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EXTRAPOLATION AND

-~ COMMUTATORS

OF

SINGULAR INTEGRALS

Carlos Segovia

1. Introduction

In these notes we shall present results concerning

L? inequalities with different but related weights

for commutators of singular and strongly singular integrals.
These commutators turn out to be controlled

by commutator of fractional order

of the Hardy-Littlewood maximal operator.

The boundedness properties are obtained

by extrapolation from infinity.

These notes are based mainly on [G-H-S-T].

We denote by R" the n-dimensional euclidean space. The Lebesgue
measure of a Lebesgue measurable set E C R" is denoted by |E]. If Q is a
cube in R" and y is a real number, then yQ shall stand for the cube with the
same center as Q and side ¥y times that of Q. A weight w(x) is a non-negative
measurable function on R".The measure associated with wis the set function
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given by w(E) = j;: w(x)dx. By L¥ (w),0< p <%, we denote the space of
all Lebesgue measurable functions f(x) such that

A, = (enl F NP w(x)) V7 <o

P (w)
The average of locally integrable function f over a cube Q is defined as

mg f =|Q|'1fo(x)dx. Given a cube QCR" and 0<r <o, the Hardy-

Littlewood maximal function with respect to Q of a function f(x),xE€Q, is
defined as

ME ()= swp QT [ IF O an',

xeJCcQ
where J is any cube satisfying the condition. If Q = R" we simply write

n
M, (f) instead of MrR (f) and if, in addition, r =1, just M(f). Given
1< p <, a necessary and sufficient condition for a weigth w(x) to satisfy

L2 (1)) wiyde s Cf | £ (I wixya,
with a constant C independent of f, is that w belongs to the class A, of
Muckenhoupt, i.e. that wsatisfies the condition:

1 \#-1

sup (I [, w(yae )| 1717 [ wi) #71| =Cp(w) <o,
Jjco

where J is a cube. The condition A; is, by definition, the limit of A, for p—1,
that is to say w&A; ifand only if

sup<|]l"lfj w(x)dx) (esssup .w(x)'l) =Cy(w) <.
JCQ xEJ

The class Ay is the union UA,; l1<p<e, Equivalently w€A,, if and only if
there exist two constants 0<ds1 and C>0 such that for every cube J and
every measurable set E CJ
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@C(m)
w(J) 7]

holds. As references for the A, classes we give [M] and [G-R].

2. Extrapolation

Let v be a weight By A,(v) , 1<p<, we denote the class of all pairs of
weights o and B such that o and P belong to 4, and v=af™. For these
classes we have the following so called extrapolation theorem:

Theorem 2.1 Let T be a sublinear operator and 1<q<». If for every pair

(0, B)EAL(V),

T C
” f“Lq(ﬁq) = af ”f“Lq(aq)

holds with a constant Cop depending only on C(a®) and C(B?), then

171 = o 171l p o,

holds for every 1<p<w, provided that (o, B)EA (V).

For the proof of this result and more references, see [S-T1], [H-M-S] and
[G-R].
The following theorem deals with extrapolation from infinity:

Theorem 2.2 Let v be a given weight, and T an operator such that

1B Tfllo = cl|B fll

holds whenever B and (vB)" belongs to A, with a constant ¢ depending on
3 and v only. Then, for 1<p <,

771l sc,|Ifll

(P PP

holds whenever the pair (o,) € A,(v), with a constant ¢, depending on
PP and v only.
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This theorem has its origin in [H-M-S] and was proved in [S-T 1]. In
order to prove Theorem (2.2) we shall need a result due to J.L.Rubio de
Francia and J.Garcia Cuerva, see [G-R].

Lemma 2.3 Let u be a positive measure and S(u) an operator defined for
u €L (u). We assume that S satisfies

Su)(x)=z0,

S(Au)(x) = |M|S (u)(x),
Sy +u,)(x) s S (g )(x) + Sy )(x)  and
1S Gl IRl

P (w) P(uy’
Then, given u z 0 there exists U such that
u(x) s U(x),
il and

<2|u
() | ”L"(u)
SU)(x) s 2||S||U(x).
Proof  LetS%u) = u and $***(1) = S(5*(u)). We define

U@ = IS ™*s* .

k=0
Then, u(x) < U(x) and

@

Selisih™*lIs* el

=
O M P(w)

il

-k
s 2 =2||u .
[go ]uunL,,(u) lell o

Moreover,

o

SU)s YIS w)
k=0
a

<2lisll Y lsih 4V s 4 w) s 2|Isliv
k=0
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Proof of Theorem 2.2 Let fELF(B¥), 1< p< o, where ff and oPEAP,
af’ = v. We can assume that B(x) > O for every x. We define g(x) as

g(x)=|f ()| p,(x)/||f||LP(ﬁp) if f(x)=0 and

gx)=e™" %/p B ()PP otherwise.

