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Abstract
This paper studies the potential association between two geographic indicators, distance and
altitude, with the Multidimensional Poverty Index (MPI) for 1,874 district in Peru by using the
National Census of 2017. We investigate whether higher altitude or longer distance is associated
with higher MPI values. For this purpose, we use the distance of each district to three different
potential spaces of reference. First, we use the shortest distance to the metropolitan area of
Lima; second, the shortest distance to the capitals of coastal departments; third, and finally, the
shortest distance to the sea. We obtain three relevant results. First, we find evidence that altitude
is statistically significant and positive associated with variation of MPI among districts. Second,
the distance with respect to the sea appears to be more relevant to explaining differences in MPI
than the distance to the Metropolitan area or coastal departmental capitals. Finally, we find
evidence of spatial externalities of MPI across districts which also seem to be stronger than the
direct effect of altitude and distance.
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1. Introduction

There are probably few topics that attract the interest of scholars in different areas as much as
poverty and its policy implications. For decades, poverty has been defined, measured, and vastly
studied from different perspectives but mainly focused on income measures or their deviation
to the average within a population. In 1976, Amartya Sen redefined how we should understand
and study poverty. He sustained that rather than focus on income, we must focus on capabilities
(Sen, 1976). Considering all the new approaches and influence of this new view, in 1997, the
United Nations introduced the Human Development Index (HDI). This HDI is calculated by the
average of three indicators that capture three development dimensions, education (measured by
years of schooling), health (measured by the life of expectancy), and living conditions (measured
by the GNI). Later, in 2010, after concluding that HDI has limitations, Sabina Alkire and Maria
Emma Santos designed the Multidimensional Poverty Index (MPI), which, in its simple form,
uses ten indicators to capture the exact three development dimensions as the HDI (Alkire et al.,
2014).

In 2002, poverty topic gained another impulsed with the adoption of the Millennium De-
velopment Goals (MDG) that compromised countries on eight goals to be achieved by 2015.
Recently, studies related to poverty received a new impulse with the arise of more sophisticated
data, methodologies, and software, especially those related to the spatial dimension of poverty.
Regarding this spatial or geographical dimension of poverty, the extensive literature suggests
that there is heterogeneity of poverty between rural and urban areas and the effect of the natural
geographical environment over poverty (Barbier, 2010; Gallup et al., 1999; Olivia et al., 2011;
Gray and Moseley, 2005).

Considering the increasing presence of poverty analysis by using spatial data and method-
ologies, this research aims to contribute on the literature by analyzing the relationship between
space and poverty with the usage of the MPI as proxy. Our contribution is the employment of
distances respect to three alternative points of reference to analyze their relationship with the
MPI; also, we use altitude and the interaction between altitude and distances. Altitude and
distances works as a sort of “remoteness” and their impact over MPI may allow us to discuss
the effect of disconnection among districts respect to our references. Nevertheless, we may have
heterogeneous interaction between altitude and distances, for example, taking the metropolitan
city as point of reference, there are districts with high altitude but close in distance; conversely,
there are districts which are far located from the metropolis but with low altitude. Thereby, the
interaction between these two variables allow us to deal with those previously mentioned cases.

To carry our analysis, firstly, we calculate the MPI by following Odekon (2015) focusing on
five dimensions, i.e., Education, Childhood and Youth, Health, Employment, and Household.
The data is obtained from the Census 2017 in Peru. Later and with the purpose of obtaining
robust results, we employ three estimation strategies. First, we estimate the MPI at district level
(1,874 in total) versus the coordinate values, longitude and latitude, and their squared terms.
These first regressions let us to identify the possibility of having clusters. Second, we regress the
MPI versus the three alternative distances (1, the distance to Metropolitan Lima (the capital);
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2, distance to the capital of coastal departments; and 3, distance to the sea.), altitude, and their
interaction. These regressions allow us to identify which distance has a significant impact over
poverty. In the third strategy, we use spatial models to incorporate the possibility of having
spatial spillovers among districts with altitude and distances as main covariates.

Certainly, distance and altitude are not the cause of the heterogeneity on the development
differences among areas; on the contrary, they allow us to identify the areas where other under-
lying variables may be causing the gap. Considering these reasons, we investigate the potential
association of distance and altitude over the development status among Peruvian districts. We
use the MPI as a proxy of development degree in each district.

Succeeding our methodology, the main results may be summarized as follows. First, by using
the first strategy, there is no clear evidence of clusters. Second, distances, altitude, and their
interaction seem to be significant to explain the spatial behavior of the MPI; however, among
those distances, the distance respect to the sea give us the most robust and significant estimators.
Finally, by using the third estimation strategy, there is evidence of spatial spillovers of the MPI
across districts, which is sustain the idea that poverty has an interactive spatial component.

In order to develop and contrast our hypothesis, this article is divided as follow. Section 2
presents a brief literature review while in Section 3, Methodology, we explain the calculation of
the MPI, the definition of the variables, and the model we use for our further analysis. Then,
in Section 4, we explain our empirical results by using OLS and spatial econometric models.
Finally, in Section 5, we present our main results and the conclusions.

