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Abstract
We develop the first climate risk Stress Test for the Peruvian financial system following a top-
down approach. Focusing on the microeconomic channel, we evaluate how heavy rainfall and
droughts, under a scenario of pure physical risk, will marginally affect the probability of default
(PD) of borrowers by 2050. Using information from the Credit Registry, the National Oceanic and
Atmospheric Administration (NOAA), and CMIP6 precipitation projections (37 modeling groups),
we calibrate the marginal impacts differentiating by economic sector and geographical location.
We find that, on average, by December 2050, the probability of default of the Peruvian financial
system would increase by 4.9% with respect to December 2020. By geographic area, borrowers
located on the northern coast (Piura, Lambayeque) and the southern highlands (Ayacucho, Cusco)
would be negatively affected by heavy rainfall, while the rainforest (Madre de Dios, Ucayali) would
be negatively affected by droughts. Moreover, the economic sectors affected by heavy rainfall or
droughts would be agriculture, commerce, and transportation & communications.
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1. Introduction

Current changes in the climate system and those expected in the future will increasingly have
significant and detrimental impacts on human and natural systems (Ara Begum et al., 2022).
Hence, climate action is becoming ever more important, drawing the attention of governments,
non-governmental organizations, small and large businesses, and citizens. Climate change, being
a global phenomenon, requires a coordinated response at the international level. In this context,
the Paris Agreement and the Sustainable Development Goals (SDGs), along with other targets
and frameworks, provide much needed overarching goals and policy context.

In the absence of climate policies aimed at curbing greenhouse gas emissions, climate change
will lead to an increased frequency and severity of extreme climate events1 and long-term gradual
shifts of global climate2. The financial losses and economic costs produced by these changes are
known as physical climate risks. In the other end, the introduction of mitigation and adaptation
policies entail a different set of challenges, generating what is known as transition climate risks.
Physical climate risks can have an impact on financial institutions by disrupting its normal
operations or by affecting their counterparties. Transition climate risks arising from climate
policies targeting polluting industries can affect those financial institutions most exposed to
those sectors. Taken together, it is clear that climate risks might have a significant impact on
individual financial institutions and even on the financial system.

Central banks and supervisors around the world are already taking steps to identify, assess
and understand how to mitigate climate risks in the financial system (NGFS, 2021). One of
the tools to advance these objectives are climate risk stress tests. Standard stress tests tend
to focus on the resilience, in terms of solvency, of the financial system to severe but plausible
adverse scenarios. Climate stress tests also intend to assess the resilience of the financial system,
but under climate trajectories which capture different combinations of physical and transition
risks. Against this backdrop, we develop the first climate risk stress test for the Peruvian
financial system, drawing on international experience from financial supervisors and international
organizations and focusing on physical climate risks derived from extreme precipitation events.
The framework, which includes key assumptions, for this climate risk stress test is presented in
Section II.

Our climate risk stress test seeks to measure the impact of extreme precipitation events on
default probabilities —by region, economic activity, and the Peruvian financial system as a
whole— under a scenario in which average global temperature rises by 2.4°C in the medium
term3. We begin by estimating the historical relationship between extreme precipitation events
and district-level probabilities of default segmented by economic sector.

Next, using precipitation projections under a scenario of very high greenhouse gas emissions
that focuses on physical risk, we find that the probability of default of the Peruvian financial
system would increase —on average— by 4.9% by 2050 with respect to December 2020. Section

1For example, heatwaves, floods, landslides, and wildfires.
2For example, rising sea levels and changes in precipitation.
3Medium term refers to the period 2041-2060 and the increase in temperature is with respect to the average

temperature of the 1850-1900 period.
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III provides detailed information on data sources and climate scenarios. The empirical strategy is
then explained in Section IV, while more detailed results, including decompositions by economic
activity and geographical location, are presented in Section V. Finally, conclusions and potential
extensions of the current version of this climate risk stress test are outlined in Section VI.

2. Key Concepts, International Experience, and Analytical Framework

2.1 Climate risk

The Basel Committee on Banking Supervision 4 (2020) refers to climate-related financial risks as
“the set of potential risks that may result from climate change and that could potentially impact
the safety and soundness of individual financial institutions and have broader financial stability
implications for the banking system”. In turn, this group of risks can be categorized into physical
risks and transition risks.

Physical risks are the economic costs and financial losses that result from the increasing
severity and frequency of acute physical risks and chronic physical risks. Acute physical risks
refer to extreme weather events associated with climate change such as heatwaves, landslides,
floods, wildfires, storms, etc. Meanwhile, chronic physical risks include the long-term gradual
shifts of the climate, such as changes in precipitation, ocean acidification, rising sea levels,
rising average temperatures, etc. In addition, even though physical risks are categorized into
two groups, this does not imply that both are independent. For instance, extended periods of
increased temperatures may lead to the increased occurrence of wildfires (BCBS, 2021).

Transition risks are the losses related to the adjustment process to a low-carbon economy.
These kinds of risks can arise from changes in public sector policies, innovation and shifts in
the affordability of existing technologies or movements in consumer and investor sentiments to-
wards a greener environment. With respect to government policies, measures to curb greenhouse
gases (GHGs) include energy transition policies, regulations to control pollution, subsidies, taxes,
among others. Regarding technological change, the reduction in GHGs emissions may be asso-
ciated with the development of energy-saving and low-carbon transportation, the increasing use
of non-fossil fuels, etc. which, in turn, can disrupt existing business models. Finally, the incor-
poration of climate risk considerations into the investors’ investment decisions and the increased
demand for climate-friendly financial products by consumers may require business strategy ad-
justments of firms and banks, respectively (BCBS, 2021).

2.2 Transmission channels and financial risks

Climate risks can be linked to the financial risks faced by banks and the financial system through
a series of transmission channels. The BCBS (2021) classifies transmission channels as microe-
conomic or macroeconomic. Microeconomic transmission channels include the effect of climate
risks on banks themselves —through damage to the financial infrastructure—, on the banks’
counterparties —firms and households—, and on its physical or financial assets —e.g. physical

4BCBS.
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assets such as machinery or realty, or stocks and bonds—. In contrast, macroeconomic trans-
mission channels comprise the mechanisms by which climate risk affects both macroeconomic
factors —e.g. economic growth and labor productivity— and macroeconomic market variables
—e.g. risk-free interest rates, inflation, and exchange rates—, which, in turn, impact banks.