For this function g(x) we have
a) g(x) >0 forevery x,
wﬂﬂﬂmnﬂf%ﬂkﬂvmq“)md
9 [ex)?B ()P drs2

Let us define

SN = B (0P M(B P @) +v(x)B ()7 M B TP ().
This operator S satisfies
Js@) 0P 7 (e =B PIMB P )P dx+ [vP B P[M(v B F )P dx
s[c, (B 2) +c, (vB)P)P 1 |nP B 7 ax.

Thus, by Lemma (2.3) there is a function G such that
e) gx)sG(x) ae,
f) [GPB Fdrs4 and
g S(GX)s2c,(B)F +c,(vB)P)PIG(x) ae.
The inequality in g) implies

h) M(B P'G)x)schp P (x)G(x) and
) METB PG sev T (0B ()P G).
Then, by a), b) and e) we have

111l p g, =117 B P e Nzl f B 2G| -

£

On the other hand, since GB™ and v'$?'G belong to A;, by hypothesis, we
get
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182G T lluscllp 7 G .-
Thus,

1/
bl )77

)1/17

=(firi? B 2ax)"” <11g P67 17|l ([ 7B P ax

P(g P
(P Q

p p ~-1 1/p
4 G 4

3. The sharp maximal function

We shall need the fol]lowing version of the sharp maximal function:

Definition 3.1 Let O<r<e and Q a cube properly contained in R®. Given a
function f(x), x€Q, we define:

1r
172 )= sup{ i (177,17 @) }

xeJ L&

where J is any cube contained in Q. Moreover, f,#(x) stands for the
function defined above where the supremum is taken for all cubes JCR".

Then we have the following theorem:

Theorem 3.2 Let cq be a constant satistying:
Jolroy-col dys2int [o17()~of dy.
Then, given O<p<x and WEA., there exists a constant C such that
)\ f@)=col” s [, MP (£ - e0)(x) P wxyde s Cf 11, @I wiwyae

holds for every f. The constant C does not depend on Q.

Proof: It is enough to prove the theorem for the dyadic maximal
function M,Q (f —cQ)instead of MrQ (f -¢g) since for wEA, they have
equivalent LP(w) norms, see [G-R], p.136. Let g = f- cq. We observe that

fr#’Q (x) = g:"Q (x) holds for every point xEQ. Let )\.6=|Q|'1 fQ|g(x)l'dx
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and Az Ay. We apply the Calderén-Zygmund decomposition to the function

lg[' with parameter A" obtaining a disjoint sequence {/,} of dyadic subcubes
of Q satisfying:

A <|I, |‘1f1k lg@) dxs2"N .

Applying again the Calderén-Zygmund decomposition to |gf, but this time
with parameter 3"\, we get a disjoint sequence {J,} of dyadic subcubes of Q
satisfying:

3”0 "<

-1 r
7 thg(x)lrdx52n3n7» .

We observe that every cube Jy, is contained in one and only one cube /.
Besides, we have:

{xEQ:M,Q(g)(x) >A}=UI, and {xEQ:A?,Q(g)(x) > 3"/r7\.} =UJ,.
Thus, if J,, C I}, we have:

n r -1 r -1
M@ -2 sl ) G el ) 1sOf dy

<1 S, gl -l fsay.

Therefore, since the cubes J, are disjoint, we get:

M Ssln ] lsear -lsor

IpCly

dxdy.

