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DETECTION OF EPILEPTIC 
EVENTS IN EEG 

USING WAVELETS 

C.E. D'Attellis, S./. /saacson and R.O. Sírne 

Abstract: 
This paper deal with the problem of automatic detection of 

epileptic events in EEGs from depth electrodes using 
multiresolution wavelet analysis. The basic problems in events 

detection are considered: the time localization and 
characterization of epileptiform events, and the computational 

efficiency. The algorithm presented is based on a polinomial 
spline wavelet transform. The multiresolution representation 

obtained from this wavelet transform and the digital filters 
derived allow usan automatic detection, efficient and fast, of 

epileptiform activity. The detector proposed is based on the 
multiresolution energy function. This paper shows that it is 

possible to use a multiresolution wavelet scheme for detecting 
events in a nonstationary signa!. EEG records from depth 

electrodes were analysed and the results obtained are shown. 
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1 Introduction 

Records of brain electrical activity from depth electrodes are used to localize 
the origin of seizure discharges in epileptic patients who are candidates for 
surgical removal of the seizure focus. In clinical practice, the epileptogenic 
loci are infered from the visual analysis of the interictal and ictal discharges. 
Automatized systems may be used to detect epochs of the signa) that contain 
transients, patterns and features characteristic of abnormal conditions. There 
are two basic areas of clínica! application: an automatic system nmy be used 
as a data reduction process in long term EEG monitoring oras a detector of 
a satisfactory amount of epileptic transients. 

Severa! techniques have been applied in order to solve the problem of 
computer assisted detection of epileptifom1 transients. They include: 
templa te matching [7]; parametric [1 ], mimetic [9] and syntactic [16] 
methods; neural networks [6]; expert systems [8]; phase-space topography 
[10] and wavelets [13], [14). 

As it was recently pointed out [5], the electroencephalography -despite 
its widespread use- it is one of the Jast routine clinical procedures to be fully 
automated. 

This paper intends to provide a contribution to the field by introducing 
an efficient approach for detecting epileptic events in EEG automatically. It 
is based on the spline wavelet transfom1 recently introdueed by Unser et. al. 
[15], whieh was found espeeially suited for the digital treatment of non 
stationary signals [3). As we will show, the analysis based on this wavelet 
provides a solution to the problems eonsidered basie in events deteetion: 

l. good localization of the information in the time-frequency domain, 
2. charaeterization of the different types of epileptiform events, 
3. real-time impleiuentation of the algorithm proposed. 

At this point we will do some eonsiderations on the wavelet framework 
proposed in this paper. 

l. The time-frequency Jocalization is optimal, i.e. the area of the window in 
the time-frequency domain takes the mínimum value according to the 
incertanty principie (Section 2). 

2. The eomputational burden for ealeulating the wavelets eoeffieients is 
mínimum, the digital filters derived from the spline wavelet analysis are 
efficient, anda reeursive from can be used [17]. 
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3. The spline wavelet analysis defines two biorthogonal basis and, in 
consequence, we need to calcula te two coefficients per sample in order to 
get the values of the energy function (Section 3). This calculation is very 
important in the present scheme since the detector is based on the energy 
function; we use the fast algorithm introduced by Unser et. al. [15). We 
point out that other wavelets can be used, but the main result presented 
in this paper is that an algorithm based on multiresolution analysis, 
biorthogonal or not, can be useful for detecting transients. The reasons 
for using polinomial spline wavelets were stated above, and they refer to 
optimalloc.alization properties and computational efficiency. 

4. The multiresolution is dyadic, i.e. the scale parameter is 2i and the 
frequency axes is partitioned in octaves (Section 2). As it is well know, 
in every leve! of the multiresolution analysis we gct a half of the wavelet 
coefficients with respect to the previous level; for example, in our case, 
256 in the tirst level, 128 in the second, and so on. This fact represents a 
limitation of the dyadic scheme for detection proposes ([18]). However, 
as we state above, inside the multiresolution framework the most 
efticient algorithms were developed. In order to use a fast multiresolution 
algorithm with good properties for detecting transients, we introduce in 
Section 3 a simple decomposition of the energy function in each 
resolution level. In this way we obtain an efficient event-detector based 
on digital filters designed from a dyadic scheme. 