Both physical and transition risks, through microeconomic and macroeconomic transmission
channels, can have an impact on banks through conventional risk categories, namely credit risk,
market risk, liquidity risk and operational risk. According to the BCBS (2021), the literature
has focused mainly on the impact of climate risk on banks’ credit risk and, to a smaller extent,
on market risk due to data availability for the calibrations of impacts. With respect to credit
risk, events of physical climate risks —like floods— can impact both the ability of a borrower
to generate revenues, and thus its ability to repay a loan, and the value of the collateral —e.g.
house prices— backing the loan. In other words, climate risk events can lead to higher expected
losses for banks through an increased probability of default (PD) and a higher loss given default
(LGD).

Climate risk may also impact market risk. The increased occurrence of severe weather events
or changes in regulations —by revealing new information about future economic conditions—
may lead to a repricing of certain assets, mainly through price reductions, and increased market
volatility. In terms of liquidity risk, climate risks may impact the ability of banks to liquidate as-
sets or raise funds as well as increase the demand for liquidity of their customers —whether firms
or households—. Finally, in terms of operational risk, physical risk events can damage trans-
portation and telecommunications infrastructure, hampering the regular functioning of banks
(BCBS, 2021). A summary of the transmission channels of climate risk variables to the financial
sector is shown in Figure 1.

Figure 1. Financial risks from climate risk drivers

Source: Basel Committee on Banking Supervision (2021)
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2.3 Climate risk stress tests: International experience

A growing number of central banks and financial supervisors around the world are undertak-
ing exercises designed to identify, assess, and understand the impact of climate risks on their
economies and financial systems. Given that these types of exercises are relatively new, each
authority has some flexibility to determine the scope, assumptions, or other technical details
regarding its exercises (NGFS, 2021).

The Network for Greening the Financial System (NGFS) was established in 2017 —amid
an increased awareness of the potential effect of climate change on the financial system— by
eight central banks and financial supervisors5. Its objective is to strengthen the global response
required to meet the goals of the Paris agreement and to enhance the role of the financial system
to manage risks and to mobilize capital for green and low-carbon investments (NGFS, 2022). In
line with this objective, the NGFS has developed a set of climate scenarios as a common starting
point for analyzing climate risks to the economy and financial system. This effort has facilitated
the conduction of climate risk stress tests by its members, contributing to the consistency and
comparability of results (NGFS, 2020).

According to a report by the NGFS (2021), based on the information provided by 31 of its 121
members, all exercises cover the banking sector —with a particular focus on the impact of climate
risks on banks’ credit portfolios— and around half of them also cover insurers or other financial
institutions. Half of the exercises follow a top-down approach and the other half, a bottom-up
approach. Top-down stress tests are performed by the public authority, using its own framework,
which includes data, scenarios, assumptions, and models. By contrast, bottom-up stress tests
are conducted by individual banks using their own frameworks as part of a system-wide exercise
or as part of a stress test where authorities provide common scenarios and assumptions (Baudino
et al., 2018).

Regarding assumptions, most of the authorities surveyed consider a 30-year timeframe —in
line with the Paris Agreement objective of significantly reducing GHGs by the middle of the
century— and a static balance sheet —the portfolios of financial institutions are kept constant
throughout the exercise—. Notwithstanding, there are also cases in which the size, composition
or risk profile of a bank’s balance sheet is allowed to vary over the stress test horizon —that is,
a dynamic balance sheet assumption—.

The purpose of this subsection is to gain insights from the climate risk exercises conducted
by other institutions around the world. Therefore, we now turn to review in greater detail the
experiences of the Bank of England and the European Central Bank - Banking Supervisionn.
These central banks have shared a considerable amount of information about their exercises,
which makes them particularly useful to define the framework of the climate risk stress test for
the Peruvian financial system.

5It currently has 121 members.
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2.3.1 Bank of England

The Bank of England (BoE) conducted its first exploratory scenario exercise on climate risk, the
Climate Biennial Exploratory Scenario (CBES), to assess the capability of the largest UK banks
and insurers to quantify and manage their exposure to climate risks (BoE, 2022). The BoE
followed a bottom-up approach, in which it provided the participating financial institutions with
three scenarios based on the Phase I climate scenarios developed by the Network for Greening
the Financial System. (NGFS).

Each scenario is associated with different intensities of both physical and transition risks
and would take place over a period of 30 years. Moreover, these scenarios not only consider
future climate developments, associated with different sets of climate policies, but also how
these interact with the economy. Two scenarios —Early Action (EA) and Late Action (LA)—
are mainly concerned with transition risks, whereas the third scenario —No Additional Action
(NAA)— centers on physical risk.

Both EA and LA scenarios assume that global warming is limited to an increase of 1.8°C
by 2050 relative to pre-industrial levels. The transition to an economy with net zero emissions
starts in 2021 in the EA scenario and in 2031 in the LA scenario. The timely adoption of climate
policies in the EA scenario leads to a gradual transition with almost no impact on overall GDP
growth. By contrast, the initial delay in the LA scenario causes a precipitated adoption of climate
policies, which, in turn, generate a short-term macroeconomic disruption with a fall in GDP and
a pronounced impact on carbon-intensive sectors.

NAA captures outcomes under the assumption that no additional action is taken to address
climate change. A growing concentration of greenhouse gas emissions in the atmosphere lead
to global temperature levels 3.3°C higher relative to pre-industrial levels by 2050. This rise in
temperature results in chronic changes in precipitation, ecosystems, and sea-levels, along with
a rise in the frequency and severity of extreme weather events such as heatwaves, droughts,
wildfires, tropical cyclones, and flooding. Both chronic and acute physical risks are coupled with
permanently lower UK and global GDP growth and higher macroeconomic uncertainty.

The BoE makes clear that warming levels of 3.3°C by 2050 are not in line with what climate
scientists predict under a scenario without the introduction of new climate policies. That partic-
ular level of warming —together with its corresponding climate outcomes— is expected between
2050 and 2080 and will lead to global warming of 4.1°C by the end of the century. Then, this
decision to bring forward in time higher than expected warming levels allows a better assessment
of physical risks without extending the 30-year horizon of the exercise.

As the CBES is a bottom-up climate risk exercise, it includes guidelines for banks and insurers
regarding the assessment of the impact of each scenario on their balance sheets. Among other
things, the CBES lays out a particular set of transmission mechanisms that should be considered
by participating institutions6. For example, property exposures —mortgages and commercial
real estate— may be affected by price discounts and increased insurance premiums following
both coastal and inland flooding. In the case of the largest corporate exposures, the CBES

6However, this list is not exhaustive.
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requires a counterparty-level analysis which includes possible disruptions of supply chains, the
stranding of assets due to the materialization of physical or transition risks, and the direct costs
from physical damage.

Bank’s loss projections were focused solely on credit risk and assume that balance sheets stay
fixed, at their end 2020 values, over the 30-year timeframe. Participant banks quantified the
impact of each scenario by portfolio and economic sector in terms of accumulated provisions.
Across scenarios, wholesale and mortgage portfolios were the most affected, with significant
uncertainty around projected losses.

