation. For instance, the first forecast is constructed estimating the models in a window
of size R, whereas the final forecast is constructed based on models estimated in a window of
size T . Thus, we generate a total of P forecasts, with P satisfying R + (P − 1) + 1 = T + 1. So
P = T + 1 −R.
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Sample estimates of Mean Squared Prediction Errors (MSPE) from the two models are

σ̂21 =
1

P

R+P−1

∑
t=R

ê21,t+1∣t (2.5)

σ̂22 =
1

P

R+P−1

∑
t=R

ê22,t+1∣t. (2.6)

Under the null, the population MSPE of both models is the same: σ21 = σ22; under the
alternative, the population MSPE of the bigger model should be lower than the population
MSPE of the smaller model: σ21 > σ22. Specifically, construction of CW starts by producing an
adjusted estimate of the MSPE from model 2,1

σ̂22 − adj. =
1

P

R+P−1

∑
t=R

[ê22,t+1∣t − (ŷ1,t+1∣t − ŷ2,t+1∣t)
2
] . (2.7)

Now define V̂ to be a consistent estimate of the long run variance of ê21,t+1∣t−[ê
2
2,t+1∣t−(ŷ1,t+1∣t−

ŷ2,t+1∣t)
2]. The CW test relies on the following t-statistic

σ̂21 − (σ̂22 − adj.)
√

V̂
. (2.8)

Notice that

ê22,t+1∣t = (yt+1 − ŷ2,t+1∣t)
2
= ((yt+1 − ŷ1,t+1∣t) + (ŷ1,t+1∣t − ŷ2,t+1∣t))

2
. (2.9)

Therefore

[ê22,t+1∣t − (ŷ1,t+1∣t − ŷ2,t+1∣t)
2
] = [ê21,t+1∣t + 2ê1,t+1∣t(ŷ1,t+1∣t − ŷ2,t+1∣t)] . (2.10)

Or, equivalently,

[ê22,t+1∣t − (ŷ1,t+1∣t − ŷ2,t+1∣t)
2
] = [ê21,t+1∣t − 2ê1,t+1∣t(ê1,t+1∣t − ê2,t+1∣t)] . (2.11)

Consequently, (2.7) could also be written as follows

σ̂22 − adj. =
1

P

R+P−1

∑
t=R

[ê21,t+1∣t − 2ê1,t+1∣t(ê1,t+1∣t − ê2,t+1∣t)] . (2.12)

From (2.12) it is straightforward to see that the numerator of the CW t-statistic is equal to

σ̂21 − (σ̂22 − adj.) =
2

P

R+P−1

∑
t=R

ê1,t+1∣t (ê1,t+1∣t − ê2,t+1∣t). (2.13)

1Clark and West (2006, 2007) explain the logic leading to this adjustment.
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2.3 The Power-Booster-Factor

Let us consider the following Percentage Difference in Mean Squared Prediction Errors (PDM-
SPE):

PDMSPE =
σ21 − σ22
σ21

.

At the population level this percentage difference (relative to model 1) is expected to be zero
when the null is true and positive otherwise. At the sample level, however, this is not always the
case given that the extra parameters in model 2 inflate the MSPE of that model with additional
estimation error. Following the logic behind Clark and West (2006, 2007) we should adjust σ̂22
accordingly. This means to consider the following Sample PDMSPE ratio:

̂PDMSPE =
σ̂21 − [σ̂22 − adj.]

σ̂21
.

Using (2.5) and (2.12) we see that

̂PDMSPE =

2
P ∑

R+P−1
t=R ê1,t+1∣t (ê1,t+1∣t − ê2,t+1∣t)

1
P ∑

R+P−1
t=R ê2

1,t+1∣t

.

Given that this term represents a percentage variation we simply need to add 1 to get our
“power-booster-factor”:

̂1 +PDMSPE = 1 +
2
P ∑

R+P−1
t=R ê1,t+1∣t (ê1,t+1∣t − ê2,t+1∣t)

1
P ∑

R+P−1
t=R ê2

1,t+1∣t

.

Which is equivalent to:

2σ̂21 − (σ̂22 − adj.)

σ̂21
=

1
P ∑

R+P−1
t=R [ê21,t+1∣t + 2ê1,t+1∣t(ê1,t+1∣t − ê2,t+1∣t)]

1
P ∑

R+P−1
t=R ê2

1,t+1∣t

. (2.14)

Notice that the numerator in (2.14) corresponds to σ̂21 plus the CW core statistic. This is
important, because this last statistic has a different behavior under the null and alternative
hypotheses. When the null hypothesis is true, we expect the core CW statistic to be close to
zero, therefore, under the null

2σ̂21 − (σ̂22 − adj)

σ̂21
≈

1
P ∑

R+P−1
t=R ê21,t+1∣t

1
P ∑

R+P−1
t=R ê2

1,t+1∣t

= 1. (2.15)

Under the alternative, the core CW statistic should be positive, which implies

2σ̂21 − (σ̂22 − adj.)

σ̂21
=

1
P ∑

R+P−1
t=R [ê21,t+1∣t + 2ê1,t+1∣t(ê1,t+1∣t − ê2,t+1∣t)]

1
P ∑

R+P−1
t=R ê2

1,t+1∣t

> 1. (2.16)

In the particular case in which the null model is a simple martingale in difference process and
parameter estimates are updated in rolling windows, expression (2.14) will converge in probability
to 1 when the null hypothesis is true. We will see this with formal arguments in Section 3.
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It is important to notice, that we could raise expression (2.14) to some positive scalar λ as
follows

(
2σ̂21 − (σ̂22 − adj.)

σ̂21
)

λ

=
⎛

⎝

1
P ∑

R+P−1
t=R [ê21,t+1∣t + 2ê1,t+1∣t(ê1,t+1∣t − ê2,t+1∣t)]

1
P ∑

R+P−1
t=R ê2

1,t+1∣t

⎞

⎠

λ

. (2.17)

This simple transformation preserves the basic properties under the null and alternative hy-
potheses. Expression (2.17) introduces our “power-booster-factor ”. It depends on the parameter
λ, which should play no role aymptotically under the null hypothesis. We will explore via simu-
lations the different behavior of our “power-booster-factor” as a function of λ in Section 5.

2.4 Our New Test

We propose to multiply the CW t-statistic by the factor in (2.17) to construct an asymp-
totically normal test. As we will see in the next section, in the particular case in which the
null model is a simple martingale in difference process and parameter estimates are updated in
rolling windows, expression (2.17) will converge in probability to 1 when the null hypothesis is
true. This, Slutsky’s theorem plus asymptotic normality of the test by Clark and West (2006)
ensures asymptotic normality for our approach. In the case of the test in Clark and West (2007)
which is not normal, we rely on the good behavior of the normal approximation described by
simulations in that paper, and many others, to use normal critical values for our test as well.

Notice that under the null hypothesis both tests, ours and CW, should be asymptotically the
same, but under the alternative hypothesis, the factor in (2.17) should be greater than 1, and
therefore it should boost and improve the power of the CW test. Furthermore, the higher the
CW core statistic is, the higher the factor in (2.17) is, which suggest that gains in power should
be greater at the 5% level than at the 10% significance level, and also should be greater at the
1% than at the 5% significance level.

Notice also that our procedure can be easily extended to general h-steps-ahead forecasts with
the same logic as well. Using the same models 1 and 2, let us consider ê1,t+h∣t ≡ ŷ1,t+h∣t−X̂ ′

t+h−1∣tβ̂1t

and ê2,t+h∣t ≡ ŷ2,t+h∣t − X̂ ′
t+h−1∣tβ̂2t − Ẑ

′
t+h−1∣tγ̂2t the forecast errors of both models at horizon h.

In this context, our power booster factor is defined as follows

PBF(h) =
⎛
⎜
⎝

1
P(h) ∑

R+P(h)−1
t=R [ê21,t+h∣t + 2ê1,t+1∣t(ê1,t+h∣t − ê2,t+h∣t)]

1
P(h) ∑

R+P(h)−1
t=R ê2

1,t+h∣t

⎞
⎟
⎠

λ

.

Where P(h) denotes the number of h-step ahead under consideration. Under the null hypoth-
esis the term

1

P(h)

R+P(h)−1

∑
t=R

[2ê1,t+1∣t(ê1,t+h∣t − ê2,t+h∣t)] (2.18)

is expected to be close to zero. Therefore PBF(h) should be close to one. Under the alternative
hypothesis we should expect the term (2.18) to be positive, which implies a value greater than
one for PBH(h). For one-sided-tests this means higher t-statistics and hence, more power.2

2A critical aspect to take into consideration is that the “power-booster-factor” induces some changes in size as
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3. Asymptotic and Finite Sample Behavior of our Approach

3.1 Simple Asymptotic Theory

Here we provide a formal asymptotic analysis for our new test in the particular case in which
the null model is a simple martingale in difference process and parameter estimates are updated
in rolling windows, as in Clark and West (2006). This means that in (2.1) and (2.2) we are
considering the special case β = 0. So the models are

yt+1 = e1t+1, (3.1)

yt+1 = Z
′
tγ + e2t+1, (3.2)

Under the null, γ = 0, so in population the subscripts 1 and 2 are no longer necessary.
Therefore we could write

yt+1 = et+1, (3.3)

In (3.2), let γ̂t denote an estimate of γ that relies on data going from t −R + 1 to t. We have

ŷ1,t+1∣t = 0, ê1,t+1∣t = yt+1, ê2,t+1∣t = yt+1 −Z
′
tγ̂t, (3.4)

ê21,t+1∣t − ê
2
2,t+1∣t = y

2
t+1 − (yt+1 −Z

′
tγ̂t)

2
= 2yt+1Z

′
tγ̂t − (Z ′

tγ̂t)
2
. (3.5)

Thus the numerator of the CW statistic is

σ̂21 − (σ̂22 − adj.) =
2

P

R+P−1

∑
t=R

yt+1Z
′
tγ̂t. (3.6)

And our “power-booster-factor” factor from (2.17) looks as follows:

(
2σ̂21 − (σ̂22 − adj.)