We have used the algorithm presented in this paper for analizing EEG 
signals from epileptic patients who are candidates for surgical removal of 
the seizure focus. The EEGs have been recorded from depth electrodes, and 
all the results presented in this paper correspond to this type of signals. 

The organization of the paper is as follows. In Section 2 the spline 
wavelet analysis is introduced and its links to the above mentioned items are 
shown. (For more details about wavelet theory see References [2], [4], [11 ], 
[12]). The notion of energy function and the detection algorithm are 
considered in Section 3. Finally, results obtained from EEG records of 
epileptic patients are presented in Section 4. 
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2 Wavelet analysis 

Suppose tbat 'ljl (t) E L2 (R.) is any basic wavelet, i.e. it verifies [11] 

r 'ljl (t)dt =o 
-<X> 

Tbe integral wavelet transfonn of a finite energy signa) f ( t) is defined by 

Using as basic wavelet a complex exponential function plus a Hanning 
window compactly supported, Senhadji et.al. [13], [14] have shown the 
usefulness of the wavelet analysis in the detection of spikes and spikes-and­
waves in EEG. The algorithm proposed by these authors calculates the 
wavelets coefficients using a discretized version of the integral wavelet 
transform (1). Tbis implies the calculation of an approximate integral for 
each pair of parameters a,b chosen, i.e. it is a method computationally 
expensive. Trying to get a numerically efficient and fast enough events 
detector, we propose an algorithm based on digital filters. 

With this in mind we analyse the event detection problem in a different 
framework, given by the polynomial spline wavelet transform recently 
introduced by Unser et. al. [15]. Tbe multiresolution representation obtained 
from this wavelet transform and the digital filters derived allow us the 
automatic detection of epileptifonn activity in sucb a way that the 
requirements enumerated in the Introduction are verified. 

The recursive algorithm for calculating the wavelet coefficients is given 
by the formulas (5) to (9). The decimation used in the algorithm can be seen 
as a drawback when we are Jooking for transient events. We have overcame 
it introducing the detector defined in Section 3, which is adequately defined 
for compensating the effects introduced by the decimation factor. : 

Summing up, in order to solve the events detection problem with the two 
basic constraints imposed in the Introduction we chose the multiresolution 
representation given by Unser et. al. Since this approach uses a decimation 
factor that impair the time Jocalization of the events, we introduce a detector 
based on the energy function (10) considering a uniform distribution of the 
atonlS of the total energy. 
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The results obtained by processing EEG records from depth electrodes 
with the proposed algorithm were considered satisfactories (Figures 1 to 5 
show typical examples). 

We will use as scaling function the cubic spline compactly supported 

1
1-ltl+ (1/ 6)1 tl3 - (1/ 3)(1-ltl) 3 si ltls 1 

cj>(t)z (2-ltl)3 !6 silsltls2 

O si ltl> 2. 

(2) 

The corresponding wavelet function ~J ( t) ((15]) is: 

1 
1jJ (t) =--[-el> (2! + 6) + 124cjl (2t + 5) -1677cj> (2t + 4) + 

40320 

+ 7904<jl (2t + 3) - 18482<1> (2! + 2) + 24264cjl (2t + 1) -

- 18482cjl (2t) + 7904cjl (2t- 1)- 1677cp (2t- 2) + 

+ 124cjl (2t- 3)- cjJ (2t- 4)]. 

In order to analize the time-frequency Jocalization properties of the analysis, 
we will calculate the values of the center and radius of tbe time and 
frequency windows: 

In¡¡, = 
1 

') J: tllJ! (t)l2 dt = -05 
1' II1J!IIí2 -oo 

111J! ""II1J!~L2 [_r00 (t+05)
2

I,J!(t)l
2

dt]
112 

=05419] 

m,
1
-: = A 

1 
_, J: w 11J) (w )12 dw = 5.1632 

't' II1J!IIí2 -oo 

1 [roo 2 A 2 112 ] Átj) = II1J)IIr
2 

J_00 (w- 5.1632) I'J! 1 (w )dw] = 0.9239. 

From tbese calculations we obtain the value of tbe window area in the time­
frequency plane: 

(1 1 4)area = Á 1¡J Á 1jJ = 050067, 
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i.e. almost the optimal value 0.5 (Cf. [2]). Thus, the selection of this wavelet 
guarantee a good localization in the time-frequency plane, which was the 
first of the key points enumerated in the Introduction. The second point, i.e. 
the numerical implementation of the algorithm, will be considered in the 
following. 