2. Brief Literature Review

Taking into consideration the effect of space over poverty, the empirical evidence suggests
the existence of disparities of poverty along the space, even within countries. Therefore, the
introduction of spatial econometrics methodologies is justified by the empirical evidence. Among
the international literature, we have Gräb (2009) and Gräb and Grimm (2011), who study
the source of income variance in Burkina Faso, which mainly comes from heterogeneity among
households rather than provinces and communities. Similarly, Akinyemi and Bigirimana (2012)
studies the living conditions in Kigali, Rwanda, by analyzing income, health, education, and
access to services through 10 indicators and using the Geographic Information System (GIS) as
the main tool of analysis. With this geographic analysis, the author can identify areas where
poverty is agglomerated and the disparities among those areas. On the other hand, Aklilu Zewdie
(2015) uses spatial econometrics to study the spatial interaction of poverty among 105 districts
in Java Island, Indonesia, finding that education and working hours are statistically significant
once spatial interaction is controlled in the model. Related evidence, where space is considered
relevant to explain poverty, are available to study poverty in China (Chen et al., 2015; Tan et al.,
2021), and USA (Brunn and Wheeler, 1971; Crandall and Weber, 2004; Holt, 2007; Rupasingha
and Goetz, 2007).

In Latin America and Peru, studies in regional and urban economics have been rapidly in-
creasing in the last decades; the main characteristics of these studies are the usage of space as a
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central variable in the analysis of poverty or development issues (Palomino, 2020). In particular,
Torres et al. (2011) study the spatial patterns of poverty at the municipal level in Brazil; they
identify hot-spots and clusters of municipalities’ poverty close to the São Francisco River. Com-
bining Census and Survey in Ecuador, Hentschel et al. (2000) predicts poverty and studies the
impact of space on poverty prediction. Specifically, in the case of Peru, Clausen and Flor (2014)
study and criticize the election of dimensions and the methodologies used to analyze poverty; in
their findings, they highlight the lagged situation of the north of Peru regarding the MPI, which
is not conclusive under a monetary analysis. From a similar perspective, Urbina and Quispe
(2016) study the relevance of specific dimensions over the multidimensional poverty analysis.
Palomino and Sanchez (2021), from a spatial analysis perspective, evaluates and identifies the
spatial heterogeneity of the factors that influence monetary poverty among Peruvian districts.

The literature shrinks once we look for an analysis of the interaction between the MPI and
space. In this regard, Dong et al. (2021) explore the spatio-temporal behavior of the MPI by
using a panel vector autoregressive of Chinese provinces between 2007 to 2017. Among their
results, the provincial MPIs have strong spatial dynamics and an increasing trend toward central
provinces. With similar objectives of the analysis, Liu and Xu (2016) propose an alternative
MPI for Chinese provinces, i.e., the Multidimensional Development Index. In their findings,
they sustain that poverty is focused in Tibetan areas, and there is evidence of clusterization in
rural provinces. The results obtained are consistent with alternative measurements such as MPI.

Similarly, for Chinese provinces as well, Zhou et al. (2022) calculates the MPI using machine
learning, and they find evidence of clusterization among provinces in concordance with previously
cited papers. Outside Asia, we have the research of Haddad et al. (2022), which analyzes the MPI
in Morocco from 2004 to 2014 at the provincial level using spatial models. In their outcomes,
they find evidence of hot spots in the northeast provinces associated with poor infrastructure.
On the other hand, Dhongde and Haveman (2022) analyze the spatial and temporal regularities
of the MPI across states in the US from 2008 to 2019. They find evidence of agglomeration of
MPI in the south and western states; also, the hot spots are concentrated on young adults and
immigrants, particularly Hispanics. In the case of Latin America, we have the investigation of
Santos et al. (2017), who studied the spatial behavior of poverty in the Bahia state between 2000
to 2010 by calculating the MPI; similarly to previously listed results, they found signs of clusters
of poverty among areas inside the state. Finally, in Colombia, Turriago-Hoyos et al. (2020) using
the Unsatisfied Basic Needs index since 2005 at the municipal level, they confirm the presence
of clusters, especially in municipalities located in Pacific regions. Considering all this evidence,
and as far as we are aware, there is no evidence of analysis made by including different types of
distances, interaction with altitude, and later comparing it with spatial models.

Distance and altitude are relevant geographical characteristics that open the possibility of
further studies since they are related to poverty persistence across areas. In this sense, Bigman
and Fofack (2000) and Webb (2013) study the relevance of geographic location and economic
connectivity among subnational areas. In this sense, these authors emphasize the connection
between high and less developed areas within a country. The main reasons for these development
gaps among areas are, first, low quality of public services such as health and education; second,
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poor infrastructure in rural or distant areas (e.g., roads and railroads); and finally, the inhibition
of internal economic transactions, access to financial products, and economic complexity across
regions. The underlying variables that help us to explain connectivity are distance and altitude.
In both cases, when the subnational areas along the country suffer from poor economic and
infrastructure connection, distance and altitude work as a good proxy of the connectivity among
those areas. In the case of a country without much elevation heterogeneity along its territory,
distance itself might work alone as a good proxy of connectivity; however, in Peru’s case, the
Andean mountains’ presence difficult the connection even between close districts. In this sense,
altitude also works as a good proxy of economic and infrastructure connectivity.