2.3.2 European Central Bank

The European Central Bank - Banking Supervision (ECB) has completed two climate risk ex-
ercises between 2021 and 2022, one with a top-down approach and the other with a bottom-up
approach.
2022 climate risk stress test

The European Central Bank - Banking Supervision (ECB), in the context of its Supervisory
Review and Evaluation Process, conducted a bottom-up climate risk stress test (CST) whose
aim was to understand both the banks’ climate risk stress-testing frameworks and their capacity
to assess climate risk. In this regard, the CST addressed wider aspects of stress testing and
comprised both quantitative and qualitative results.

Participating banks were required to provide data and projections under different climate
risk scenarios covering both transition and physical risk as well as short-term and long-term
perspectives. For transition risks, the ECB considered a short-term scenario associated with a
three-year disorderly transition and three long-term scenarios over a 30-year horizon. The three
long-term scenarios —Orderly, Disorderly and Hot House World— have quite similar narratives
to the ones used by the BoE and are based on the Phase II NGFS scenarios. The Orderly
scenario assumes climate policies are introduced early and gradually become more stringent; the
Disorderly scenario considers delays in the implementation of policies; and the Hot House world
scenario presumes that no new climate policies are implemented.

The short-term transition scenario assumes a static balance sheet, whereas long-term scenarios
allow for changes in banks’ exposures to carbon-intensive sectors; that is, a dynamic balance
sheet. Additionally, the CST considers the impact of transition risks on credit risk —particularly
corporate and mortgage portfolios— and market risk — bonds and stocks issued by non-financial
corporations—.

Physical risk scenarios had a different configuration. First, the focus was on two extreme
weather events representing key climate risks in Europe: a large flood, a severe drought and
heatwave. Second, each acute physical risk was assumed to occur during 2022, which allows
banks to use end-of-year balance sheet data. The economic impact of the heatwave is based on
NGFS estimates for labor productivity shocks due to heat stress until 2050. The large flood
impact is heterogeneous across Europe and follows a risk flood map —which splits regions into
four buckets according to their level of flood risk— developed by the ECB. Third, only the effect
of physical risks on credit risk was considered. In particular, droughts and heatwaves are assumed
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to impact banks through their credit exposure to firms, whereas floods impair the value of the
underlying collateral of mortgages and credit secured by real estate.
ECB economy-wide climate stress test

Alogoskoufis et al. (2021) describe the ECB’s economy-wide climate stress test in detail. This
top-down exercise assesses the resilience of non-financial corporations (NFC) and euro area banks
to three scenarios with varying levels of transition and physical risks. These scenarios, based
on the NGFS Phase I scenarios, follow similar narratives as those previously described. Under
the Orderly transition scenario, climate policies are calibrated and implemented in a timely and
effective manner leading to limited costs from transition and physical risks. The Disorderly
transition scenario assumes a delayed implementation of the required climate policies, which
result in significant transition risks and greater physical risks compared to an orderly transition.
Lastly, the Hot House World scenario assumes that no policy or regulation is introduced to limit
climate change, leading to extremely high physical risks and very limited transition risks.

Scenarios are assumed to take place over the next 30 years to balance the importance of
assessing the long-term impact of climate risks with the need to limit the uncertainty around
predictions. Moreover, throughout the exercise, the banks’ portfolio composition will remain
constant, that is, a static-balance sheet assumption is used. The climate stress test quantifies
the impact of climate risks on both credit and market risk in two steps. First, the impact of both
transition and physical risks7 on key balance sheet components of non-financial corporations
are computed and then translated into firm-level probabilities of default. Second, non-financial
corporations default probabilities are translated into credit and market risk impacts on the
banking sector (Figure 2).

Figure 2. Schematic overview of climate risk transmission to firms through credit risk

Source: Alogoskoufis et al. (2021)

Specific models were developed to capture the impact of climate risks on non-financial corpo-
7In particular, wildfires, floods and sea level rise.
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rations. Transition and physical risks affect firm profitability and leverage. Climate policies and
technological developments lead to changes in carbon prices and energy costs which will impact
firms’ operating expenses. Investments to change existing production processes towards greener
alternatives will result in higher leverage. In the same vein, extreme weather events damage
physical capital, which disrupts the firms’ production capacity and revenue generation. At the
same time, the replacement of physical capital will require additional investments, which would,
again, impact leverage. Insurance premiums and maintenance costs would increase in line with
the magnitude and frequency of natural disasters, leading to higher operating costs.

The authors estimate the historical relationship between leverage, profitability, GDP, and
inflation8 with annual probabilities of default using a panel at the firm-year level9. Then, pro-
jected default probabilities correspond to different levels of the main inputs —namely leverage,
profitability, GDP, and inflation— which vary according to the scenario. It is worth noting
that changes in profitability and leverage by scenario are also modeled. The estimations rely on
a comprehensive dataset which includes both financial and climate information for millions of
companies. For example, the dataset includes information on carbon emissions and physical-risk
scores —distinguishing between different types of extreme weather events— computed at address
level.

The expected loss of banks’ corporate loan portfolios is computed for each scenario. The
probability of default at the bank level is computed as the weighted average of firm-level default
probabilities, where the weight corresponds to the banks’ exposure to each individual company.
The effect of climate risks on loss given default (LGD) is also modelled, through a microeconomic
and macroeconomic channel. The microeconomic channel captures the deterioration of collateral
due to physical risk. The macroeconomic channel includes the impact of changes of GDP on
LGD. The last component, exposure at default, corresponds to the amount outstanding of each
credit in 2020. Additionally, firm-level default probabilities are also used as an input to determine
the movements in corporate bonds prices and estimate the market risk impact on banks.

2.4 Analytical framework

In this subsection, we start by presenting some evidence on the impact of extreme precipitation
events on individuals and firms to illustrate the microeconomic transmission channel that we are
trying to capture. Subsequently, we set up the framework of the climate risk stress test for the
Peruvian financial system.

2.4.1 The microeconomic transmission mechanism on credit risk: Impact of
heavy rainfall and droughts on the probability of default

Extreme precipitation events can have an impact on the financial system through its effects on
individuals and firms. Events such as heavy rainfall or droughts can undermine the ability of
debtors to generate revenues or directly reduce their wealth. As a result, borrowers may default

8According to the paper, other unspecified macro and firm-level variables are also included in the estimation.
9The exact empirical strategy is not mentioned.
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on their obligations, leading to a greater share of non-performing loans for financial institutions.
Depending on the severity and frequency of the events under consideration, not only individual
financial institutions but the financial system as a whole may be affected.