σ̂21
)

λ

=
⎛

⎝

1
P ∑

R+P−1
t=R [y2t+1 + 2yt+1Z

′
tγ̂t]

1
P ∑

R+P−1
t=R y2t+1

⎞

⎠

λ

. (3.7)

Under the null hypothesis, since yt+1 = et+1 is a martingale difference sequence, and γ̂t, Z ′
tγ̂t

relies only on data that ends in t, E(yt+1Z
′
tγ̂t) = E(et+1Z

′
tγ̂t) = 0. Thus the expectation of the

numerator of the CW statistic is
E(σ̂21 − σ̂

2
2 − adj.) = 0. (3.8)

Given that et+1Z ′
tγ̂t is also a martingale difference sequence we could use a standard central

limit theorem for martingale processes to show asymptotic normality for the CW statistic. We
need some additional assumptions to show that the “power-booster-factor” converges in proba-
bility to 1 under the null hypothesis.

Let us consider the following assumptions:

E(et+1Z
′
tγ̂t)

2
> 0 and lim

P→∞

1

P

R+P−1

∑
t=R

E(et+1Z
′
tγ̂t)

2
V ∗

> 0; (3.9)

well. Therefore, our approach is recommendable when used with slightly undersized tests. Simulations completed
by Pincheira and West (2016) show that Clark and West is indeed undersized at short horizons of h=1, h=2 and
h=3 steps ahead. Consequently, our approach is expected to be adequate at these horizons as well.
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E∣et+1Z
′
tγ̂t∣

2d
<M < +∞ for d > 1 for all t; (3.10)

1

P

R+P−1

∑
t=R

(et+1Z
′
tγ̂t)

2 Pr
Ð→ V ∗ as P goes to infinity; (3.11)

1

P

R+P−1

∑
t=R

e2t+1
Pr
Ð→ τ∗ > 0 as P goes to infinity; (3.12a)

(
1

P

R+P−1

∑
t=R

e2t+1)

−1

is bounded in probability. (3.12b)

Assumptions (3.9), (3.10) and (3.11) are required for the central limit to hold true. See
Hamilton (1994) for details. Therefore we have that

√
P

P

R+P−1

∑
t=R

(et+1Z
′
tγ̂t)→ N(0, V ∗

). (3.13)

Similarly, assumption (3.10) implies that the law of large numbers holds for (et+1Z ′
tγ̂t). Mean-

ing that
1

P

R+P−1

∑
t=R

(et+1Z
′
tγ̂t)→ 0. (3.14)

This convergence is achieved almost surely, and therefore it is also satisfied in probability. See
White (2001) for further details.

Assumptions (3.12a) and (3.12b) are different alternatives required for our “power-booster-
factor” to converge in probability to 1 under the null hypothesis. Assumption (3.12a) is more
restrictive than (3.12b) because the sequence of the sample average of e2t+1 is required to converge
in probability. Assumption (3.12b) does not require convergence. It requires the sample average
of e2t+1 to be far away from zero, which is a reasonable requirement, given that this is the sample
average of a sequence of positive random variables.

Using assumption (3.12a) our “power-booster-factor” converges in probability to 1 under the
null hypothesis, given that expression (3.14) holds true. To complete the argument we advocate
the continuous mapping theorem applied to the power function f(x) = xλ. Therefore:

(
2σ̂21 − (σ̂22 − adj.)

σ̂21
)

λ

=
⎛

⎝

1
P ∑

R+P−1
t=R [e2t+1 + 2et+1Z

′
tγ̂t]

1
P ∑

R+P−1
t=R e2t+1

⎞

⎠

λ
Pr
Ð→ (

τ∗

τ∗
)

λ

= 1. (3.15)

We arrive at the same conclusion using assumption (3.11b) but writing (3.7) in a slightly
different way:

(
2σ̂21 − (σ̂22 − adj.)

σ̂21
)

λ

=
⎛

⎝

1
P ∑

R+P−1
t=R [e2t+1 + 2et+1Z

′
tγ̂t]

1
P ∑

R+P−1
t=R e2t+1

⎞

⎠

λ

=
⎛

⎝
1 +

1
P ∑

R+P−1
t=R [2et+1Z

′
tγ̂t]

1
P ∑

R+P−1
t=R e2t+1

⎞

⎠

λ

. (3.16)

The joint use of (3.14) and assumption (3.12b) implies that (3.16) converges in probability to
1 under the null hypothesis.3

3Here we are using the following result: If Yn converges in probability to zero, and Xn is bounded in probability,
then the product YnXn converges in probability to zero as well.
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Our proposal is to multiply the CW t-statistic by our “power-booster-factor”. Asymptotic nor-
mality under the null hypothesis follows from asymptotic normality of CW, the “power-booster-
factor” converging to one in probability, plus the application of Slutsky’s theorem.

As usual in this literature, assumption (3.9) rules out the use of recursive or expanding
windows in the out-of-sample analysis, so for asymptotic normality to hold true, we rely on
rolling regressions.

As mentioned before, under the alternative hypothesis we expect the CW core statistic to be
positive. This means a “power-booster-factor” greater than one.

(
2σ̂21 − (σ̂22 − adj.)

σ̂21
)

λ

=
⎛

⎝
1 +

2
P ∑

R+P−1
t=R [2et+1Z

′
tγ̂t]

1
P ∑

R+P−1
t=R e2t+1

⎞

⎠

λ

> 1. (3.17)

For one sided test, the implication is that our approach should have more power.
A final point is worth mentioning. When one uses the recursive scheme or when β ≠ 0 in

(2.2), so that the null model includes at least one regressor, we do not have a proof of asymp-
totic normality with or without our “power-booster-factor”. As a matter of fact, the asymptotic
distribution of the CW statistic is not normal. Clark and McCracken (2001) derive the correct
asymptotic distribution of the CW test when one-step-ahead forecasts are used, and Clark and
McCracken (2005) do the same when longer horizon forecasts are constructed via the direct
method. In the first paper it is shown that the resulting asymptotic distribution of the CW
test in general is not standard. In fact it is a functional of Brownian motions depending on the
number of excess parameters of the nesting model, the limit of the ratio P(h)/R and the scheme
used to update the estimates of the parameters in the out-of-sample exercise (rolling, recursive or
fixed). In the second paper, Clark and McCracken (2005) provide a generalization of their results
for multistep ahead forecasts. Unfortunately, the resulting asymptotic distribution of the CW
statistic is again a functional of Brownian motions but now depending on nuisance parameters.

Differing from the previous work of Clark and McCracken (2001, 2005), one of the key con-
tributions of CW is to show via simulations that normal critical values are indeed adequate in
a variety of settings. They show that the cost of approximating the correct critical values by
standard normal ones is in general low: it produces a little undersized test. Furthermore, simu-
lations completed by Clark and McCracken (2013) and Pincheira and West (2016) are consistent
with the view that the CW statistic can reasonably be thought of as approximately normal. We
will see via simulations in the following sections that our approach also seems to work well with
standard normal critical values in a variety of settings.

3.2 Finite Sample Behavior

In finite samples of size typically available in macroeconomics, it is not always the case that
the asymptotic theory will be useful to explain the behavior of our test. In particular, when the
number of forecasts P is moderate or small, the multiplication of our “power-booster-factor” and
the CW t-statistic has a skewed distribution: it tends to have a heavier right tail. See Figures
1-2 below. This is due to the fact that our test is a nonlinear function of the CW core statistic:
When this core statistic is close to zero, our test is close to CW, but when the CW core statistic
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Notes: Data for Figures 1 and 2 come from 5000 replications of DGP 3, using the recursive scheme with parameters
P = 120 and λ = 4. See Section 4 next for a description of our Monte Carlo simulations.

Figure 1. Kernel densities of the Clark and West t-statistic and our new test distributions under the
null hypothesis.

Notes: See notes to Figure 1.

Figure 2. Kernel densities of the Clark and West t-statistic and our new test distributions under the
alternative hypothesis.

is large; our test would be even larger. This feature has implications in terms of size and power.
In terms of power, the implication is that we expect our test to show more power relative to CW
at the 1% significance level than at the 5% significance level. Similarly, our test should show
more power relative to CW at the 5% level than at the 10% level. In terms of size, the same
nonlinear dynamics holds true, so our test should display higher size than CW. This seems not
to be a serious problem given that simulations completed in Clark and West (2006, 2007) show
that CW is a little undersized in finite samples. An increment in size could be beneficial if this
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increment is just moderate.
A final point reflects the observation that the “power-booster-factor” is an increasing function

of the parameter λ. This will also have implications in finite samples, meaning that the power
of the test should increase with λ.4 In terms of size, the implication is that the empirical size of
our test increases with λ as well. The recommendation here is to pick low levels for λ. We will
go back to this issue in Section 5.