3. Methodology

3.1 Multidimensional Poverty Index

To calculate the “Multidimensional Poverty Index”, we obtain the data from the National
Institute of Statistics and Informatics (INEI, in Spanish) corresponding to the National Census
2017. From the census, and to construct the MPI, three kinds of indicators are used; first,
Housing Characteristics and Services; second, Households’ characteristics; and finally, Population
Characteristics. Following Odekon (2015), the MPI is built by using five dimensions: Education,
Childhood and youth, Health, Employment, and Household. These dimensions are weighted in
the following way:

MPI = 0.2(edu) + 0.2(child) + 0.2(health) + 0.2(employ) + 0.2(house). (1)

Regarding the first dimension, the variable edu stands for Education. This dimension is crucial
since it allows households to adapt to social changing conditions. This dimension is composed
of two indicators:

1. Educational achievements (edu1). This indicator is calculated by taking the average years
of schooling for all household members older than 15 years old since the first grade in
elementary school. If the average years of schooling is less than nine, the household is
considered deprived.

2. Illiteracy (edu2). This indicator counts the number of household members older than 15
years old who cannot read or write. If households with at least one member fall into this
condition, then it is considered deprived.

For the second dimension, the variable child refers to the “Childhood and youth” dimension.
The importance of this dimension is because it allows to development crucial capabilities and
skills to have self-sufficient citizens. On the other hand, during this stage of life, individuals have
a higher probability of getting infected with some diseases or being forced to work to raise the
household income. Considering the relevance of these elements, this dimension is composed of
four indicators:
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1. Educational lag (child1). We filter members between 7 and 17 years old in each household.
Then, we build the indicator by using the following condition: seven years old and do not
have at least one year of schooling; eight years old and do not have at least two years
of schooling, nine years old and do not have at least three years of schooling; up to 17
years old and do not have at least 11 years of schooling. Finally, we count the number of
members who fall under this condition; if there is at least one member under this condition,
the household is deprived.

2. School absenteeism (child2). We count the members between 6 and 16 years old that are
currently attending a school. In this indicator, the household is considered deprived if at
least one of these members is not attending any school.

3. Childhood Care (child3). In this indicator, we count the members younger than five years
old who do not have any insurance (public or private) and do not go to any educational
institution to get care support. If there is at least one member under this condition, the
household is considered deprived.

4. Child labor (child4). We count the members below 14 who are currently working to
collaborate with household income. If at least one member falls under this condition, the
household is deprived.

“Health” dimension is captured in the variable health, which is crucial to allow people’s
conditions to follow their goals. The dimension is composed of a unique indicator.

1. Healthcare insurance (health). We count the number of members aged above five who are
not affiliated with any health insurance system (public or private). If at least one member
falls under this condition, the household is deprived.

The fourth dimension, “Employment”, is crucial by providing an adequate income and avoiding
lying on poverty or non-adequate job. The variable that captures this dimension is employ, and
it is composed of the following factors:

1. Employment (employment1). We count the members older than 14 years old who currently
do not have a job and are looking actively for one. If at least one member falls under this
condition, the household is deprived.

2. Informality (employment2). We count the members working in a company with five or fewer
employees. If at least one member falls under this condition, the household is deprived.

Variable house refers to the “Housing” dimension, which is important because it represents
the minimum conditions where household members develop their daily-life activities to build
their capabilities. This dimension is composed of seven elements:

1. Water access (house1). A household is deprived if it does not have water service inside the
house, inside the building, or from a public sink. Additionally, it is deprived if they do not
have access to water less than three days per week.
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2. Sewage access (house2). We consider a household is deprived if it does not have access to
any sewage service inside the house or the building.

3. Floor (house3). We consider a household is deprived if the house’s floor material is other
than parquet, tiles, vinyl, or cement.

4. Walls (house4). The household is deprived if the house’s wall material is other than bricks,
stones, mud bricks, or wood.

5. Roof (house5). We consider a household is deprived if the house’s roof material is other
than concrete, wood, or tiles.

6. Public lighting (house6). We consider a household is deprived if the house does not have
access to any public lighting.

7. Overcrowding (house7). We consider a household is deprived if the house has more than
three members per room.

Consequently, the MPI is built by using the previously defined indicators and dimensions and
following equation (1). Regarding each dimension, they are calculated as follows:

edu = edu1 + edu2
2

(2)

child = child1 + child2 + child3 + child4
4

(3)

health = health (4)

employ = employment1 + employment2
2

(5)

house = house1 + house2 + house3 + house4 + house5 + house6 + house7
7

(6)

3.2 Preliminary Analysis

After the calculation of the MPI at district level, we can make some preliminary analysis, first
at departamental level and second at district level. In Figure 1 we present the distribution of the
MPI by region at departamental level. Peru is naturally divided in three main natural regions:
Costa (Coast) composed by 12 departments,1 Sierra (Highlands) composed by 10 departments,
and Selva (Jungle) composed by 4 departments. Also the figure shows some important statistics.

From the figure we observe that, in average, Coastal departments have lower MPI while
Jungle ones have slightly higher than Highlands departments. Additionally, we notice a more
heterogeneity among the MPIs of the areas located in the highlands. In the case of departments
located on the Coast, we notice less heterogeneity but there is some evidence of asymmetry on
the distribution since the mode and the mean are not aligned each other. Finally, in all the
cases, the distribution is unimodal showing the presence of normal distribution in all cases, this
is noted since all violin graphics are grouped around the mean value.