Gutiérrez et al. (2019) provide a clear example of the mechanism described above. They
study the effect of heavy rainfall on the financial situation of Peruvian farmers and find that
these extreme events, defined at the district level, negatively impact farmers’ revenues. As a
result, farmers are unable to repay their debts, which leads to a deterioration in their credit risk
category.

In another study concerning the agricultural sector, Espinosa-Tasón et al. (2022) study the
economic impact of multiyear droughts (2005-2008) in Andalusia. With respect to the impact on
producers, they distinguish between rainfed and irrigation farms. Overall, rainfed farms suffer
a fall in income, as the drop in production is not compensated by a price increase following the
supply contraction. On the contrary, irrigated farms end up with higher incomes due to relatively
mild decrease in production which allow them to take advantage of the price increases.

With a focus on firms, Rentschler et al. (2021) explore the impact of floods on busineses in
Tanzania. While direct damages can be substantial, they tend to affect a limited fraction of all
firms. In contrast, indirect impacts —through infrastructure, supply chains, and workers— are
more prevalent and substantial. For example, infrastructure disruptions —regarding electricity
and transport— obstruct the operations of firms even when they are not directly located in flood
zones. As a result, firms are forced to produce below their capacity.

In a similar fashion as the previous study, Monasterolo (2021) explores the impact of disasters
related to heavy rainfall —such as floods and landslides— on supply chains using information
from the actual supply chain relations of 1.6 million firms in Japan. Directly damaged firms
reduce their production, which, in turn, affect their suppliers and customers, resulting in sub-
stantial indirect effects. Using the heavy rainfall events of July 2020, the author finds that daily
losses on firms’ value-added peaks 50 days after the events.

The effect of floods on urban areas can be particularly severe, leading to regional and national
impacts. Haddad and Teixeira (2015) estimate the impact of all flooding events in the city of
Sao Paulo during 2008. They focus on value chain disruptions due to the temporary closure of
businesses around flood points, without taking into account possible disruptions to infrastructure
services. The direct impact is heavily concentrated in tertiary activities, especially services,
commerce, and transportation. Using a calibrated Spatial Computable General Equilibrium
(SCGE) model, the authors find that floods during 2008 in Sao Paulo reduced in 0.026% the
GDP of the city and in 0.007% the national GDP.

2.4.2 Climate risk stress test framework for the Peruvian financial system

The climate risk stress test for the Peruvian financial system is built following the international
experience and taking into account considerations about data availability. We will use a top-
down approach with a 30-year horizon to quantify the impact of physical climate risks on the
banking system through the microeconomic transmission channel. In particular, we will focus
on the effect of extreme precipitation events —heavy rainfall and droughts— on credit risk.
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The focus on heavy rainfall and droughts comes from the fact that both are recurrent phenom-
ena across the national territory. In the past, these events caused significant adverse impacts on
people, infrastructure, and economic activity. For example, during the last episode of “El Niño”
phenomenon in 2017, more than 1,700 events of abnormal precipitations10 were registered. As
a response to these developments, the National Institute of Civil Defense (Indeci) disbursed a
total of S/18 million in humanitarian aid to affected districts (Figure 3).

Figure 3. Heavy rainfall (left) and droughts (right) and humanitarian aid at district level (1983-2020)

Note: Humanitarian aid corresponds to that provided by Indeci in the event of landslides and floods.
The colors represent episodes of the El Niño Phenomenon: Red: Extraordinary Coastal El Niño
Phenomenon. Orange: Strong Coastal El Niño. Yellow: Moderate Coastal El Niño.
Source: PERSIANN-CCS-CDR, Ministerio de Ambiente, NOAA, Indeci.

Extreme precipitation events can have adverse impacts on firms and households by, for exam-
ple, restricting their ability to operate or work. Firms experience a fall in revenue and households
a fall in income. As a result, both firms and households experience troubles to repay their debts,
leading to a surge in the number defaults and, eventually, an increase in non-performing loans
in the banking system. It is important to note that extreme precipitation events can also have
aggregate impacts on the economy. However, these macroeconomic effects are not included in
this exercise.

Instead of three scenarios, as in the exercises reviewed before, this climate risk stress test will
only have one scenario that will represent a future without the adoption of new climate policies
and pronounced climate warming. Therefore, the scenario under consideration will be one of
pure physical risk. In terms of the exercises developed by the BoE and the ECB, our scenario is
akin to the No Additional Action or the Hot House World scenarios. Further details about the
scenario are provided in Section III.

This climate risk stress test will quantify the impact on the banking system —in terms of
probabilities of default— of the precipitation levels projected for 2050 under a pure physical risk

10Defined as precipitations above the 95th percentile of rainfall distribution over the last 40 years.
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scenario. To facilitate the analysis, we assume that balance sheets of financial institutions stay
at their end 2020 levels and that no other factor, except for precipitations, change during the
30-year time horizon. Figure 4 outlines the framework of the first climate risk stress test for the
Peruvian financial system.

Figure 4. Framework of the first climate risk stress test for the Peruvian financial system

Source: Own elaboration.

3. Data and Climate Scenarios

3.1 Precipitations

There are a number of different precipitation datasets which differ in their spatial resolution,
temporal resolution and timespan. Most of the available precipitation datasets provide either
high spatial resolution with short-term timespans or low spatial resolution with long-term periods.
Against this backdrop, the Precipitation Estimation from Remotely Sensed Information using
Artificial Neural Networks-Cloud Classification System-Climate Data Record (PERSIANN-CCS-
CDR) database was designed to address these limitations. This dataset, compiled by the National
Oceanic and Atmospheric Administration (NOAA), is characterized for being highly granular,
providing precipitation estimates with 3-hour intervals since January 1983 at a global scale in
areas of approximately 4km2 (0.04° x 0.04°). Moreover, when confronted with other datasets, such
as the PERSIANN-CDR11, it shows a better performance in representing the spatial resolution,
temporal resolution, magnitude, and spatial distribution patterns of precipitation, especially for
extreme events (Sadeghi et al., 2021).

The PERSIANN-CCS-CDR dataset, given its characteristics, is used to determine the monthly
precipitation levels by district. Moreover, this dataset is also used to compute the historical dis-
tribution of precipitations by district and its associated percentiles, which are needed to identify
episodes of heavy rainfall and droughts. There is another source with a substantially larger
temporal coverage, the Global Precipitation Climatology Centre (GPCC) dataset. However, the
way in which it collects information about precipitations —through rain gauges— poses several

11Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data
Record.
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limitations. For example, the global number of rain gauges is limited, restricting its overall
coverage. Moreover, the distribution of rain gauges around the world is uneven. As a result, in
order to cover land worldwide, individual observations are interpolated, a process which smooths
extreme values and affects long-term trends (Taylor et al., 2018). For this reason, the GPCC
dataset is not used to compute historical precipitation distributions.