4. Monte Carlo Simulations

Our three DGPs are stimulated by empirical work in asset pricing and macroeconomics. Most
driving shocks are i.i.d. normal, but in DGP 1 we also experiment with shocks displaying fat
tails. In all simulations we consider both rolling and recursive samples, several values for the
parameter λ in (3.17), a single value of the initial regression sample size R and four values of the
number of one-step-ahead predictions P .

4.1 Experimental Design

DGP 1: Here we focus on the case where the null is a martingale model. DGP 1 is fairly
similar to the first DGP in Pincheira and West (2016) and to those used in Clark and West
(2006), Mankiw and Shapiro (1986), Nelson and Kim (1993), Stambaugh (1999), Campbell
(2001), Tauchen (2001) and Pincheira (2013). This DGP is designed to match exchange rate
series for which the martingale difference is a plausible null hypothesis and a model based on
uncovered interest parity is a plausible alternative. The general setup is the following:

Null model:
(model 1) ∶ yt+1 = et+1. (4.1)

Alternative model:

(model 2) ∶ yt+1 = αy + γrt + et+1 (4.2a)

rt+1 = αr + ϕ1rt + ϕ2rt−1 + . . . + ϕprt−(p−1) + vt+1. (4.2b)

Here, both shocks, et+1 and vt+1 are independent white noise processes. While vt+1 is assumed
to be Gaussian, et+1 is assumed to have a t(7) distribution displaying fat tails, which is a
traditional feature of exchange rate returns. This simple setup maps into the notation of (2.1)-
(2.2) in the following way: the term X ′

tβ is set to zero and Zt = (1 rt)
′. In all our simulations,

αy = αr = ϕ3 = . . . = ϕp = 0, so the process for rt+1 is a driftless AR(2) model. Let

var(et+1) = σ
2
e ; var(vt+1) = σ

2
v ; corr(et+1, vt+1) = ρ. (4.3)

We parameterize this as follows:

ϕ1 ϕ2 σ2e σ2v ρ γ, under H0 γ, under HA

DGP1 1.19 -0.25 (1.75)2 (0.075)2 0 0 -1
(4.4)

4In Appendix B, we use the delta method to show how our “power-booster-factor” induces higher power in a
simple t-statistic testing the zero mean null hypothesis in a sample of i.i.d. observations.



162 P. Pincheira

In DGP 1, the null forecast (model 1) imposes αy = γ = 0, thus assuming yt+1 = et+1. The null
yields simply the martingale difference or “no change” forecast of 0 for all t and all forecasting
horizons. (In terms of the notation above, ŷ1,t+1∣t = 0 for all t.) In DGP 1, the alternative forecast
(model 2) is obtained from equation (4.2a), i.e. from a regression of yt+1 on the first lag of rt and
a constant. For the alternative, we compute forecasts using OLS estimates of our parameters, so
they have the following shape

ŷt+1∣t = α̂yt + γ̂trt. (4.5)

Here, the t subscripts on the coefficients α̂yt and γ̂t emphasize that they are estimated from
a sample that ends at date t.

The parameterization in DGP 1 is based on estimates from the exchange rate application
considered in the empirical work reported in Clark and West (2006), in which yt+1 is the monthly
percentage change in a US dollar bilateral exchange rate and rt is the corresponding interest
differential. The parameters are obtained from monthly data. For this DGP we use an initial
estimation window of 120 observations (R = 120) and report results for several different number
of predictions: P = 120, 240, 360 and 1000. The initial window of R = 120 corresponds to
a sample size of 10 years, the values P = 120, 240 and 360 represents 10, 20 and 30 years of
predictions. We also consider the case in which P = 1000 to analyze the asymptotic behavior of
our approach.

DGP 2: Our second DGP corresponds to the very same DGP 3 in Pincheira and West (2016).
This DGP is motivated by the literature on commodity currencies. Our DGP 2 is designed to
match monthly returns of the Non-Fuel Commodity Price Index of the IMF, yt+1, and monthly
returns of three commodity currencies versus the U.S. dollar: r1t = Australia, r2t = South Africa
and r3t = Chile. According to Chen et al. (2010) commodity currencies should have the ability
to predict commodity returns. The null model is as follows:

(model 1) ∶ yt+1 = αy + δyt + et+1. (4.6)

The alternative model looks as follows:

(model 2) ∶ yt+1 = αy + γ1r1t + γ2r2t + γ3r3t + δyt + et+1 (4.7a)

rit+1 = αir + ϕirit + vit+1, i = 1,2,3. (4.7b)

In the notation of (2.1)-(2.2), Xt = yt and Zt = (1 r1t r2t r3t)
′. We consider the following

parameters:

αy = α1r = α2r = α3r = 0, δ = 0.3, ϕ1 = ϕ2 = 0.33, ϕ3 = 0.5; (4.8)

under H0, γ1 = γ2 = γ3 = 0; under HA, γ1 = −0.06; γ2 = −0.015; γ3 = −0.06.

These parameters are designed to match 1990–2015 monthly data, with the three currencies
monthly average of daily values. The variance-covariance structure of the shocks (et+1, v1t+1, v2t+1,
v3t+1) is given by 10−3 times the following matrix
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⎛
⎜
⎜
⎜
⎜
⎜
⎝

0.536 −0.296 −0.229 −0.221

−0.296 0.666 0.352 0.251

−0.229 0.352 1.09 0.251

−0.221 0.251 0.251 0.478

⎞
⎟
⎟
⎟
⎟
⎟
⎠

We consider an initial estimation window of 120 observations (R = 120) and several different
number of predictions: P = 85, 170, 340 and 1000.

DGP 3: Our last DGP is based on recent work exploring the predictive linkages between
domestic and international inflation. Several articles analyze this relationship concluding that
the linkage is important, both at the core and headline level, at least for some countries. See for
instance Ciccarelli and Mojon (2010), Duncan and Martínez-García (2015), Kabukcuoglu and
Martínez-García (2018), Morales-Arias and Moura (2013), Hakkio (2009), Pincheira and Gatty
(2016) and Medel et al. (2016). For clarity, we relabel yt as πcoret and rt as πCIIFt , where CIIF
stands for Core International Inflation Factor. The DGP is as follows. Let et and vt be i.i.d.
shocks.

(model 1) ∶ πcoret+1 = απ + ϕππ
core
t + et+1 (4.9)

(model 2) ∶ πcoret+1 = απ + ϕππ
core
t + γ1π

CIIF
t + γ2π

CIIF
t−1 + et+1 (4.10)

πCIIFt+1 = αr + ϕ1π
CIIF
t + ϕ2π

CIIF
t−1 + vt+1. (4.11)

We calibrate these two processes to match in-sample estimates for monthly core inflation for
a sample of OECD countries. Parameters:

απ = 0.15, ϕπ = 0.90, αr = 0.05, ϕ1 = 1.27, ϕ2 = −0.3, σ2e = 0.252, σ2v = 0.12; (4.12)

corr(et+1, vt+1) = 0.2; under H0, γ1 = γ2 = 0; under HA, γ1 = 0.51; γ2 = −0.50.

In contrast to our previous DGPs, DGP 3 is highly persistent in all three expressions (4.9),
(4.10) and (4.11). We consider an initial estimation window of 240 observations (R = 240) and
report results for several different number of predictions: P = 120, 180, 240 and 1000. Differing
also from our previous DGPs, now we do not impose the correct number of lags for πCIIFt in
(4.10). We use BIC to choose the lag length with maximum lag p = 6, so in this DGP we deal
with a certain degree of model uncertainty.

For each DGP we consider 5000 independent replications. In each replication, we generate
2000 observations on our dependent and independent variables. We discard the first 500 values
to ensure stationarity. We evaluate the performance of our test and CW test using standard
normal critical values at the 10%, 5% and 1% significance level for one sided tests. We construct
estimates of the long run variance V̂ in (2.8) using Newey and West (1987, 1994).

5. Simulation Results

In this section we present simulation results for size, size-adjusted-power and raw power of
our tests. To save space, complete results are only reported when the nominal size is 5%.
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Nevertheless, summary statistics for all three nominal sizes (10%, 5% and 1%) are also described
in this section. Complete results for the nominal sizes of 10% and 1% are in Appendix A. We also
report tables with the average across 5000 independent simulations of our “power-booster-factor”.

5.1 Simulation Results: Size

Results for nominal size 5% are in Table 1. From this table, in the rows labeled “CW” we
see that the CW test is modestly undersized in all our DGPs and for all values of the number
of forecasts P . This is also robust to the use of rolling and recursive windows. Table 6 indicates
that the median size of CW is 0.037, below the nominal size of 0.05. Let us go back to Table
1. In the rows labeled “CW with PBF...” we present results for our approach. Three salient
features are worth mentioning. First, empirical size is always higher than the equivalent figure
for CW. Second, the empirical size of our approach is an increasing function of the parameter
λ. Third; in Table 6 we see that the median size of our approach is 0.045, below the nominal
size of 0.05. Nevertheless, our approach is not always undersized. In particular it is sometimes
oversized for high values of λ. Notice, however, that in most entries of Table 1, results on size
are better in our approach relative to CW. This means that size is higher than CW, but either
below nominal size or slightly above it. This is particularly noticeable if we restrict ourselves to
values of λ equal or below 2. In this case it is only for DGP 2 and P = 85 that our approach is
importantly oversized. This represents less than 10% of the relevant entries in Table 1. Other
than that, our approach improves the empirical size of the CW test.