1Notice that Lima department is divided into three: Callao, Metropolitan Lima, and Lima provinces.
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Figure 1. Distribution of the MPI across Natural Regions

Another interesting analysis is the detection of clusterization behavior of the MPI variable
among the 1,874 districts along Peru. For this purpose we estimate the local Moran’s I based on
the following equation:

Ii =
xi − x̄

∑n
j=1,j≠i wij−x̄

n−1

n

∑
j=1,j≠i

wij(xi − x̄) (7)

where xi is the value of MPI for each district, x̄ is the mean of the variable MPI, wij is the
spatial weight matrix between two districts i and j where the sum of those weights is 1, and n
is the total number of districts, i.e. 1,874.

In particular, the local Moran’s I examines the relationship between the districts and their
neighbors, which can occur in the following four situations: High-High, when both the district
and their neighbors have positive values of the local Moran’s I; in other words, these areas
determine the presence of hot-spots since those areas have positive spatial autocorrelation and
their neighbors as well. High-Low, when the district has positive spatial autocorrelation but
their neighbors have negative values. Low-High, when the spatial autocorrelation of the district
is negative and their neighbors is positive. Finally, Low-Low, when both, the district and its
neighbors have negative spatial autocorrelation, these areas are also called cold-spots.

In Figure 2 we present the results of the local Moran’s I calculation for all Peruvian districts.
In the figure is also shown the location of the departamental capitals and the boundaries of
those departments. We observe that most of red highlighted areas (High-High) are located on
the jungle and part on the highlands of Peru, which implies that the multidimensional poverty
is clusterized on jungle districts which may be related with the distance of those areas respect
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Figure 2. Hot and Cold Spots for the Multidimensional Poverty Index

to the coast or the metropolis. In other words, poverty seems to be spatially concentrated in
some areas and those districts have positive and significant spatial autocorrelation with their
neighbors. From another side, we observe that the cold-spots (Low-Low) or blue highlighted
areas are located mostly on the coast and south departments, which implies that those districts
have low levels of spatial autocorrelation; similarly to their neighbors.

Another fact that is relevant to mention is that those districts where the capital is located in
each department are those that have, in most of the cases, no significant spatial autocorrelation
with their neighbors. In other words, departamental capitals seem to be islands respect to their
neighboring areas.

3.3 The Econometric Model

We propose three models to study the association of space and altitude with the previously
defined MPI. The geographic information is obtained from the INEI and the United Nations
Environment Programme (UNEP) as polygons, which allow us to calculate the distance between
two coordinate points. It is important to notice that the distance we use are the euclidean
distance between two points based in this equation: d(i,j) =

√
(xi − xj)2 + (yi − yj)2. Another

valid alternative to measure distance is the time that it takes going from one point to another.
Nevertheless, it is not used since no terrestrial routes connect all districts in Peru; therefore,
no data are available. Regarding the altitude distance, the data is obtained from the UNEP as
raster information and transformed to polygons to process all the information and extract the
dad included in it.

The first type of model investigates how clustered are the values of MPI at district level over
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the space or how much is associated the districts’ MPI values with their geographic location.
For this purpose, we estimate a regression between the MPI values at district level versus their
longitude and latitude coordinates. Therefore, the equations are defined as:

MPIi = α0 + α1longi + α2lati + εi, (8)

MPIi = α0 + α1longi + α2lati + α3long2
i + α4lat2

i + εi, (9)

where longi is the average longitude of district i, lati is the average latitude of district i, and
εi are the errors to be assumed iid.

The second type of models studies the association of MPI values at district level versus altitude
and three types of relevant distances. Distances are defined as follow:

1. Distance between each district centroid and Metropolitan Lima’s centroid.2 The metropoli-
tan area is conformed by 42 districts3 plus Callao.

2. Distance between each district’s centroid and the capital of each coastal department.4

3. Distance between each district’s centroid and the Sea.

Considering the three types of distances, the estimation equations are:

MPIi = β0 + β1dtoXi + β2alti + εi, (10)

MPIi = β0 + β1dtoXi + β2alti + β3dtoX∗i alti + εi, (11)

where alti stands for average altitude of district i, dtoXi stands for distance from district i to
Xi, where Xi may be Metropolitan Lima, Coastal Capitals, or Sea. Finally, εi are the errors,
assumed to be iid.

Now, the main limitation with the models described above is that they ignore the space and
its potential effects. To solve this issue, we can include those potential effects by using spatial

2Bakhvalov (2015) defines the centroid by considering the set of points of a closed polygon {(xi, yi)}N−1
i=0 ∈ R2,

and letting the vertices to be organized clockwise. Then the polygon encloses the area:

A =
1

2

N−1

∑

i=0

(xiyi+1 − xi+1yi),

and its centroid is given by:

centroid =
1

6A
(

N−1

∑

i=0

(xi + xi+1)(xiyi+1 − xi+1yi),
N−1

∑

i=0

(yi + yi+1)(xiyi+1 − xi+1yi))
T

∈ R2.

3Ancón, Ate, Barranco, Breña, Carabayllo, Cercado de Lima, Chaclacayo, Chorrillos, Cieneguilla, Comas, El
Agustino, Independencia, Jesús María, La Molina, La Victoria, Lince, Los Olivos, Lurigancho, Lurín, Magdalena
del Mar, Miraflores, Pachacámac, Pucusana, Pueblo Libre, Puente Piedra, Punta Hermosa, Punta Negra, Rímac,
San Bartolo, San Borja, San Isidro, San Juan de Lurigancho, San Juan de Miraflores, San Luis, San Martín
de Porres, San Miguel, Santa Anita, Santa María del Mar, Santa Rosa, Santiago de Surco, Surquillo, Villa el
Salvador, and Villa Maria del Triunfo.