3.2 Probability of default

The information used to compute default probabilities comes from the Credit Bureau Data
Report named Reporte Crediticio de Deudores (RCD) of the Financial Regulator that monitors
financial stability risks in Peru, named Superintendencia de Banca, Seguros y Administradoras
Privadas de Fondos de Pensiones del Perú (SBS). Among other variables, it includes monthly
information of outstanding debts and days past due by borrower, economic sector, geographical
location, credit type12 and financial institution.

Historical probabilities of default are constructed as the proportion of debt that migrated
from non-default to default during a 12-month time frame, where default is defined as 90 days
past due. These computations are done for each district and further divided by economic activity
for business loans and by credit type for household loans —mortgages and consumer loans—.

3.3 Scenario configuration

Consistent with the objective of this climate risk stress test, we employ the precipitation levels
that would be observed by 2050 under a pure physical risk scenario. In this subsection, we
provide more details about the configuration of this scenario, including the narrative behind it.

3.3.1 CMIP6

The Coupled Model Intercomparison Project (CMIP) predicts the trajectories of various climate
variables under different scenarios that assume particular trajectories for pollution levels and
exploitation of fossil-fuel resources at a global scale. Founded in 1995 by the Working Group
on Coupled Models (WGCM) of the World Climate Research Program (WCRP), the CMIP is
currently the main source of information for the Intergovernmental Panel on Climate Change
(IPCC), a United Nations (UN) agency.

The Coupled Model Intercomparison Project Phase 6 (CMIP6) is the most recent gather-
ing of climate modelling institutions around the world. Modeling groups from France, Japan,
Germany, Italy, England, Norway, Sweden, Netherlands, Ireland, Spain, Finland, Denmark, Por-
tugal, Greece, Belgium, South Korea, and India have produced close to 100 different climate
models. Each institution builds and improves its own climate model to replicate global climatic
processes and, every five to seven years, all these institutions gather to use the latest versions
of their climate models in a coordinated set of model simulations. This model intercomparison
allows the climate science community to assess the performance of the models against earlier

12Wholesale business loans, retail business loans, mortgages, and consumer loans (both revolving and non-
revolving credit).



70 Romero, Salinas and Talledo

versions and also against newly developed models. As a result, scientists can obtain more robust
projections, compared to what would be obtained by each climate institution independently, and
get a better estimation of the uncertainty around those projections (Government of Canada,
2022).

The CMIP6 serves as the main source of information for the IPCC’s Sixth Assessment Report
(AR6) prepared in 2022, which focuses on analyzing (i) the impact of humanity on climate
variables under different paths of greenhouse gas emission, (ii) the capacity of both humankind
and the planet to adapt to climate change, and (iii) the progress in emissions’ reduction and
climate change mitigation efforts. This last item also includes an assessment of the consistency
between national climate commitments and long-term global emissions targets.

CMIP6 scenarios result from the combination of Shared Socio-economic Pathways (SPPs)
and Representative Concentration Pathways (RCPs). The SSPs represent alternative narratives
about how the world might develop over the coming century in the absence of climate policy
(Table 1). Moreover, each SSP includes a set of assumptions about population, urbanization,
gross domestic product (GDP), economic growth, rate of technological developments, greenhouse
gas (GHG) and aerosol emissions, land-use changes, etc. (Government of Canada, 2022).

RCPs describe the concentration of greenhouse gases (GHG) in the atmosphere over time
and correspond to different levels of simulated total radiative forcing by 2100. Radiative forcing
is the change in the difference between incoming solar radiation from the sun, and outgoing
energy radiated back into space by Earth. By convention, a positive radiative forcing means
more energy is retained within the climate system, leading to climate warming. Higher levels of
radiative forcing are explained by higher levels of GHG emissions, particularly CO2 emissions.
The CMIP6 considers seven different RCPs, ranging from 1.9 to 8.5 W/m2 (watts per square
meter), where higher values correspond to stronger climate warming effects. (Government of
Canada, 2021). Figure 5 shows CO2 emissions trajectories under each of the SSP baseline
scenarios.

The most adverse scenario in the CMIP6 is SSP5 −8.5. In this scenario, a trajectory of fossil-
fuel development (SSP5) is coupled with an RCP of 8.5 W/m2, the highest possible value. The
limited or nonexistent global mitigation efforts in this scenario imply low transition risks. At
the same time, the absence of climate policies leads to greater concentrations of greenhouse gas
emissions which would, in turn, intensify physical risks. As a result, being a scenario of primarily
intense physical risks makes it the more appropriate for the present climate risk stress test.
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Table 1
Overview of SPP scenarios

Shared
Socio-
economic
Pathway

Summary of narrative

SSP1 Sustainability - Taking the green road (low challenges to mitigation and adaptation)

• The world shifts gradually, but pervasively, toward a more sustainable path, empha-
sizing more inclusive development that respects perceived environmental boundaries.

SSP2 Middle of the road - (medium challenges to mitigation and adaptation)

• The world follows a path in which social, economic, and technological trends do not
shift markedly from historical patterns.

• Global and national institutions work toward but make slow progress in achieving
sustainable development goals.

• Environmental systems experience degradation, although there are some improve-
ments and overall, the intensity of resource and energy use declines.

SSP3 Regional rivalry - A rocky road (high challenges to mitigation and adaptation)

• A resurgent nationalism, concerns about competitiveness and security, and regional
conflicts push countries to increasingly focus on domestic or, at most, regional issues.

• A low international priority for addressing environmental concerns leads to strong
environmental degradation in some regions.

SSP4 Inequality - A road divided (low challenges to mitigation, high challenges to adaptation)

• Highly unequal investments in human capital, combined with increasing disparities in
economic opportunity and political power, lead to increasing inequalities and strati-
fication both across and within countries.

• The globally connected energy sector diversifies, with investments in both carbon-
intensive fuels like coal and unconventional oil, but also low-carbon energy sources.
Environmental policies focus on local issues around middle- and high-income areas.

SSP5 Fossil-fueled development - Taking the highway (high challenges to mitigation, low challenges
to adaptation)

• This world places increasing faith in competitive markets, innovation, and partici-
patory societies to produce rapid technological progress and development of human
capital as the path to sustainable development.

• The push for economic and social development is coupled with the exploitation of
abundant fossil fuel resources and the adoption of resource and energy intensive
lifestyles around the world.

Source: Government of Canada (2021)
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Figure 5. CO2 emissions by CMIP6 scenario

Source: SSP database.