When the nominal size is 10%, the general picture described at the 5% level still stands. Table
A.1 in Appendix A shows detailed results. CW still is modestly undersized, and our approach
has always higher size than CW. Differing from the previous case (nominal size of 5%), now
our approach is never heavily oversized, and most of the times it is slightly undersized. In the
worst case we obtain an empirical size of 12.4%, which we consider tolerable. Table 6 reports the
median size of CW and our approach. The corresponding figures are 7.3% for CW and 8.4% for
our approach. In general terms, at the 10% level, our results are better relative to CW in terms
of size.

A slightly different picture is shown for nominal sizes of 1%. CW is still slightly undersized,
but now, in most entries of Table A.4 in Appendix A, our approach is slightly oversized with a
median of 0.011 (see Table 6). In most cases size distortions with our approach are modest, but
in some cases for large values of λ, our approach is importantly oversized. Interestingly, for low
values of λ (1 ≤ λ ≤ 2), the median size of our approach is 1%, and aside from the results of DGP
2 with P = 85, our test seems to be, in most cases, correctly sized.

5.2 Simulation Results: Power

Table 2 shows results for size-adjusted-power, Table 3 for power. Virtually all entries in Table
2 display higher size-adjusted-power for our approach relative to CW.5 The only exception occurs

5Tables A.3 and A.6 in Appendix A show the same pattern when inference is carried out at the 10% and 1%
significance levels.
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Table 1
Empirical size: One-step-ahead forecasts, nominal size = 5%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.041 0.038 0.042 0.033 0.041 0.038 0.035 0.034
CW with PBF λ = 1.5 0.044 0.040 0.044 0.034 0.044 0.039 0.036 0.036
CW with PBF λ = 2.0 0.047 0.043 0.047 0.035 0.046 0.041 0.037 0.036
CW with PBF λ = 4.0 0.057 0.051 0.054 0.040 0.054 0.046 0.040 0.037
CW with PBF λ = 6.0 0.066 0.059 0.063 0.048 0.061 0.051 0.047 0.040
CW 0.036 0.033 0.037 0.031 0.038 0.034 0.032 0.031

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.055 0.046 0.044 0.047 0.053 0.044 0.042 0.035
CW with PBF λ = 1.5 0.058 0.049 0.048 0.049 0.057 0.046 0.043 0.037
CW with PBF λ = 2.0 0.060 0.052 0.050 0.051 0.060 0.047 0.045 0.038
CW with PBF λ = 4.0 0.072 0.063 0.059 0.057 0.072 0.058 0.049 0.041
CW with PBF λ = 6.0 0.083 0.073 0.069 0.061 0.080 0.064 0.055 0.043
CW 0.047 0.040 0.039 0.044 0.048 0.041 0.039 0.034

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.043 0.038 0.041 0.042 0.040 0.038 0.037 0.028
CW with PBF λ = 1.5 0.044 0.040 0.043 0.044 0.041 0.039 0.037 0.028
CW with PBF λ = 2.0 0.046 0.041 0.045 0.045 0.043 0.040 0.038 0.028
CW with PBF λ = 4.0 0.053 0.045 0.050 0.049 0.049 0.046 0.042 0.030
CW with PBF λ = 6.0 0.059 0.050 0.055 0.053 0.055 0.048 0.045 0.031
CW 0.038 0.036 0.038 0.041 0.038 0.036 0.035 0.027

Notes: 1. Table 1 displays empirical sizes for two tests of equal population mean squared prediction errors
(MSPEs) against the one-sided alternative that one model has higher accuracy (lower MSPE). Rows with the
label “CW” display results of the test proposed in Clark and West (2006, 2007). Rows with the label “CW with
PBF...” display results of the test proposed in this paper. The term “PBF” stands for Power Booster Factor.
Our test is the result of the multiplication of the t-statistic proposed in Clark and West (2006, 2007) and the
Power Booster Factor presented in expression (2.17). This factor should be close to one under the null
hypothesis, but should be greater than one under the alternative hypothesis. The implication is that our test
should have more power than the test in Clark and West (2006, 2007). As the Power Booster Factor depends
on the parameter λ, we present results for five different alternatives for this parameter: λ = 1; λ = 1.5; λ = 2;
λ = 4; and λ = 6.
2. In DGP 1 the null model posits that the predictand yt is white noise, the alternative that yt depends on a
constant and a variable rt that follows an autoregression of order 2. In DGPs 2 and 3, the null is that yt
follows an AR(1), the alternative that yt is driven by additional variables following autoregressive processes.
This implies that the univariate process for yt is not an AR(1). Section 4 of the main body of the paper gives
exact specifications. In the exercises with DGP 1 and DGP 2 the alternative uses population lag lengths. In
the exercises with DGP3 the alternative uses BIC to pick lags of the exogenous variable in the equation for yt.
All three DGPs are estimated by least squares.
3. Results are based on 5000 replications. A figure of 0.041 in the first column with numbers, for example,
indicates that about 205 of the 5000 corresponding statistics were greater than 1.645, where 1.645 is the 5%
critical value for a standard normal one-sided test.
4. Let R be the rolling sample size (left panel in Table 1) or the smallest recursive sample used to estimate
parameters needed under the alternative to make a forecast (right panel in Table 1). Then R = 120 in DGP 1
and DGP 2 and R = 240 in DGP 3. Table 1 shows results for several different numbers of predictions P . In
DGP 1 we consider P = 120; P = 240; P = 360 and P = 1000. In DGP 2 we consider P = 85; P = 170; P = 340

and P = 1000. In DGP 3 we consider P = 120; P = 180; P = 240 and P = 1000. Results for nominal sizes of 10%
and 1%, are available in the Appendix.
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Table 2
Size-Adjusted-Power: One-step-ahead forecasts, nominal size = 5%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.372 0.506 0.604 0.901 0.429 0.622 0.765 0.986
CW with PBF λ = 1.5 0.372 0.506 0.605 0.901 0.434 0.624 0.766 0.986
CW with PBF λ = 2.0 0.374 0.506 0.605 0.901 0.437 0.625 0.766 0.986
CW with PBF λ = 4.0 0.380 0.511 0.608 0.900 0.449 0.628 0.768 0.986
CW with PBF λ = 6.0 0.385 0.517 0.611 0.901 0.453 0.630 0.770 0.986
CW 0.365 0.504 0.604 0.900 0.424 0.618 0.764 0.986

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.167 0.223 0.311 0.525 0.186 0.279 0.421 0.791
CW with PBF λ = 1.5 0.167 0.225 0.312 0.525 0.187 0.280 0.422 0.791
CW with PBF λ = 2.0 0.168 0.224 0.312 0.526 0.189 0.280 0.421 0.791
CW with PBF λ = 4.0 0.172 0.227 0.312 0.528 0.195 0.285 0.424 0.791
CW with PBF λ = 6.0 0.172 0.229 0.312 0.529 0.195 0.286 0.428 0.791
CW 0.167 0.223 0.313 0.523 0.185 0.274 0.419 0.790

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.666 0.763 0.804 0.993 0.747 0.861 0.917 1.000
CW with PBF λ = 1.5 0.667 0.766 0.806 0.993 0.752 0.863 0.918 1.000
CW with PBF λ = 2.0 0.671 0.768 0.807 0.993 0.756 0.864 0.918 1.000
CW with PBF λ = 4.0 0.688 0.773 0.811 0.993 0.773 0.870 0.921 1.000
CW with PBF λ = 6.0 0.696 0.779 0.813 0.993 0.780 0.874 0.921 1.000
CW 0.657 0.760 0.802 0.993 0.738 0.856 0.913 1.000

Notes: 1. Table 2 displays figures on size-adjusted-power for two tests of equal MSPEs against the one-sided
alternative that one model has higher accuracy (lower MSPE). Size-adjusted-power represents the percentage
of correct rejections of the null hypothesis enforcing the empirical size of the tests to coincide with their
nominal size. Rows with the label “CW” display results of the test proposed in Clark and West (2006, 2007).
Rows with the label “CW with PBF...” display results of the test proposed in this paper. The term “PBF”
stands for Power Booster Factor. Our test is the result of the multiplication of the t-statistic proposed in
Clark and West (2006, 2007) and the Power Booster Factor presented in expression (2.17). This factor should
be close to one under the null hypothesis, but should be greater than one under the alternative hypothesis.
The implication is that our test should have more power than the test in Clark and West (2006, 2007). As the
Power Booster Factor depends on the parameter λ, we present results for five different alternatives for this
parameter: λ = 1; λ = 1.5; λ = 2; λ = 4; and λ = 6.
2. See notes to Table 1 for further details.

for DGP 2, when P = 340 under the rolling scheme. In all other cases size-adjusted-power is
higher when using our “power-booster-factor”. Differences are in general low, however. Table 6
shows the median size-adjusted-power for all three nominal sizes. The figures for CW are 0.741;
0.638 and 0.401 when nominal sizes are 10%, 5% and 1% respectively. The equivalent figures of
our new approach are 0.745; 0.648 and 0.431. Consistent with our beliefs, gains in size-adjusted-
power relative to CW are tiny when inference is carried out at the 10% level, small to moderate
at the 5% level, and substantial when inference is carried out at the 1% level. Table 6 shows
median results, but also consistent with our beliefs, Table 2 shows that size-adjusted-power is
an increasing function of λ, so gains relative to CW are more important when λ is high. To give
an example, Table 2 indicates that for DGP 3, under the rolling scheme, when P = 120, CW has
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a figure of size-adjusted-power equal to 0.657. For λ = 1, the equivalent figure of our approach
is 0.666, only a tiny improvement relative to CW. Nevertheless, for λ = 6, our figure is 0.696, a
considerable gain relative to CW. The same gains are less impressive at the 10% nominal size (see
Table A.2 in Appendix A) but much more impressive when nominal size is 1%. In this case, the
equivalent entries in Table A.5 in Appendix A show a figure for CW of 0.441. For our approach
when λ = 6, our figure is 0.558. (See in Table A.5 the case of DGP 3 under the rolling scheme,
when P = 120). A final point: gains in size-adjusted-power are more important for small and
moderate values of the number of predictions P . Asymptotically, gains in size-adjusted-power
tend to disappear.