4The capitals of each departments are: Tumbes (Tumbes), Piura (Piura), Chiclayo (Lambayeque), Trujillo (La
Libertad), Huaraz (Ancash), Lima (Lima), Ica (Ica), Arequipa (Arequipa), Moquegua (Moquegua), and Tacna
(Tacna).
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models. There are three basic types how the space can be included into a model; first, we
include the possibility of spatial effect into the endogenous variable (i.e. Spatial Autocorrelation
Models); second, spatial effects into part or all the set of exogenous variables (i.e. Spatial Durbin
Models); and third, spatial effects into the errors (i.e. Spatial Error Models). Naturally, the types
of spatial models can be increased by mixing the previous three types. Theoretically, the three
types have a purpose on their usage, the Spatial Autocorrelation Models captures the presence
of spillovers when they born on the endogenous variable; similarly the Durbin Spatial Models
captures the spillovers generated by the set of exogenous variables; however, when the origin of
the spillovers cannot be determined by using the endogenous or exogenous variables, they are
included into the errors which may capture the spillovers generated in omitted variables.

Considering the potential spatial correlation of MPI across space and to correct spatial het-
eroskedasticity, by following LeSage and Pace (2009), Arbia and Baltagi (2009), LeSage and Pace
(2014), and Arbia (2016), we extend equation (11) and employ three alternative specifications:

1. Spatial Autocorrelation (SAR) Models, which includes the spatial lag of the endoge-
nous variable to capture any spatial spillovers of the endogenous variable across the space:

MPIi = β0 + ρWMPIi + β1dtoXi + β2alti + β3dtoX∗i alti + εi, (12)

where ρ captures the spatial autocorrelation originated on the endogenous variable, MPI.
W is the spatial weight matrix, which identifies the contiguous neighbors of district i.5

Intuitively, the model states that MPI in each district is related to the average MPI from
neighboring districts.

2. Spatial Error (SEM) Models, which includes the spatial lag of the errors to capture
spatial spillovers of omitted variable across the space and the spatial interaction works
through the error term:

MPIi = β0 + β1dtoXi + β2alti + β3dtoX∗i alti + εi,
ε = λWεi + µi,

(13)

where λ is the scalar spatial error coefficient and µi is the disturbance term. The main
purpose of λ is correct potential heteroskedasticity across the space generated by omit-
ted variables; therefore, the intuition remain the same for βs, but they are corrected for
potential heteroskedasticity.

3. Spatial Autocorrelation and Error (SARAR) Models, which includes the spatial lag
of the endogenous variable and the error term. In other words, this especification combines
SAR and SEM models.

MPIi = β0 + ρWMPIi + β1dtoXi + β2alti + β3dtoX∗i alti + εi,
ε = λWεi + µi.

(14)

5In this case, we use the nearest neighbor weight matrix. For more details, see LeSage (2008).
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Note that we do not include the case of Spatial Durbin Models because, reasonably, we are
assuming that altitude and distance do not have spatial spillovers or they do not have spatial
autocorrelation with altitude and distance in neighboring districts. This is not the case of MPI
or the errors.

4. Results

This section presents the estimation results of the previously detailed models. We divide this
section into three parts, the first one corresponding to the results when the set of covariates are
longitude and latitude. In the second part, we use distances and altitude as covariates. Finally,
in the last part, we use spatial models.

4.1 Longitude and Latitude

Table 1 presents ordinary least squares (OLS) estimates of equations (8) and (9) in which we
use longitude and latitude for each district as covariates. Column (1) shows the results of the
base model, which correspond to equation (8). Column (2) presents the results of equation (9),
which includes the squared terms of longitude and latitude. We observe that the higher longitude
and latitude are, the higher the values of MPI; in other words, the values of the multidimensional
poverty index are concentrated on the south and west districts of Peru. In this regard, we notice
that districts located in west areas are associated with higher MPI values than areas in the south
of Peru. All the estimated coefficients are statistically significant at 1%.

On the other hand, once we incorporate the squared values of the longitude and latitude
coordinates, we observe that the original association between location and MPI changes. First,

Table 1
OLS estimation results.

Dependent variable: MPI
(1) (2)

long 0.011∗∗∗ 0.030∗

(0.0005) (0.015)
lat 0.009∗∗∗ 0.006∗∗∗

(0.0004) (0.002)
long2 0.0001

(0.0001)
lat2 −0.0002∗∗

(0.0001)
Constant 1.137∗∗∗ 1.831∗∗∗

(0.037) (0.571)

Observations 1,874 1,874
R2 0.277 0.279
Adjusted R2 0.277 0.278
Residual Std. Error 0.033 0.033
F Statistic 359.2∗∗∗ 181.0∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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we observe that similarly to the above results, MPI values increases on the north (lat) and east
(long) located districts; however, the association between west locations and MPI is reduced
until being lower than the association between north locations and MPI. In other words, north-
located districts are more associated with higher MPI than east-located districts. Second, even
though northern districts are associated with higher MPI values, the association level increases
at diminishing rates. In other words, districts in north areas are associated with higher MPI
values, but the differences among districts decrease as north coordinates go. Third, districts
located in east areas are associated with higher MPI values. Also, the association level tends
to change constantly as far as east coordinates go since the squared values of long are not
statistically significant. To sum up, districts located in the northern departments of Peru or
those located in east departments (jungle region) are associated with high MPI values. These
results are analogous to those obtained by Clausen and Flor (2014) and Palomino and Sanchez
(2021).