3.3.2 Projections

Over time, the increased scale of each gathering, in terms of models and climate institutions, led
to the organization of several Model Intercomparison Projects (MIPs) inside the CMIP, which
serves as an integrated framework. MIPs are sets of experiments and simulations designed to
test and compare specific aspects of climate models (Government of Canada, 2022). Starting
from individual MIPs, future climate change simulations are coordinated within the Scenario
Model Intercomparison Project (ScenarioMIP), which is the primary activity within CMIP6
that provides multi-model climate projections based on alternative scenarios of future emissions
and land use changes produced with integrated assessment models (IAMs) (O’Neill et al., 2016)

IAMs combine detailed models of energy system technologies with simplified economic and
climate science models to evaluate different population, economic and technological pathways,
allowing an assessment of the feasibility of achieving specific climate change mitigation goals
(Hare et al., 2018). To predict greenhouse gases (CO, CO2, CH4, Kyoto Gases, etc.), IAMs take
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as inputs socioeconomic variables13 (GDP, population), energy usage, agricultural and techno-
logical indicators and employ general (or partial) equilibrium models with recursive dynamic
solutions or intertemporal optimization.

GHGs forecasts resulting from IAM models are harmonized and spatially georeferenced using
the MIP models to ensure comparability as part of the effort by the CMIP6 to standardize
results. Standardized GHGs forecast will serve as inputs for the 58 different CMIP6 modeling
groups to project climate variables (Figure 6). 37 groups project monthly precipitations up to
the year 2100 with a spatial resolution of 1.00° x 1.00°14. It is worth noting that these projections
include both chronic and acute physical risks associated with precipitations; that is, it covers
changes in the average rainfall level and extreme events —such as those associated with “El Niño”
Phenomena—.

Figure 6. CMIP6: Scenario development (ScenarioMIP)

Source: The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6.

4. Empirical Strategy

The econometric specification relies on monthly panel data where districts are the units of anal-
ysis. Hence, we use the following linear panel data model, where “i” denotes the district and “t”
the month:

yi,t = αi + γt + β
12

∑
h=1

Dn
i,t−h + εi,t (1)

The dependent variable yi,t is not directly the probability of default, since that would require a
logit or probit model. Instead, we use a logarithmic transformation of the probability of default:

13As an example, Appendix 2 shows forecasted average annual GDP growth for the World, Latin America, and
Caribbean (LAC), and Peru under different SSP scenarios.

14See Appendix 2 for detailed information of each modelling group.
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yi,t = ln( PDi,t

1 − PDi,t
) (2)

In addition, αi is a district fixed effect that captures time-invariant district characteristics
that may affect default probabilities, and γt is a time fixed effect that captures time dependent
factors that do not vary across districts that may affect default probabilities.

Each Dn
i,t is a dummy variable that is defined according to the event that we are trying to

capture. For heavy rainfall, the dummy variable activates according to the following rule, where
Xi denotes the historical rainfall distribution of district “i”:

Dn
i,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if Xi,t > Percentilen(Xi)
0 if Xi,t ≤ Percentilen(Xi)

(3)

Thus, Dn
i,t is equal to one if the precipitation level at time “t” for district “i” is greater than

the nth percentile of the historical rainfall distribution of district “i” , where n ∈ {80, ...,99}.
Similarly, the dummy variable for droughts activates according to:

Dn
i,t =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if Xi,t < Percentilen(Xi)
0 if Xi,t ≥ Percentilen(Xi)

(4)

That is, Dn
i,t is equal to one if the precipitation level at time “t” for district “i” is lower than

the nth percentile of the historical rainfall distribution for district “i” , where n ∈ {1, ...,20}.
Each dummy variable is defined at a district level, since there is considerable heterogeneity

in precipitations across the country. For example, 9% of the national territory exhibits an arid
type climate characterized by low levels of humidity and annual precipitation levels between
0-700 mm15. In clear contrast, 26% of the national area exhibits a climate with a lot of rain and
humidity, with annual rainfall between 2100 and 5000 mm (SENAMHI, 2020). As a result, what
counts as heavy rainfall or a drought strongly depends on the district under analysis. Figure 7
shows the historical distribution of precipitations for the districts with the lowest and highest
precipitation level, respectively.

The parameter β measures the marginal impact of extreme precipitation events —occurring
in the last 12 months— on district level default probabilities. The number of lags of the dummy
variable included in the model is associated with the definition of default employed, which consid-
ers a 12-month timeframe. Given that extreme precipitations events are not correlated with other
potential explanatory variables of default probabilities16, there is no need to include additional
control variables to get a consistent estimate of β.

The estimation of β is done separately for each economic activity, plus mortgage and consumer
loans17, and each of the 40 different thresholds which define an extreme precipitation event. The

15Precipitation in measured in millimeters, where one millimeter of rain corresponds to 1 liter per square meter
of water on the surface.

16For example, financial institution characteristics or macroeconomic factors.
17In total, we have 17 economic sectors plus mortgage and consumer loans.
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Figure 7. Monthly average precipitations (mm): 1983-2020

Source: PERSIANN-CCS-CDR, own calculations.

historical distribution of precipitations for each district are determined using the PERSIANN-
CCS-CDR dataset from 1983 to 2020. Default probabilities are computed from January 2001 to
December 2019.

5. Results

5.1 Historical relationship between default probabilities and extreme precip-
itation events

Figures 8 and 9 summarize the estimated parameters β —per threshold and for some economic
activities— for droughts and heavy rainfall, respectively. The selected economic activities corre-
spond to those for which we find a positive and statistically significant marginal effect of extreme
precipitation events on probabilities of default.

The default probabilities of agricultural sector loans rise due to both droughts and heavy
rainfall. In particular, precipitation events corresponding to the 1th and 97th percentiles of the
historical distribution of precipitations lead to a higher probability of default. Moreover, the
effect of droughts is greater in magnitude than the impact of heavy rainfall.

Droughts do not have a positive and statistically significant effect on default probabilities
for any other sector, whereas heavy rainfall affects loans in both commerce and transportation
and communications. For commerce, rainfall corresponding to the 95th percentile of historical
district-level precipitations increases default probabilities. For transportation and communica-
tions, the thresholds that lead to a greater default probability are those based on the following
percentiles: 93th, 94th, 95th and 96th. In this case, the first significant percentile (93th) was
selected, in order to obtain the largest significant affected group.
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Figure 8. Impact of heavy rainfall on district-level probabilities of default

Source: : RCD, PERSIANN-CCS-CDR.

Figure 9. Impact of droughts on district-level probabilities of default

Source: : RCD, PERSIANN-CCS-CDR.