Table 3 shows result on raw power. Virtually all entries in Table 3 display higher power for

Table 3
Raw Power: One-step-ahead forecasts, nominal size = 5%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.335 0.453 0.572 0.875 0.399 0.567 0.714 0.977
CW with PBF λ = 1.5 0.347 0.465 0.583 0.877 0.411 0.575 0.722 0.977
CW with PBF λ = 2.0 0.363 0.477 0.592 0.880 0.420 0.583 0.726 0.977
CW with PBF λ = 4.0 0.402 0.511 0.624 0.889 0.460 0.611 0.745 0.979
CW with PBF λ = 6.0 0.431 0.537 0.646 0.897 0.488 0.634 0.756 0.981
CW 0.303 0.428 0.550 0.868 0.368 0.548 0.703 0.976

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.180 0.212 0.296 0.517 0.197 0.259 0.389 0.759
CW with PBF λ = 1.5 0.186 0.220 0.304 0.523 0.205 0.265 0.395 0.762
CW with PBF λ = 2.0 0.195 0.228 0.311 0.529 0.211 0.271 0.400 0.765
CW with PBF λ = 4.0 0.224 0.261 0.340 0.550 0.241 0.300 0.422 0.771
CW with PBF λ = 6.0 0.248 0.285 0.360 0.564 0.266 0.320 0.439 0.777
CW 0.159 0.192 0.281 0.507 0.177 0.240 0.372 0.754

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.645 0.734 0.786 0.992 0.721 0.836 0.897 1.000
CW with PBF λ = 1.5 0.656 0.741 0.790 0.993 0.731 0.842 0.900 1.000
CW with PBF λ = 2.0 0.662 0.746 0.794 0.993 0.740 0.846 0.903 1.000
CW with PBF λ = 4.0 0.696 0.763 0.810 0.993 0.770 0.862 0.912 1.000
CW with PBF λ = 6.0 0.719 0.777 0.822 0.994 0.789 0.873 0.919 1.000
CW 0.622 0.716 0.776 0.992 0.697 0.825 0.890 1.000

Notes: 1. Table 3 displays figures on power (also called raw power) for two tests of equal population MSPEs
against the one-sided alternative that one model has higher accuracy (lower MSPE). Power represents the
percentage of correct rejections of the null hypothesis using standard normal critical values. Rows with the
label “CW” display results of the test proposed in Clark and West (2006, 2007). Rows with the label “CW
with PBF...” display results of the test proposed in this paper. The term “PBF” stands for Power Booster
Factor. Our test is the result of the multiplication of the t-statistic proposed in Clark and West (2006, 2007)
and the Power Booster Factor presented in expression (2.17). This factor should be close to one under the null
hypothesis, but should be greater than one under the alternative hypothesis. The implication is that our test
should have more power than the test in Clark and West (2006, 2007). As the Power Booster Factor depends
on the parameter λ, we present results for five different alternatives for this parameter: λ = 1; λ = 1.5; λ = 2;
λ = 4; and λ = 6.
2. See notes to Table 1 for further details.
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our approach relative to CW.6 The only exception occurs for DGP 3, when P = 1000 under
the recursive scheme. In this case figures on power are all equal to one both in CW and our
approach. In all other cases power is higher when using our “power-booster-factor”. Differing
from our previous analysis on size-adjusted-power, now the gains of our approach relative to CW
are, in general, substantial. Table 6 shows the median power for all three nominal sizes. The
figures for CW are 0.702; 0.586 and 0.342 when nominal sizes are 10%, 5% and 1% respectively.
The equivalent figures of our new approach are 0.731; 0.646 and 0.468. Notice that for CW
median figures on power are lower than on size-adjusted-power, reflecting the fact that CW is a
little undersized. When using our “power-booster-factor” we find mixed results. Figures on power
are lower than on size-adjusted-power when inference is carried out at the 10% significance level,
which is consistent with our approach being a little undersized. Nevertheless, figures on power are
higher than on size-adjusted-power when inference is carried out at the 5% and 1% significance
levels, which is consistent with our approach being a little oversized, especially for high values
of λ, when the nominal size is set to 1%.

Gains in power relative to CW are moderate when inference is carried out at the 10% level,
higher at the 5% level, and huge when inference is carried out at the 1% level. Table 3 also shows
that power is an increasing function of λ, so gains relative to CW are more important when λ
is high. To give an example, Table 3 indicates that for DGP 1, under the recursive scheme,
when P = 120, CW has a figure on power equal to 0.368. For λ = 1, the equivalent figure of our
approach is 0.399, a small improvement relative to CW. Nevertheless, for λ = 6, our figure is
0.488, a substantial gain relative to CW. The same gains are slightly lower at the 10% nominal
size (see Table A.3 in Appendix A) but much more impressive when nominal size is 1%. In this
case, the equivalent entries in Table A.6 in Appendix A show a figure for CW of 0.147. For
our approach when λ = 6, our figure is 0.343. (See in Table A.3 the case of DGP 1 under the
recursive scheme, when P = 120). Gains in power are more important for small and moderate
values of the number of predictions P and tend to disappear as the number of predictions grows
to infinity.

Notice that some of the gains in power come from comparing a slightly oversized test with a
slightly undersized test. For instance, in rolling regressions for DGP 1, P = 360 and λ = 4, Table
1 shows a figure on size for our approach of 0.054. The same figure for CW is 0.037. Gains in
power in this case are high. Table 3 shows that our approach has raw power equal to 62.4%. The
equivalent figure for CW is 55%. Not all the gains in power come from comparing undersized
to oversized tests. In many cases our approach generates a less undersized test than CW. This,
plus some gains in size-adjusted-power, generates a test with higher raw power.

Based upon our simulation results we see that both size and power are increasing functions of
λ. To avoid the risk of an oversized test, we think that an adequate recommendation for empirical
work is the following: For inference at the 10% significance level set λ to 4. For inference at the
5% significance level set λ to 2, and for inference at the 1% significance level set λ to 1. This
recommendation is based on the observation that the risk of obtaining an oversized test is higher

6Tables A.2 and A.5 in Appendix A show the same pattern when inference is carried out at the 10% and 1%
significance levels.
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at tighter significance levels. A more general and conservative approach would suggest to use
λ = 1 irrespective of the significance level.

A final point: Tables 4 and 5 shows the average across our 5000 simulations of our “power-
booster-factor” computed both under the null and alternative hypotheses. As expected, our factor
is very close to one under the null, and greater than 1 under the alternative hypothesis. These
figures are consistent with our results shown in previous tables, both on size and power.

Table 4
Power-Booster-Factor under the null hypothesis: One-step-ahead forecasts.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

λ = 1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
λ = 1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
λ = 2.0 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000
λ = 4.0 1.003 1.002 1.002 1.001 1.002 1.001 1.001 1.000
λ = 6.0 1.008 1.005 1.005 1.002 1.005 1.003 1.002 1.001

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

λ = 1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
λ = 1.5 1.000 1.000 1.001 1.001 1.000 1.000 1.000 1.000
λ = 2.0 1.001 1.001 1.001 1.001 1.000 1.000 1.000 1.000
λ = 4.0 1.005 1.004 1.003 1.002 1.003 1.001 1.001 1.004
λ = 6.0 1.014 1.009 1.006 1.006 1.008 1.004 1.002 1.001

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

λ = 1.0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
λ = 1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
λ = 2.0 1.000 1.000 1.001 1.000 1.000 1.000 1.000 1.000
λ = 4.0 1.002 1.001 1.002 1.001 1.001 1.001 1.001 1.000
λ = 6.0 1.004 1.003 1.003 1.001 1.003 1.002 1.002 1.001

Notes: 1. Table 4 displays the average of our Power-Booster-Factor presented in expression
(2.17) across our 5000 replications when the null hypothesis is true in our three DGPs. This
factor should be close to one under the null hypothesis, but should be greater than one under
the alternative hypothesis.
2. See notes to Table 1 for further details.