4.2 Distance and Altitude

In this subsection we present the estimation results when we use distances and altitude as
covariates. In this sense, Table 2 shows the estimation results for equations (10) and (11)
and their variations once we use different types of distances previously defined. Those type of
distances are: distance from each district to Metropolitan Lima (dLima) in column (1) and (2);
distance from each district to coastal capitals (dCoast) in column (3) and (4); finally, distance
from each district to the sea (dSea) in column (5) and (6).

Regarding the results, we observe that the association of the altitude (alt) with the MPI
values is not stable across specifications. The altitude is associated with lower MPI values when
there is no interaction between distances and altitude covariates. However, these results change
once the interaction is incorporated. In all the cases, the estimation results with the interaction
term have higher R2 and lower Akaike criterion value, which makes those results preferred over
the non-interaction term equations.

Concerning our estimation results, we observe that in the first set of outcomes (columns (1)
and (2)), in which we use distance to Metropolitan Lima as a covariate, the association between
altitude with MPI values, and distance with MPI values are the same. Intuitively a district
located 1% further from Metropolitan Lima is associated with 0.023 higher MPI points, which
describes districts with higher multidimensional poverty levels. Similarly, a district located 1%
higher than Metropolitan Lima is also associated with 0.023 higher MPI values. Therefore,
altitude and distance have similar semi-elasticities with respect to MPI, so districts at higher
places are equivalent to districts at further locations. An interesting result we find in Table 2 is
that the interaction terms have statistically significant and negative signs across specifications;
intuitively, these results mean that districts located in far and high areas are associated with
lower MPI values than those districts located close and low areas.

On the second (columns (3) and (4)) and third (columns (5) and (6)) set of results, we also
observe that equivalence on the association between distances and altitude changed. In more
detail, in both cases, distance from the reference point changes to be associated with higher MPI
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Table 2
OLS estimation results.

Dependent variable: MPI
(1) (2) (3) (4) (5) (6)

alt −0.002∗∗ 0.023∗∗∗ −0.005∗∗∗ 0.025∗∗∗ −0.011∗∗∗ 0.010∗∗

(0.001) (0.005) (0.001) (0.004) (0.001) (0.005)
dLima 0.011∗∗∗ 0.023∗∗∗

(0.001) (0.003)
alt∗dLima −0.002∗∗∗

(0.0004)
dCoast 0.014∗∗∗ 0.033∗∗∗

(0.001) (0.002)
alt∗dCoast −0.003∗∗∗

(0.0004)
dSea 0.020∗∗∗ 0.030∗∗∗

(0.001) (0.002)
alt∗dSea −0.002∗∗∗

(0.0004)
Constant 0.071∗∗∗ −0.080∗∗ 0.084∗∗∗ −0.110∗∗∗ 0.048∗∗∗ −0.064∗∗

(0.010) (0.035) (0.007) (0.026) (0.008) (0.026)

Observations 1,874 1,874 1,874 1,874 1,874 1,874
R2 0.105 0.115 0.215 0.240 0.259 0.267
Adjusted R2 0.105 0.114 0.214 0.239 0.258 0.266
Residual SE 0.036 0.036 0.034 0.033 0.033 0.033
F Statistic 110.33∗∗∗ 81.04∗∗∗ 255.97∗∗∗ 196.69∗∗∗ 327.10∗∗∗ 226.81∗∗∗

AIC -7109 -7127 -7353 -7412 -7462 -7480

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

values than those districts in upper places. Additionally, comparing the three sets of regressions
based on alternative definitions of distances, we observe that distance of districts to the sea (dSea,
which correspond to columns (5) and (6)) show higher R2, higher adjusted-R2, and lower AIC.
Therefore, distance to the sea gives us more robust results than the distance to Metropolitan
Lima or the Coastal capitals. Considering this evidence, we present the results in the following
subsection by using spatial models based on the distance to the sea as the main definition of
distance.

4.3 Spatial Model Results

Table 3 shows the estimation results using distance from each district to the sea and altitude
as covariates. Also, the table presents three types of spatial models, based on equations (12),
(13), and (14); additionally, in order to get robust results, we grouped the estimation results into
three sets, each of those corresponding to different spatial lags. Each lag follows the number of
k nearest neighbors to each district. In particular, in Table 3, we use k = 3, 6, and 9 nearest
neighbors. Notice that we do not identify neighbors based on contiguities such as Rook or Queen
because, in the results, some districts without neighbors invalidate the estimation of the spatial
effects due to the no invertibility of the matrix W .
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Table 3
Spatial Models Estimation Results.