5.2 Potential impact of projected precipitation on default probabilities by
2050

This climate stress test uses a scenario in which the world follows a path of fossil-fueled de-
velopment. Under this scenario (SSP5 − 8.5 or fossil-fueled economy of CMIP6), global surface
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temperature will rise about 2.4°C above pre-industrial levels by the year 2050. This is consistent
with limited or nonexistent global mitigation efforts and the intensification of physical risks.

Under SSP5 − 8.5, rainfall in the different regions of the national territory would intensify
significantly by 2050, with the most affected regions being those located on the northern coast
(Piura and Tumbes) and the southern highlands of Peru (Junín, Huancavelica, Ayacucho, Apuri-
mac, Cusco, and Puno). For example, the CAMS-CSM1-0 model predicts that in Piura, rain
levels registered in January 2050 in the different districts of the region would be, on average, 15
times stronger than those registered in January 2020 (Figure 10).

Figure 10. Peru: Projected precipitations at the national level (mm per month)

Source: : PERSIANN-CCS-CDR, own calculations.

The estimated parameters β, coupled with precipitations projected by 2050 under the scenario
SSP5 − 8.5 by the aforementioned modelling groups, allow us to quantify the marginal impact
of climate risk on the financial system’s credit risk. The following analysis focuses on agricul-
ture, commerce, and transportation and communications sectors, as these are the only economic
activities for which extreme precipitations events have a statistically significant marginal impact.

The proposed linear panel data model has as a dependent variable a transformation of the
probability of default. Hence, we apply the following formula to compute the marginal impact
of extreme precipitations events on the default probability of district “i” in month “t”:

PDStressed
i,t = PDBaseline

i,t + β̂(PDBaseline
i,t )(1 −PDBaseline

i,t ) (5)

As can be seen, the marginal impact on each district depends on its initial probability of
default (PDBaseline

i,t ). All results in this section are computed by considering December 2020
probabilities of default as baselines.
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As stated in Section III, the CMIP6 has 37 modeling groups which project precipitations.
Hence, although we are restricting our analysis to scenario SSP5 − 8.5, we still have 37 different
projections for precipitations by 2050. We compute the marginal impact of each projection on
default probabilities by region, economic activity, and the financial system as a whole.

On average, by 2050, the probability of default of the Peruvian financial system as a whole
would increase by 4.9% with respect to December 2020 due to heavy rainfall and droughts.
Depending on the model, the estimated impact ranges from 1.8% to 11.2%, reflecting the un-
certainty around climate projections. Figure 11 consolidates the aggregate marginal impact of
extreme precipitation events, by model, on the financial system. As can be noted, the bulk of
the marginal impact corresponds to heavy rainfall.

Figure 11. Marginal impact of heavy rainfall and droughts on the probability of default of the
Financial System by CMIP6 model (%)

Source: RCD, NOAA, CMIP6.

As shown before, the sectors affected by precipitation events are agriculture, transportation
and communications, and commerce. The results indicate that the average percentage increase
on default probabilities by economic activity is 22.9% for agriculture, 19.7% for transportation
and communications, and 14.1% for commerce. Once again, there is considerable variability
around these averages. Agriculture may experience an increase in its probability of default of up
to 49%, transportation and communications, 46%, and commerce, 33% (Figure 12).

The calculated marginal impacts come from a district-level estimation; therefore, we can
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Figure 12. Marginal impact of extreme precipitations events on the probability of default of the
Financial System by economic activity (%)

Source: Credit Bureau Data Report, NOAA, CMIP6.

Notes: The box plot summarizes the impact, by economic activity, of each of the 37 precipitation
projections under scenario SSP5 − 8.5

also compute results by geographical area. Looking at the impacts by region18, Amazonas
(+16.2%), Ayacucho (+14.8%) and Lambayeque (+12.6%) would exhibit the greatest average
marginal increases in default probabilities by 2050. These results are driven by heavy rainfall,
with droughts having a much more limited impact. At the other end, default probabilities in
Ica (+1.4%), Callao (+1.8%) and Lima (+2.3%) would experience the lowest rises in default
probabilities (Figure 13). Results by region and economic activity can be found on Appendix 3.

18Each region is divided into provinces and each province comprises several districts.
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Figure 13. Marginal impact of extreme precipitations events on the probability of default of the
Financial System by region (%)

Source: Credit Bureau Data Report, NOAA, CMIP6, Ministerio de Ambiente.
Impact of the average 37 models with information of precipitation predictions under the SSP5 − 8.5
scenario or fossil-fueled economy.

6. Concluding Remarks

It is increasingly clear that climate change, through a series of microeconomic and macroeconomic
channels, can impact individual financial institutions and the financial system. Nevertheless,
quantifying this impact poses significant challenges. One of the tools to measure the effect of
climate risks on the financial system —that has gained prominence among financial authorities
around the world— are climate risk stress tests. These exercises aim to assess the resilience of
the financial system under climate trajectories which capture different socioeconomic paths that
reflect the combination of physical and transition risks.

We develop the first climate risk stress-test for the Peruvian financial system following a top-
down approach. Focusing on the microeconomic channel, we evaluate how heavy rainfall and
droughts under a scenario of pure physical risk will marginally affect the probability of default
(PD) of debtors on a 30-year horizon (2050). Using information of the Credit Bureau Data
Report, the National Oceanic and Atmospheric Administration (NOAA — PERSIANN-CCS-
CDR) and the CMIP6 precipitation predictions (37 modelling groups), we calibrate the marginal
impacts differentiating by economic sector and geographical location (district level). We find
that, on average, by December 2050, the probability of default of the Peruvian financial system
as a whole would increase by 4.9% on average with respect to December 2020. Particularly,
the PD of the debtors located in the northern coast (Piura, Lambayeque) and the southern
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highlands (Ayacucho, Cusco) of Peru would be negatively affected by heavy rainfall, while the
PD of rainforest regions (Madre de Dios, Ucayali) would be negatively affected by droughts.
The economic sectors significantly affected by those chronic and acute risks will be agriculture,
commerce, and transportation & communications.

However, this climate risk stress test could be enhanced to better capture the potential im-
pact of climate change on the financial system in different aspects. First, the marginal impact
of extreme precipitation events on default probabilities (PD), could be complemented with the
assessment of the marginal effect on loss given default (LGD)19. Second, in addition to precip-
itations, other climate variables could be included in the climate risk stress test. For example,
changes in sea surface temperature (SST) can negatively affect the fishing industry and, thus,
the financial institutions exposed to that sector.