Table 5
Power-Booster-Factor under the alternative hypothesis: One-step-ahead forecasts.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

λ = 1.0 1.040 1.040 1.041 1.041 1.040 1.041 1.040 1.041
λ = 1.5 1.062 1.062 1.062 1.062 1.062 1.062 1.062 1.062
λ = 2.0 1.084 1.084 1.084 1.084 1.084 1.084 1.083 1.084
λ = 4.0 1.181 1.181 1.179 1.177 1.184 1.180 1.177 1.176
λ = 6.0 1.310 1.294 1.287 1.280 1.304 1.291 1.284 1.279

(Continued on next page)
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Table 5 (continued)

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

λ = 1.0 1.021 1.021 1.022 1.022 1.021 1.021 1.022 1.022
λ = 1.5 1.032 1.033 1.033 1.033 1.032 1.032 1.033 1.032
λ = 2.0 1.044 1.044 1.045 1.044 1.044 1.044 1.044 1.044
λ = 4.0 1.098 1.096 1.094 1.091 1.096 1.093 1.092 1.090
λ = 6.0 1.163 1.155 1.149 1.142 1.156 1.148 1.145 1.139

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

λ = 1.0 1.077 1.078 1.078 1.079 1.081 1.082 1.083 1.086
λ = 1.5 1.119 1.120 1.120 1.121 1.125 1.127 1.128 1.131
λ = 2.0 1.164 1.164 1.164 1.165 1.172 1.174 1.175 1.179
λ = 4.0 1.370 1.368 1.366 1.361 1.386 1.388 1.389 1.394
λ = 6.0 1.633 1.624 1.618 1.595 1.656 1.653 1.652 1.651

Notes: 1. Table 5 displays the average of our Power-Booster-Factor presented in expression
(2.17) across our 5000 replications when the alternative hypothesis is true in our three DGPs.
This factor should be close to one under the null hypothesis, but should be greater than one
under the alternative hypothesis.
2. See notes to Table 1 for further details.

Table 6
Summary statistics from Monte Carlo simulations.

Median Empirical Size
Tests nominal size is 10% nominal size is 5% nominal size is 1%
CW with PBF 0.084 0.045 0.011
CW 0.073 0.037 0.007

Median Size-Adjusted-Power
nominal size is 10% nominal size is 5% nominal size is 1%

CW with PBF 0.745 0.648 0.431
CW 0.741 0.638 0.401

Median Power
nominal size is 10% nominal size is 5% nominal size is 1%

CW with PBF 0.731 0.646 0.468
CW 0.702 0.586 0.342

Notes: 1. Table 6 displays the median across 5000 replications of figures on size,
size-adjusted-power and power for the test in Clark and West (2006, 2007) and the
test proposed in this paper. We present results for three nominal sizes: 10%, 5%
and 1%.
2. In Table 6 “CW” stands for “Clark and West”, whereas “CW with PBF” stands
for “Clark and West with Power Booster Factor” which corresponds to our
contribution. As the “power-booster-factor” depends on the parameter λ (see 2.17)
the median is taken across all the five values of λ we consider in our simulations.
3. See notes to Table 1 for further details.

6. Empirical Illustration

We consider predicting core domestic inflation with an international core factor. As mentioned
in Section 4, recent literature has explored the predictive linkages between domestic and inter-
national inflation concluding that this linkage is important both at the core and headline level
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for several countries. See for instance Ciccarelli and Mojon (2010), Duncan and Martínez-García
(2015), Kabukcuoglu and Martínez-García (2018), Morales-Arias and Moura (2013), Hakkio
(2009), Pincheira and Gatty (2016) and Medel et al. (2016).

We consider nested models similar, but not equal, to those in (4.9) and (4.10).
Let πit be year-on-year domestic core inflation rates in country i. Following the literature

cited in the previous paragraph, we build a core international inflation factor (CIIF) as the
simple average of πit measured using monthly core CPI data, with i ranging over 30 OECD
countries:7

πCIIFt =
1

30

30

∑
(i=1)

πit. (6.1)

Our data range from January 1995 to December 2015 (252 observations). We focus on core
inflation measured as CPI inflation excluding food and energy components. For the out-of-sample
analysis we estimate our models by OLS in recursive windows with an initial window length of
100 observations (R = 100, from January 1995 to April 2003). This means that our first one-step-
ahead forecast is made for May 2003, while the last one is made for December 2015. We focus
only on one-step-ahead forecasts. We analyze if the CIIF has the ability to predict inflation for
all the 30 OECD countries included in the average in (6.1). For each country, we consider the
following nested models:

(model 1: null model) ∶ π(it+1) = απ + β1πit + β2π(it−11) + e(t+1) (6.2)

(model 2: alternative model) ∶ π(it+1) = απ + β1πit + β2π(it−11) + γ(B)πCIIFt + e(t+1) (6.3)

Here, γ(B) = ∑
q
(j=0)

γjB
j represents a lag polynomial and B is the backshift operator such

that BjXt = X(t−j). The lag order q is selected in each estimation window with BIC with
1 ≤ q ≤ 12. Notice that for this empirical illustration we consider 6 different values for the
parameter λ implicitly defined in expression (2.17). We consider λ = 0, which is nothing but the
CW t-statistic, plus the following values: λ = 1; 1.5; 2; 4 and 6. Table 7 shows summary results.
In particular, this table shows the percentage of countries for which each test rejects the null
hypothesis. We present results at the three usual significance levels: 10%, 5% and 1%.

Consistent with our simulations, CW tends to reject less frequently than our new approach.
This is uniform across different nominal sizes. The highest difference between CW and our test
occurs when nominal size is 1%. Here CW rejects the null in only 4 countries (13.3%) but,
depending on our preferred value for λ, our approach rejects in a range of 6 to 10 countries (20%
to 33.3%). Now, simulation evidence included in Section 5 suggests that for high values of the
parameter λ our test might be oversized when using a nominal size of 1%. Nevertheless, if we
look at our results at the 10% level we still obtain more rejections with our new approach, even
when using a moderate choice for λ. For instance, when using λ = 2 and a nominal size of 10%,
our approach rejects the null of no predictability in 33.3% of the countries whereas the equivalent

7We consider the following countries: Austria, Belgium, Canada, Chile, Czech Republic, Denmark, Finland,
France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, The
Netherlands, Norway, Poland, Portugal, Slovak Republic, Spain, Sweden, Switzerland, Turkey, U.K. and the U.S.
(Data source: OECD Main Economic Indicators.)
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figure using the widely used CW test is only 23.3%.8 Let us recall that our simulations show an
adequate empirical size for our approach when the nominal size is 10%.

Table 7
Share of OECD countries for which the null of no predictability is rejected. The null posits that an
international core inflation factor does not predict domestic core inflation.

λ = 0 (CW) λ = 1 λ = 1.5 λ = 2 λ = 4 λ = 6

Rejection at the 10%
CW with Power-Booster-Factor 0.233 0.300 0.300 0.333 0.333 0.333

Rejection at the 5%
CW with Power-Booster-Factor 0.233 0.233 0.233 0.233 0.300 0.300

Rejection at the 1%
CW with Power-Booster-Factor 0.133 0.200 0.233 0.233 0.300 0.333

Notes: 1. In this table forecasts from an autoregression (null model, or model 1) for
year-on-year monthly core CPI inflation rate are compared to forecasts coming from an
alternative model (model 2) that augments model 1 with a measure of international core
inflation. See (6.1), (6.2) and (6.3) for details.
2. International core inflation is defined as the simple average of monthly year-on-year
domestic core CPI inflation rates for 30 OECD economies. Core CPI is defined as CPI
excluding food and energy components.
3. Table 7 shows the share of the total of 30 OECD countries in our sample for which our
tests reject the null hypothesis. In the column with the label “λ = 0 (CW)” our test
coincides with the test proposed in Clark and West (2006, 2007), so rejections rates in
that column corresponds to rejection rates of the test in Clark and West (2006, 2007). In
the rest of the columns, Table 7 presents rejection rates of our test for different values of
the parameter λ. (See (2.17)). When λ > 0 our test is different to the test in Clark and
West (2006, 2007).
4. Data are described in the text. See notes to earlier tables for additional definitions.

7. Summary and Concluding Remarks

In this paper we introduce a “power-booster-factor” for out-of-sample tests of predictability.
This factor can be used to improve finite sample properties of several out-of-sample tests of
predictability. Yet, in this paper, we focus on the widely used test developed by Clark and
West (2006, 2007). We construct a new standard normal test multiplying the CW t-statistic
by our “power-booster-factor”. The key idea relies on the fact that this factor should be close
to one under the null hypothesis of no predictability, but should be greater than one under the
alternative hypothesis.

Monte Carlo simulations reveal that our new test is, generally speaking, well sized and pow-
erful. In particular, it is less undersized, more powerful and sometimes much more powerful
than the test by Clark and West (2006, 2007). We notice, however, that improvements in size-
adjusted-power are moderate, and gains in power are mostly induced by our test being less
undersized than CW.

8CW rejects the null of no predictability for Czech Republic, Iceland, Korea, Luxembourg, Portugal, Slovak
Republic and Turkey, whereas our approach rejects for the same countries plus Chile, Israel and the U.S.
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Both size and power of our new approach are increasing functions of a parameter that we have
denoted by λ, and that the researcher needs to pick in advance. Although we have not developed
a theory yet on how to pick this parameter, our Monte Carlo simulations shed some light in
this regard. To avoid the risk of an oversized test, we think that an adequate recommendation
for empirical work is the following: For inference at the 10% significance level set λ to 4. For
inference at the 5% significance level set λ to 2, and for inference at the 1% significance level set
λ to 1. This recommendation is based on the observation that the risk of obtaining an oversized
test is higher at tighter significance levels. A more general and conservative approach would
suggest to use λ = 1 irrespective of the significance level.