For a given EEG signa) s(t) initially represented by its polynomial spline 
coefficients at resolution O, the wavelet decomposition is 

00 

s(t) = 2:c0 (k)<j>(t- k)= 
k--oo 

oo N oo 
(3) 

= 2:cN(k)<P(2-N t-k)+ 2: 2:dj(k)1p(2-jt-k), 
k--oo j~1k--oo 

where the numbers d 1 (k),d 2 (k), ... ,d N (k) are the wavelet coefficients, and 

the sequence {eN (k)} represents the coarser resolution signa) at resolution 

leve) N. If this decomposition is carried out over all resolutions Ievels, the 
wavelet expansion 

00 00 

s(t)• 2: 2:d¡(k),p(2-jt-k) (4) 
j--oo k--oo 

is obtained. In ea eh leve) j the series in ( 4) has the property of complete 
oscillation [2], which makes the decomposition useful in applications to 
localization. 

At this point it is convenient to introduce two digital filters that will be 
used in the algorithm. They are given by the transfer functions 

1 6 B- (z) = _
1 

Z+Z +4 

-1 5040 
A (z) = 3 -3 -1 2 -2 · 

z +z +2416+119l(z+z )+120(z +z ) 

As it is usual, we indica te with b -l (k) and a-l (k) the impulse responses of 

these filters. 

Following [15] a fast recursive scheme for obtaining the expansion 
coefficients in (3) is given by (the symbol * means discrete convolution): 
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where 

and 

* c¡+1(k)=[v *C¡]p(k) 

d¡+1(k) =[w **e¡ ]p(k), 

(5) 

(6) 

(7) 

v • (k)= (1/2)[(a-1]tz*a*u](k) (8) 

w • (k)= (112)[[a-1
]tz*Us*Ó ¡](k), (9) 

us(k)=(-llu(k), bl*a(k)=a(k-1), 

[a]p(k) india~tes ... ,a(-2),a(O),a(2), ... and [a]tz(k)- a(k /2) if k is even 

and [a] f2 (k)- O if k is odd. 

Summing up, the coefficients of the expansion (3) are calculated with the 
digital filters (8) and (9). 

3 The detection algorithm 

With the filters previously designed we will build an algorithm for detecting 
epileptic events in EEG's based on the energy of the signa!. 

When the family {t¡¡ k,j(t) = t¡J (2- j t- k)} is an orthonorma/ basis in 

L 2 (R), the concept of energy is linked with the usual notions derived from 
the Fourier theory, and the sum of the square of the coefficient<; of the series 
is the energy of the function, ie. 

when the wavelet decomposition is given by (4). But the wavelets we are 
using belong to the more general class of biorthogonal wavelets [15]. This 
means that there exists a fundion 'Í' (t) su eh that 

· · ¡i if i = j and k = 1 
< "' (2 _, t - k), 'Í' (2-1 t -1) >= 

O otherwise. 
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The family 'ljJ j,k='ljl(2-j t-k)is c-alled the dual basis of \ji j,k· Every 

signa! s(t) can be written as 

where 

s(t)- ~ d · (k)\jl ·k (t) = L.t 1 ], 
j,k 

= 2Jj(k)1l'j,k(t), 
j,k 

dj(k)=<S,'Ijlj,k > 

dj(k)=<S,'lJj,k >. 

In this (biorthogonal) case the energy of the signa! s(t) is given by 

llsll2 
= :¿zjdj(k)dj(k). 

j,k 

The dual 'ljJ (t) is itself a wavelet given by (Cf. [ 15]) 

l¡J(t) = 2(a*[as*a]p)-1(k)\jl (t-k), 
k 

and the corresponding scaling function is 

f(t) = :¿a-1 (k)!jl (t-k). 
k 

The digital filters corresponding to the dual wavelet analysis are 

• 
v (k)= (1/2)u(k) 

w •(k) = (1/2)[as*lls*6¡](k), 

and the initialization sequence is 

(10) 

(11) 

(12) 

co(k) =[a*b-
1
*s](k). (13) 