Dependent variable: Multidimensional Poverty Index (MPI)
Spatial Lags (k = 3) Spatial Lags (k = 6) Spatial Lags (k = 9)

(SAR) (SEM) (SARAR) (SAR) (SEM) (SARAR) (SAR) (SEM) (SARAR)

alt 0.011∗∗∗ 0.009 0.008∗∗∗ 0.005∗∗ 0.004 0.006∗∗ 0.008∗∗ −0.004 0.008∗∗

(0.004) (0.008) (0.003) (0.004) (0.009) (0.003) (0.004) (0.009) (0.004)
dSea 0.014∗∗∗ 0.023∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.016∗∗∗ 0.008∗∗∗ 0.009∗∗∗ 0.010∗∗ 0.009∗∗∗

(0.002) (0.004) (0.002) (0.002) (0.004) (0.002) (0.000) (0.005) (0.002)
alt∗dSea −0.001∗∗∗ −0.001∗ −0.001∗∗∗ −0.001∗∗ −0.001 −0.001∗∗∗ −0.001∗∗ −0.000 −0.001∗∗

(0.000) (0.001) (0.000) (0.000) (0.001) (0.000) (0.000) (0.009) (0.000)
ρ 0.640∗∗∗ 0.788∗∗∗ 0.743∗∗∗ 0.788∗∗∗ 0.796∗∗∗ 0.803∗∗∗

(0.018) (0.022) (0.018) (0.021) (0.020) (0.033)
λ 0.639∗∗∗ −0.360∗∗∗ 0.756∗∗∗ −0.287∗∗∗ 0.817∗∗∗ −0.024

(0.018) (0.047) (0.018) (0.073) (0.016) (0.100)
Constant −0.069∗∗∗ −0.032 −0.052∗ −0.053∗∗ 0.025 −0.044∗∗ −0.052∗∗ 0.082∗ −0.052∗∗

(0.025) (0.049) (0.018) (0.024) (0.050) (0.019) (0.024) (0.049) (0.024)

Observations 1,874 1,874 1,874 1,874 1,874 1,874 1,874 1,874 1,874
Log Likelihood 4061 4051 4080 4120 4113 4126 4125 4119 4125
σ2 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026 0.026
AIC −8111 −8090 −8147 −8227 −8214 −8238 −8238 −8227 −8236
Wald Test 1291∗∗∗ 1268∗∗∗ 989∗∗∗ 1661∗∗∗ 1815∗∗∗ 1234∗∗∗ 1961∗∗∗ 2376∗∗∗ 1416∗∗∗

LR Test 846.5∗∗∗ 825.7∗∗∗ 884.5∗∗∗ 962∗∗∗ 948.8∗∗∗ 975∗∗∗ 973∗∗∗ 962∗∗∗ 973∗∗∗

Hausman Test 53920∗∗∗ 7760∗∗∗ 7377∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Regarding the set of covariates, the first covariate, alt, refers to the natural logarithm of
altitude; therefore, the estimation coefficients are interpreted as semi-elasticities. The second
covariate, dSea, refers to the natural logarithm of the shortest distance in kilometers between
the centroid of each district to the sea or the coastline; its coefficients may also be interpreted
as semi-elasticities. Finally, the third covariate, alt*dSea, captures the interaction between the
natural logarithm of the altitude and the distance. On the other hand, we have the spatial effects,
which are captured onto two estimators. The fourth estimated coefficient, ρ, captures the spatial
autocorrelation of the endogenous variable MPI with their nearest neighbors. Intuitively, for the
3-nearest neighbors, this coefficient measures the relationship that MPI has in district i with the
averages of their three nearest neighbors, similarly to the other neighbors (k = 6 and 9). λ, in
the same way, captures the spatial interaction of the error terms with their k-nearest neighbors.
Since the error terms capture the effect of any omitted variable in the proposed model, λ captures
the spatial interaction of any omitted variables; therefore, it helps to correct heteroskedasticity
in the original model. Finally, the sixth estimated coefficient captures the constant term.

The estimation results in Table 3 shows mixed results. First of all, in the case of the variable
of altitude, alt, results are significant in all the cases except when the spatial effects are only
established for the errors. In particular, we observe that the effect of altitude in the significant
cases goes from 0.005 to 0.011, which implies that with an increment of 1% on altitude, the
multidimensional poverty index (MPI) increases between 0.005/100 to 0.011/100 points. On the
contrary, the semi-elasticity of dSea is more stable in its results, and it is statistically significant
across spatial models with values that go from 0.008 to 0.023; similarly to altitude, an increment
of 1% on distance with respect to the sea implies an increment on the MPI between 0.008/100

and 0.023/100 points. Similarly to altitude and distance, the interaction term between these
two covariates is negative and statistically significant in most cases. The negative coefficient
alt∗dSea intuitively sustains that districts far from the sea with high altitude are associated
with slightly less MPI than other districts.

Regarding the spatial terms, ρ, results are statistically significant and positive in all mod-
els. The coefficient shows that MPI is spatially autocorrelated, which implies that districts are
spatially autocorrelated with their neighbors. Additionally, we observe that the spatial effect
increases once the number of spatial lags increases and when the possibility of spatial interaction
on the error terms is included. In other words, the spatial effects of MPI across districts are
sensitive to the number of neighbors included in the analysis and the incorporation of spatial
effects on the errors. In this sense, regarding the spatial externalities on the error terms, λ, shows
coefficients on SEM models similar to the ρ coefficients on SAR models; these results mean that
once the spatial lag of the endogenous variable is omitted, its whole effect goes to the error terms
and it is captured on the spatial lag of the error terms λ.