To illustrate the use of our test we present an empirical application in the context of inflation
forecasts. Based on a vast literature exploring the predictive linkages between domestic and
international inflation, we analyze the predictive ability of an international core inflation factor
to forecast domestic core inflation. We consider the case of 30 OECD economies with monthly
observations for the period January 1995-March 2015. Consistent with the structure of our test
and with our simulations, CW tends to reject less frequently than our new approach. This
is uniform across different nominal sizes. For instance, our approach rejects the null of no
predictability in at least 30.0% of the countries when the nominal size is 10%. The equivalent
figure using the widely used CW test is only 23.3%. At the 1% level, our test rejects the null in
at least 20% of the countries whereas the CW test rejects only in 13.3% of the countries. Our
results suggest a strong influence of global inflation in a selected group of our sample of OECD
countries.

A natural extension for further research could explore in more detail how to pick our λ
parameter, could also explore the application of variants of our factor to improve the finite
sample behavior of other testing strategies, and could also evaluate the performance of our test
when the focus of interest are multistep ahead forecasts.
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Appendix A - Tables

Table A.1
Empirical size: One-step-ahead forecasts, nominal size = 10%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.078 0.075 0.085 0.082 0.078 0.074 0.069 0.065
CW with PBF λ = 1.5 0.080 0.078 0.086 0.082 0.080 0.077 0.071 0.065
CW with PBF λ = 2.0 0.084 0.081 0.088 0.084 0.081 0.078 0.072 0.066
CW with PBF λ = 4.0 0.096 0.091 0.096 0.089 0.090 0.084 0.077 0.068
CW with PBF λ = 6.0 0.106 0.100 0.103 0.093 0.097 0.090 0.080 0.070
CW 0.073 0.072 0.080 0.079 0.074 0.072 0.065 0.064

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.092 0.086 0.090 0.097 0.091 0.083 0.077 0.073
CW with PBF λ = 1.5 0.095 0.090 0.093 0.099 0.093 0.086 0.784 0.074
CW with PBF λ = 2.0 0.097 0.093 0.095 0.100 0.096 0.088 0.079 0.075
CW with PBF λ = 4.0 0.111 0.104 0.103 0.106 0.105 0.095 0.085 0.077
CW with PBF λ = 6.0 0.124 0.114 0.110 0.114 0.115 0.102 0.091 0.079
CW 0.084 0.080 0.086 0.095 0.086 0.079 0.075 0.072

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.083 0.074 0.074 0.083 0.077 0.071 0.072 0.058
CW with PBF λ = 1.5 0.084 0.077 0.075 0.084 0.078 0.073 0.072 0.059
CW with PBF λ = 2.0 0.087 0.080 0.076 0.084 0.079 0.073 0.073 0.059
CW with PBF λ = 4.0 0.094 0.085 0.082 0.087 0.085 0.078 0.077 0.061
CW with PBF λ = 6.0 0.099 0.093 0.088 0.089 0.090 0.082 0.080 0.062
CW 0.077 0.072 0.071 0.083 0.073 0.068 0.069 0.058

Notes: 1. Table A.1 is equivalent to Table 1 in the main body of the paper with the only difference that the
nominal size in Table A.1 is 10% and not 5% as in Table 1.
2. See notes to Table 1 for further details.
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Table A.2
Size-Adjusted-Power: One-step-ahead forecasts, nominal size = 10%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.501 0.626 0.720 0.940 0.577 0.735 0.851 0.995
CW with PBF λ = 1.5 0.501 0.626 0.720 0.940 0.578 0.735 0.851 0.995
CW with PBF λ = 2.0 0.500 0.626 0.721 0.940 0.577 0.736 0.851 0.995
CW with PBF λ = 4.0 0.501 0.628 0.721 0.939 0.581 0.739 0.851 0.995
CW with PBF λ = 6.0 0.503 0.627 0.725 0.940 0.584 0.739 0.851 0.995
CW 0.501 0.623 0.719 0.939 0.575 0.733 0.850 0.995

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.278 0.335 0.426 0.641 0.302 0.396 0.556 0.872
CW with PBF λ = 1.5 0.279 0.336 0.427 0.641 0.303 0.396 0.556 0.872
CW with PBF λ = 2.0 0.279 0.336 0.428 0.641 0.303 0.397 0.557 0.872
CW with PBF λ = 4.0 0.277 0.337 0.430 0.640 0.306 0.399 0.559 0.872
CW with PBF λ = 6.0 0.278 0.338 0.430 0.640 0.306 0.401 0.558 0.872
CW 0.277 0.335 0.426 0.640 0.301 0.395 0.556 0.872

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.750 0.821 0.862 0.996 0.832 0.908 0.948 1.000
CW with PBF λ = 1.5 0.752 0.822 0.863 0.996 0.834 0.909 0.949 1.000
CW with PBF λ = 2.0 0.753 0.824 0.863 0.996 0.835 0.909 0.949 1.000
CW with PBF λ = 4.0 0.758 0.828 0.864 0.996 0.842 0.910 0.950 1.000
CW with PBF λ = 6.0 0.764 0.830 0.865 0.996 0.846 0.912 0.950 1.000
CW 0.748 0.818 0.862 0.996 0.829 0.906 0.948 1.000

Notes: 1. Table A.2 is equivalent to Table 2 in the main body of the paper with the only difference that the
nominal size in Table A.2 is 10% and not 5% as in Table 2.
2. See notes to Table 1 for further details.
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Table A.3
Raw Power: One-step-ahead forecasts, nominal size = 10%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.457 0.579 0.691 0.926 0.519 0.687 0.805 0.989
CW with PBF λ = 1.5 0.464 0.585 0.694 0.926 0.527 0.692 0.807 0.989
CW with PBF λ = 2.0 0.470 0.591 0.697 0.927 0.535 0.695 0.807 0.989
CW with PBF λ = 4.0 0.493 0.610 0.716 0.931 0.557 0.707 0.821 0.990
CW with PBF λ = 6.0 0.515 0.626 0.730 0.935 0.576 0.720 0.829 0.991
CW 0.437 0.565 0.683 0.924 0.502 0.677 0.800 0.989

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.260 0.308 0.409 0.634 0.282 0.357 0.503 0.836
CW with PBF λ = 1.5 0.266 0.317 0.412 0.637 0.288 0.363 0.506 0.838
CW with PBF λ = 2.0 0.272 0.324 0.417 0.639 0.294 0.367 0.509 0.839
CW with PBF λ = 4.0 0.294 0.344 0.433 0.650 0.316 0.386 0.525 0.844
CW with PBF λ = 6.0 0.314 0.359 0.446 0.660 0.333 0.404 0.537 0.847
CW 0.245 0.294 0.399 0.626 0.269 0.345 0.493 0.834

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.731 0.798 0.841 0.995 0.804 0.886 0.932 1.000
CW with PBF λ = 1.5 0.734 0.802 0.844 0.995 0.809 0.888 0.932 1.000
CW with PBF λ = 2.0 0.738 0.804 0.847 0.995 0.813 0.892 0.935 1.000
CW with PBF λ = 4.0 0.752 0.812 0.853 0.995 0.826 0.898 0.939 1.000
CW with PBF λ = 6.0 0.762 0.823 0.859 0.996 0.836 0.904 0.942 1.000
CW 0.722 0.789 0.838 0.995 0.793 0.882 0.929 1.000

Notes: 1. Table A.3 is equivalent to Table 3 in the main body of the paper with the only difference that the
nominal size in Table A.3 is 10% and not 5% as in Table 3.
2. See notes to Table 1 for further details.
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Table A.4
Empirical Size: One-step-ahead forecasts, nominal size = 1%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.009 0.008 0.007 0.006 0.011 0.011 0.010 0.008
CW with PBF λ = 1.5 0.011 0.010 0.008 0.007 0.012 0.012 0.010 0.008
CW with PBF λ = 2.0 0.013 0.010 0.009 0.007 0.013 0.013 0.011 0.008
CW with PBF λ = 4.0 0.021 0.014 0.013 0.009 0.020 0.016 0.013 0.010
CW with PBF λ = 6.0 0.030 0.020 0.019 0.011 0.026 0.021 0.016 0.011
CW 0.007 0.005 0.005 0.005 0.010 0.009 0.008 0.007

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.015 0.010 0.009 0.009 0.016 0.011 0.010 0.007
CW with PBF λ = 1.5 0.017 0.011 0.010 0.010 0.018 0.012 0.011 0.008
CW with PBF λ = 2.0 0.020 0.013 0.012 0.012 0.02 0.013 0.012 0.008
CW with PBF λ = 4.0 0.033 0.022 0.017 0.015 0.029 0.020 0.016 0.009
CW with PBF λ = 6.0 0.046 0.030 0.024 0.019 0.038 0.028 0.020 0.011
CW 0.010 0.007 0.008 0.008 0.011 0.007 0.008 0.007

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.009 0.010 0.011 0.009 0.009 0.006 0.008 0.004
CW with PBF λ = 1.5 0.010 0.011 0.012 0.010 0.01 0.007 0.008 0.004
CW with PBF λ = 2.0 0.011 0.011 0.014 0.010 0.011 0.007 0.009 0.005
CW with PBF λ = 4.0 0.016 0.015 0.017 0.012 0.014 0.012 0.011 0.005
CW with PBF λ = 6.0 0.021 0.020 0.020 0.015 0.018 0.015 0.013 0.007
CW 0.008 0.008 0.009 0.009 0.007 0.005 0.007 0.004