The algorithms (5)-(6)-(7)-(8)-(9) and (13)-(6)-(7)-(11)-(12) allow us to 
calculate the coefficients involved and to get the energy function (10). Since 
we are using a dyadic decomposition of the range of frequencies, from a 
signa) of M samples we have M/2i coefficients at leve! j. In order to get an 
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accurate detection of the events, we uniformily distribute the "atoms" of 

energy in (10) -i.e. the terms 2 j d j (k )d¡ (k)- a long 2 j points. Defining 

e j (r) .. d j (k)dj (k) (14) 

for integers r in the interval (k -1)2 j < r :S k2 j, the energy in each 
resolution leve) j = 1, ... , N, is 

M 

E j "':¿e¡(r), 
r-1 

and the energy in each sampled time r = 1, ... ,M is 

E(r) = 2:ej(r). 
j 

Different types of epileptic events can be characterized for the values e j (r) 

in different resolution levels. The detection is made when the value e j (r) is 

greater than a threshold Di defined for each level. 

4 Results and Discussion 

EEG records from depth electrodes (diameter 1.8 mm) were analysed. The 
figures 1-5 show the results obtained by processing EEG signals sampled at 
256 Hz, from different patients which are candidates to quirurgical 
treatment. As it was mentioned, different epileptic events appear in different 
resolution levels. For example, the spikes appear in the leve] j "'3, and the 
waves corresponding to the spike-and-waves in the level j = 5. In the Figs. 1 
and 2 the detection of a spike-and-wave and a spike respectively, are shown. 
Fig. 3 ilustrates the results obtained with the proposed method in the 
detection of a train of spike-and-waves and an isolated spike. For 
comparison, Fig. 4 shows the results obtained with other train of spike-and­
waves and base activity. In all the previous cases, the results were obtained 
with the wavelet-based detector plus suited thresholds, as it was explained. 
The value of the thresholds are choosen according to the statistical analysis 
of the base activity. In each case a constant value is assigned when the 
energy function is greater than the corresponding threshold. More details of 
the EEG signa) obtained by assigning a proportional value to the energy 
function when this function overcome the threshold, as Fig. 5 shows. 
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One of the typical characteristics of the wavelet analysis is the freedom 
in the choice of the basic wavelet. As it was pointed out, an important part of 
the answer to the question about the wavelet choosen are the results obtained 
with it. The algorithm proposed in this paper is capable to detect spikes, 
spikes-and-waves, base activity, and slow waves. The basis of such capacity 
are in the different levels of analysis in the frequency doma in. In fact, in the 
scheme proposed we analyse eight frequency bands (octaves) covering from 
high to low frequencies. The cbaracteristic events presented in the EEG can 
be searched in the adequate leve!. This fact differences the proposed detector 
from the previous ones enumerated in the Introduction. A complete picture 
of an EEG processed with our algorithm is shown in Fig. 6. We can observe 
the 8 intervals of frequency and the reconstructions of the signa! in each 
one. In order to show that the information involved in the signa) is kept in 
the wavelet analysis, the reconstruction of the signa) using the 8 levels is 
shown in the last row of Fig. 6. We have shown in this paper that our 
treatment of the information contained in the proposed wavelet analysis lead 
toan efficient algorithm for detecting epileptic events. 

5 Conclusions 

The results presented in this paper show the capabilities of multiresolution 
wavelet analysis for the detection of nonstatiouary phenomena in EEG 
signals from depth electrodes. We will euumerate the main facts of our 
analysis. 

1. Different types of epileptogenic event<; have differcnt frcqucncy 
]ocalization, and correspond to different levels in the multiresolution. 

2. As Figure 6 clearly shows, the complete iuformation contained in the 
EEG signa) can be fouud in the eight multiresolution Ievels. In fact, from 
these Jevels it is obtained the perfect reconstruetion of the EEG signa) 
shown in the last row of the figure. This faet demonstrates that no 
information is lost, and then, with an adequate use of this infonnation 
splitted in the eigth levels the detection of transients is possible. 

3. The energy treatment explained in Section 3 allows an efficient detection 
of characteristic epileptic events. This fact is independent of the basic 
wavelet, and remain va lid for any dyadic multiresolution. 

4. The algorithm presented in the paper shows that the computational 
efficiency of the multiresolution can be used in event-dctcction problems, 
des pite the dyadie dccomposition of the frcquency axes. 
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Figura 6 
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The previous remarks suggest that computational techniques based on 
wavelet theory may be incorporated in the automatic analysis of EEG signals 
from depth electrodes in order to deal with the problem of extraction 
features containing relevant information. 
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