Furthermore, when we incorporate both variables into the same equation, spatial lag on the
endogenous variable and lag in the error terms, we observe that ρ remains statistically significant,
and its value does not change dramatically. Nevertheless, the λ coefficient changes drastically
until be negative and statistically significant for the two first sets (3 and 6 nearest neighbors),
and it is not statistically significant in the case of 9 nearest neighbors. In other words, in the
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case of having more lags, the spatial externalities are fully captured by the lag of the endogenous
variable, and there are no spatial effects of omitted variables.

Furthermore, in Table 3, considering the Wald and LR tests, the spatial effects are significant
since the null hypothesis of the non-spatial model is rejected in all the cases. Also, the Hausman
test rejects the null hypothesis in favor of using the SEM models (Pace and LeSage, 2008). Also,
comparing the models by using the Akaike Criterion, we observe that, among SAR models, that
one with k = 9 is preferred; second, similarly to the SAR models, among SEM models, k = 9’s
is chosen; finally, among the SARAR models, the model with six lags is preferred. Notice that,
generally, a model with more lags is preferred since it allows us to capture the spatial effects
more clearly.

Following Golgher and Voss (2015), we estimate the Direct, Indirect, and Total effects. Con-
sidering the endogenous variable y and the exogenous variable x, district i and its neighbors.
The direct impact estimate the effect of x over the variable y in the district i. On the other hand,
the indirect impact estimates the effect of the variation on the variable x on neighbor districts
over the variable y in the district i. When there are no spatial effects from the set of covariates
(i.e., no Durbin Spatial model), the indirect impact is also called Global impacts. Furthermore,
in Table 4, we observe that all direct and indirect impacts have the same signs, which implies
that their impacts reinforce each other.

In the SAR model, altitude has a direct impact of 0.0087, which indicates that an increment
on 10% on the altitude in district i is associated with an increment of the MPI on 0.00087 points.
On the other hand, the indirect impact is 0.0286, which implies that an increment on 10% on the
altitude of neighbors increases the MPI on district i in 0.00286 points. We obtain similar results
for distance with respect to the sea and similar results for the SARAR model. It is important to
notice that the indirect impact is larger than the direct one in all cases. This fact suggests that
the spatial spillovers on poverty across districts are larger than the effects generated within the
district; in other words, the spillover generated by neighbor districts located at a further distance
or higher altitude is stronger onto the district i than if this district itself is located in higher or
further location.

Finally, the realization of a similar analysis using different distance measures and weight ma-
trices remains on the research agenda. For example, we can re-estimate the model using distance
measured in time rather than physical distance, also, we can use distance by routing through-

Table 4
Spatial Impacts.

Dependent variable: Multidimensional Poverty Index (MPI)
SAR (k = 9) SARAR (k = 6)

Direct Indirect Total Direct Indirect Total

alt 0.0087∗∗ 0.0286∗ 0.0373∗∗ 0.0081∗∗ 0.0305∗∗ 0.0386∗∗

dSea 0.0104∗∗∗ 0.0343∗∗∗ 0.0448∗∗∗ 0.0096∗∗∗ 0.0360∗∗∗ 0.0456∗∗∗

alt∗dSea −0.0009∗∗ −0.0030∗∗ −0.0039∗∗ −0.0009∗∗∗ −0.0032∗∗∗ −0.0041∗∗∗

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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out available roads. On the other hand, in the case of weigh matrices, it may be interesting
to analyze the model sensitivity by using neighbor matrix identifying them by considering the
routes connections (roads, railroads, flight routes, and other transportation infrastructures) that
districts may have among them.

5. Final Discussion and Conclusions

Certainly, as the vast literature sustains, geography itself is not the cause of poverty; how-
ever, geography is highly correlated with underlying characteristics that make poverty spatially
grouped. In this sense, geography, and distance or altitude, as we proposed, are variables that
work as a sort of connection-level among districts. In general Bigman and Fofack (2000) high-
lights that poverty may be related to location because it is correlated with low quality of public
services, poor conditions of rural infrastructure, low level of social capital, and low flow of trade
among subnational areas. These reasons agree with Webb (2013), which in particular, argues
that in Peru, there is a significant disconnection between urban and rural areas due to inadequate
infrastructure and low level of essential public services in distant areas.

Considering that distance and altitude are variables that help us understand the level of
connection among districts, we studied the level of association between the MPI at the district
level versus the altitude and different types of distances. Initially, on non-spatial models, we
observe that distance and altitude are relevant to understanding the differences of MPI among
districts. Second, altitude is initially negatively associated with MPI, which results counter-
intuitive; however, these results are reverted once the interaction of altitude and distance is
included in each case. Third, we observe that the distance of each district concerning the sea
gives us more robust estimators than the distance to Metropolitan Lima or Coastal departmental
capitals.

On the other hand, when we use spatial models to study the presence of spatial externalities,
firstly, we observe that altitude, similarly to non-spatial models, remains to be statistically sig-
nificant, i.e., districts located in higher altitude places is associated with higher multidimensional
poverty index. Second, the distance to the sea remains positive and significant across models. In
other words, districts located further from the sea tend to have higher MPI or poorer from a mul-
tidimensional perspective. Third, there is evidence of spatial externalities associated with MPI
between districts; in other words, multidimensional poverty presents a spatial behavior. Similar
results were obtained in Palomino and Sanchez (2021). These results open the possibility of new
studies that explore the spatial dimension of poverty.
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