Notes: 1. Table A.4 is equivalent to Table 1 in the main body of the paper with the only difference that the
nominal size in Table A.4 is 1% and not 5% as in Table 1.
2. See notes to Table 1 for further details.
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Table A.5
Size-Adjusted-Power: One-step-ahead forecasts, nominal size = 1%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.165 0.266 0.365 0.764 0.168 0.321 0.494 0.930
CW with PBF λ = 1.5 0.168 0.272 0.363 0.764 0.174 0.318 0.499 0.930
CW with PBF λ = 2.0 0.167 0.278 0.363 0.763 0.184 0.324 0.498 0.931
CW with PBF λ = 4.0 0.169 0.293 0.383 0.759 0.193 0.332 0.505 0.933
CW with PBF λ = 6.0 0.175 0.303 0.388 0.768 0.209 0.338 0.521 0.934
CW 0.155 0.261 0.361 0.766 0.156 0.321 0.477 0.929

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.055 0.091 0.147 0.306 0.058 0.110 0.202 0.592
CW with PBF λ = 1.5 0.055 0.090 0.146 0.307 0.061 0.111 0.202 0.593
CW with PBF λ = 2.0 0.055 0.088 0.145 0.306 0.061 0.114 0.201 0.595
CW with PBF λ = 4.0 0.056 0.090 0.147 0.309 0.062 0.117 0.206 0.599
CW with PBF λ = 6.0 0.062 0.093 0.146 0.310 0.064 0.121 0.213 0.598
CW 0.050 0.090 0.147 0.307 0.055 0.106 0.200 0.589

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.475 0.582 0.653 0.978 0.543 0.724 0.811 1.000
CW with PBF λ = 1.5 0.489 0.584 0.656 0.978 0.553 0.729 0.815 1.000
CW with PBF λ = 2.0 0.500 0.590 0.663 0.979 0.563 0.733 0.818 1.000
CW with PBF λ = 4.0 0.530 0.610 0.677 0.980 0.603 0.751 0.827 1.000
CW with PBF λ = 6.0 0.558 0.623 0.688 0.980 0.626 0.771 0.839 1.000
CW 0.441 0.565 0.634 0.977 0.507 0.707 0.798 1.000

Notes: 1. Table A.5 is equivalent to Table 2 in the main body of the paper with the only difference that the
nominal size in Table A.5 is 1% and not 5% as in Table 2.
2. See notes to Table 1 for further details.
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Table A.6
Raw Power: One-step-ahead forecasts, nominal size = 1%.

Panel A: Rolling regressions Panel B: Recursive regressions

DGP 1 (R = 120) DGP 1 (R = 120)
Test P = 120 P = 240 P = 360 P = 1000 P = 120 P = 240 P = 360 P = 1000

CW with PBF λ = 1.0 0.156 0.243 0.323 0.703 0.186 0.329 0.479 0.918
CW with PBF λ = 1.5 0.172 0.264 0.343 0.716 0.206 0.350 0.498 0.922
CW with PBF λ = 2.0 0.190 0.280 0.359 0.725 0.223 0.369 0.512 0.924
CW with PBF λ = 4.0 0.248 0.340 0.424 0.757 0.287 0.423 0.561 0.932
CW with PBF λ = 6.0 0.301 0.388 0.470 0.785 0.343 0.467 0.599 0.939
CW 0.119 0.198 0.283 0.676 0.147 0.285 0.437 0.911

DGP 2 (R = 120) DGP 2 (R = 120)
P = 85 P = 170 P = 340 P = 1000 P = 85 P = 170 P = 340 P = 1000

CW with PBF λ = 1.0 0.070 0.089 0.141 0.301 0.080 0.111 0.198 0.555
CW with PBF λ = 1.5 0.078 0.099 0.148 0.310 0.090 0.122 0.211 0.560
CW with PBF λ = 2.0 0.087 0.108 0.159 0.320 0.098 0.131 0.220 0.566
CW with PBF λ = 4.0 0.127 0.143 0.194 0.357 0.141 0.168 0.253 0.600
CW with PBF λ = 6.0 0.160 0.172 0.229 0.386 0.168 0.204 0.234 0.610
CW 0.051 0.071 0.117 0.279 0.061 0.092 0.181 0.542

DGP 3 (R = 240) DGP 3 (R = 240)
P = 120 P = 180 P = 240 P = 1000 P = 120 P = 180 P = 240 P = 1000

CW with PBF λ = 1.0 0.460 0.581 0.660 0.977 0.524 0.682 0.781 0.999
CW with PBF λ = 1.5 0.487 0.595 0.673 0.978 0.548 0.699 0.791 0.999
CW with PBF λ = 2.0 0.512 0.613 0.682 0.979 0.572 0.714 0.800 0.999
CW with PBF λ = 4.0 0.571 0.659 0.714 0.982 0.641 0.762 0.835 0.999
CW with PBF λ = 6.0 0.616 0.690 0.742 0.983 0.686 0.798 0.859 0.999
CW 0.399 0.531 0.627 0.975 0.459 0.627 0.748 0.999

Notes: 1. Table A.6 is equivalent to Table 3 in the main body of the paper with the only difference that the
nominal size in Table A.6 is 1% and not 5% as in Table 3.
2. See notes to Table 1 for further details.
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Appendix B - An Intuition for More Power with a Simple i.i.d Example9

Here we show with a simple example in the context of i.i.d random variables why a simple t-
statistic multiplied by our “power-booster-factor” may have higher size-adjusted-power. Imagine
the following setup:

H0 ∶ µ ≤ 0 v/s HA ∶ µ > 0.

This is a one-sided-version of a traditional zero-mean test. Let us assume we have a sample
of T i.i.d. random variables Xi all with the same expected value µ and the same variance σ2.
We would like to compare the behavior of the traditional test statistic

t1 ≡
√
N [

X̄

σ̂
] .

With that of the same t-statistic multiplied by a version of our “power-booster-factor”:

t2 ≡
√
T [

X̄

σ̂
] [1 + X̄]

λ.

Here X̄ represents the sample average of Xi, i = 1, . . . T and σ̂ is a consistent estimator of σ.
Besides λ ≥ 1.

By the central limit theorem we have that
√
T [X̄ − µ]→ N(0, σ2).

Let us consider the differentiable function

g(X̄) = X̄ [1 + X̄]
λ
.

According to the Delta method we should have
√
T [g(X̄) − g(µ)]→ N(0, σ2[g′(µ)]2).

Which is equivalent to
√
T [X̄[1 + X̄]

λ
− µ[1 + µ]λ]]→ N (0, σ2[[1 + µ]λ + λµ[1 + µ]λ−1]2) .

So, for large enough T we have
√
T [X̄[1 + X̄]

λ] ≈ N (
√
Tµ[1 + µ]λ, σ2[[1 + µ]λ + λµ[1 + µ]λ−1]2) .

This means that for large enough T,N (
√
Tµ[1 + µ]λ], σ2[[1 + µ]λ + λµ[1 + µ]λ−1]2) is a good

approximation for the distribution of
√
T [X̄[1 + X̄]λ], which also indicates that

√
T [

X̄[1 + X̄]λ

σ̂
] ≈ N (

√
Tµ[1 + µ]λ

σ
, [[1 + µ]λ + λµ[1 + µ]λ−1]2) .

So the distribution of
√

T [
X̄[1+X̄]

λ

σ̂
] is well approximated by N (

√

Tµ[1+µ]λ

σ
, [[1 + µ]λ + λµ[1 + µ]λ−1

]
2
).

9We are grateful to a reviewer for a comment which led us to develop this example.
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In addition, we know that the traditional t-statistic t1 is well approximated by N (

√
Tµ
σ ,1).

Under the null, when µ = 0, the distributions of both statistics, t1 and t2 are well approximated
by standard normal distributions. But under the alternative, when µ > 0 the distribution of t2
is centered to the right of the distribution of t1 because

√
Tµ[1 + µ]λ]

σ
>

√
Tµ

σ
.

Furthermore, the approximated distribution of t2 has higher variance relative to the approxi-
mated distribution of t1 because

[1 + µ]λ + λµ[1 + µ]λ−1 > 1.

Figure B.1 depicts the approximate distributions of t1 and t2. We picked two values of λ
for the graphical representation: λ = 1 and λ = 2. For the construction of Figure 1 we consider
T = 100, σ = 1, µ = 0.1. The vertical line in the graph shows the 5% critical value for an
asymptotically normal one-sided-test (1.645). The area below the curves to the right of the
vertical line represents the power of the different implicit tests. The usual t statistic t1 has the
lowest power in the picture: 25.9%. With the aid of the power booster factor and λ = 1 we
have the red line with a power of 32.5%. Finally the green line represents the test with the
“power-booster-factor” and λ = 2. This curve has the highest power in this scenario: 38.0%.

Interestingly, Figure B.1 looks pretty similar to Figure 2 in the main body of the paper,
which depicts the CW test and the test with the “power-booster-factor” under the alternative.
The Kernel distribution of CW has lower variance and it is centered to the left of the other
distribution, which is the same implication that we get with the delta method in this simple
i.i.d. case. Figure B.1 illustrates why the “power-booster-factor” could be useful to improve finite
sample power of traditional one-sided tests.

Notes: t1 is a standard t-statistic, while t2 is the same t-statistic but multiplied by a version of our “power-booster-factor”.

Figure B.1. Approximate distributions of t1 and t2 under the alternative µ > 0.
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