Third, the marginal impact of these physical risk events on macroeconomic conditions could
be studied in addition to their impact on financial institutions’ counterparties. These macroe-
conomic shocks —such as lower economic growth and labor productivity— would also affect
financial institutions due to a second-round effect on the payment capacity of debtors, increasing
credit risk. Fourth, climate risk may affect other traditional risk categories, such as market risk,
liquidity risk and operational risk. Nevertheless, quantifying the impact on these risk categories
will be considerably more challenging due to data limitations. Finally, a more complete climate
risk stress test should also consider scenarios with different socioeconomic pathways that reflect
less physical risks and more transition risks, like the SSP1−1.9 “taking the green road” scenario.

19In particular, floods caused by heavy rainfall could damage property and assets posted as collateral, increasing
the LGD.
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Appendix

Appendix 1

SSP Baseline Scenarios - Average annual GDP growth pathways used by IAM under CMIP6: World,
LAC, Peru

Source: International Institute for Applied Systems Analysis - SSP Public Database.

Appendix 2

Precipitation Modelling Center of CMIP6 used in the climate risk stress test

Model Name Modelling Centre

ACCESS-CM2 (published in 2019) CSIRO-ARCCSS (Commonwealth Scien-
tific and Industrial Research Organisation,
Australian Research Council Centre of Ex-
cellence for Climate System Science)

AWI-CM-1-1-MR (published in 2018) AWI (Alfred Wegener Institute)

BCC-CSM2-MR (published in 2017) BCC (Beijing Climate Center)

CAMS-CSM1-0 (published in 2016) CAMS (Chinese Academy of Meteorological
Sciences)

CanESM5 (published in 2019) CCCMA (Canadian Centre for Climate
Modelling and Analysis)

CanESM5-CanOE (published in 2019) CCCMA (Canadian Centre for Climate
Modelling and Analysis)

CESM2 NCAR (National Center for Atmospheric
Research)

CESM2-WACCM (published in 2018) NCAR (National Center for Atmospheric
Research)
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CMCC-CM2-SR5 (published in 2016) CMCC (Centro Euro-Mediterraneo per I
Cambiamenti Climatici)

CMCC-ESM2 (published in 2021) CMCC (Centro Euro-Mediterraneo per I
Cambiamenti Climatici)

CNRM-CM6-1 (published in 2017) CNRM-CERFACS (National Center for
Meteorological Research, Météo-France and
CNRS laboratory, Climate Modeling and
Global change)

CNRM-CM6-1-HR (published in 2017) CNRM-CERFACS (National Center for
Meteorological Research, Météo-France and
CNRS laboratory, Climate Modeling and
Global change)

CNRM-ESM2-1 (published in 2017) CNRM-CERFACS (National Center for
Meteorological Research, Météo-France and
CNRS laboratory, Climate Modeling and
Global change)

E3SM-1-1 (published in 2019) E3SM-Project RUBISCO (Energy Exas-
cale Earth System Model, Reducing Un-
certainty in Biogeochemical Interactions
through Synthesis and COmputation)

EC-Earth3-CC (published in 2021) EC-Earth-Consortium

EC-Earth3-Veg-LR (published in 2019) EC-Earth-Consortium

FGOALS-f3-L (published in 2017) CAS (Chinese Academy of Sciences)

FGOALS-g3 (published in 2017) CAS (Chinese Academy of Sciences)

FIO-ESM-2-0 (published in 2018) FIO-QLNM (First Institute of Oceanogra-
phy (FIO) and Qingdao National Labora-
tory for Marine Science and Technology
(QNLM))

GFDL-ESM4 (published in 2018) NOAA-GFDL (National Oceanic and At-
mospheric Administration, Geophysical
Fluid Dynamics Laboratory)

HadGEM3-GC31-LL (published in 2016) MOHC NERC (Met Office Hadley Centre,
Natural Environmental Research Council)

HadGEM3-GC31-MM (published in 2016) MOHC (Met Office Hadley Centre)

IITM-ESM (published in 2015) CCCR-IITM (Centre for Climate Change
Research, Indian Institute of Tropical Me-
teorology)

INM-CM4-8 (published in 2016) INM (Institute of Numerical Mathematics)

INM-CM5-0 (published in 2016) INM (Institute of Numerical Mathematics)
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IPSL-CM6A-LR (published in 2017) IPSL (Institut Pierre-Simon Laplace)

KACE-1-0-G (published in 2018) NIMS-KMA (National Institute of Meteo-
rological Sciences/Korea Met. Administra-
tion)

MCM-UA-1-0 (published in 1991) UA (University of Arizona - Department of
Geosciences)

MIROC6 (published in 2017) MIROC (Atmosphere and Ocean Research
Institute (AORI), Centre for Climate Sys-
tem Research - National Institute for Envi-
ronmental Studies (CCSR-NIES) and At-
mosphere and Ocean Research Institute
(AORI))

MIROC-ES2L (published in 2018) MIROC (Atmosphere and Ocean Research
Institute (AORI), Centre for Climate Sys-
tem Research - National Institute for Envi-
ronmental Studies (CCSR-NIES) and At-
mosphere and Ocean Research Institute
(AORI))

MPI-ESM1-2-LR (published in 2017) MPI-M AWI (Max Planck Institute for Me-
teorology (MPI-M), AWI (Alfred Wegener
Institute))

MRI-ESM2-0 (published in 2017) MRI (Meteorological Research Institute,
Japan)

NESM3 (published in 2016) NUIST (Nanjing University of Information
Science and Technology)

NorESM2-LM (published in 2017) NCC (Norwegian Climate Centre)

NorESM2-MM (published in 2017) NCC (Norwegian Climate Centre)

TaiESM1 (published in 2018) AS-RCEC (Research Center for Environ-
mental Changes)

UKESM1-0-LL (published in 2018) MOHC, NERC, NIMS-KMA, NIWA (Met
Office Hadley Centre, Natural Environmen-
tal Research Council, National Institute
of Meteorological Science / Korean Me-
teorological Administration (NIMS-KMA),
National Institute of Weather and Atmo-
spheric Research (NIWA))

Source: CMIP6
(https://confluence.ecmwf.int/display/CKB/CMIP6%3A+Global+climate+projectionsCMIP6:Globalclimateprojections-
Models).
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Appendix 3

(a) Marginal impact of heavy rainfall on the probability of default of the Financial System by region
and economic activity (%)

Source: Credit Bureau Data Report, NOAA, CMIP6, Ministerio de Ambiente.
Average impact of 37 models with information of precipitation projections under the SSP5 − 8.5
scenario or fossil-fueled economy.
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(b) Marginal impact of droughts on the probability of default of the Financial System by region and
economic activity (%)

Source: Credit Bureau Data Report, NOAA, CMIP6, Ministerio de Ambiente.
Average impact of 37 models with information of precipitation projections under the SSP5 − 8.5
scenario or fossil-fueled economy.
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