If O<r =<1, then

1@ -1l

holds for every constant c. Thus

-1 . - #, r
AL Sls2int [, g - des20£2 )]
JhCIk cER Tg

=|g(@) - g =lg(x) - +|g(y) I

holds for every z€I,. If 1 < r < %, since

s 180 | srd8() - d+ 1) - ey QG ™+ 1A ™)
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holds for every constant ¢, by Holder’s inequality, we get:

AL Dlsc M en
JpCly

for every zEl. Then, for O<r<, if there is a point zEl, such that
f ,#’Q (2) <yA, it follows that

-1 in(r,1
I, Dla,ls c,y ™00,
JpCly

where C, depends on r and n but not on Q. Thus we have shown that for
Azhjandw €A,

® ({x EeQ: M,Q (g)(x) > 3y, fr#’Q (x) <y )\.})
3.3
< Cy 3 min(r,l)w({x €Q: ﬁrQ &) > 7\.}) €

holds. Here & is the exponent in the A. condition for w. For As A 5, we use
the obvious estimate

© ({x €0 M,Q (g)(x)> 3" }) sw (Q).
Since

Mo= QI 17 0)-col )™ s2£,2(x)
holds for every x€Q, we get:
h o= 2m@) ™ J 12 @I wiy)P . (3:4)

From (3.3) and (3.4), the proof of the treorem follows as usual, namely:
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L7122y ? wiayee

= Cly P e €Q:T2 (g)() > 3 Ay

<l i@ +cf; ph Pl e @2 (e > 3 0, 11200 <yplan
+of 2 {172 > )
< CW(@Ag +Cy > D £ px‘”m( freo i@ >
+C j:; prt w({x €0:f ) > yx})

= Cf (A2 )P nider oy D [ REL (g)0x) Pl

By taking y small enough, we obtain the required inequality.
Let Q C Q’, then
leg —col? < 28] F(x) -l + 27| f (X)=cl” .
Averaging on Q,

leg —col” 527 w(@) " [ Uf @) - <ol + 1 £ () -cql” ym(x)dx

<27w(@ " ([,17 ol w09+ [y £ (- weoi).
By Theorem 3.2, we get
leg - cgrl? 522 ¢, w@) ™[ £ (x)? wixyax.

This shows that cq tends to a finite limit ¢ when the cube Q increases to R".
Moreover,

leg - cl” w(@) s22 c,w(@) " [ £} (x)F w(x)dx.
Since

MrQ(f-C)(X)SZM,Q(f—CQ)(x)+2|cQ -d,
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we have
J M2 f e woodes2” [ MP(f - o)) wx)ee +27 g - 47 WOWQ)
sZchpfff(x)PM(x)dx.

Therefore,
S M, (f -0)@P wxydr s ¢, [ £} (x)Pwix)d.

If in addition we assume that w({x:] f(x)|> A}) is finite for every A> 0, it
turns out that ¢=0. Thus we have proved the following theorem:

Theorem 3.5  Let wEA... Then, for O<p<»,
J1£ - elPwide s [ M, (f - )(x)” wix)dx

sc,, J FF(x)Pwodx

holds with a constant c,, depending on p,r and w only. If in addition we
assume that w({x:| f (x)|> A}) is finite for every A>0 then c is equal to
zero.

4. B.M.O Spaces

Next we shall consider some B.M.O. spaces that are both relevant and
natural in the theory of commutators.

Definition 4.1  Let v be a weight and O<s<w. We shall say that a function
a belongs to the class BMO (v,s) is there exists a finite constant C such that
for every cube Q:

inf [la(x)-cd'descf v(x)*dx.
cERQ Q

The smallest such constant C is denoted by ||alfs , . .

Next we shall apply Theorem 3.2 to derive some properties of the classes
BMO(v,s), which we believe have an independent interest.
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Proposition 4.2 If a € BMO(v,s), and r > s then a € BMO(v,r). If r < s
and V' € A, then a € BMO(v,s), implies thar a € BMO(v,r).

Proof:  Let aqgsatisfy
fQ|a(x) - aQ|s dx < ZCiélng]a(x) -cf’ dx.
Then by Theorem 3.2 and the definition of BMO(v,s), we have:
#, /
Llae-apl descf ety ax=cllalf, , [ 1M )00 ax,

where C is independent of Q. if r > s, by the Hardy-Littlewood maximal
theorem if follows that

,
fQ|a(x)-aQ| dx = C“a”i’v,szv(x)fdx.

If v* € A, and r>s, there exists p such that rp/s > 1 and VP € A.. This

implies (see [S-W]) that V' satisfies a reverse Holder’s inequality with

exponent p. Thus, by Holder’s inequality and the Hardy-Littlewood maximal
theorem, we get:

Jla@)-agl dr s Cllalley , J[ME (v )0 e
Up ,
s Cllally (iMoo ) 1o 2

p ,
sC||a||:,v,s(va(x)'de) Te/ida sC||a||:,\,,s(];2v(x)’dx)

Proposition 4.3 Let a € BMO(u,r), let Q be a cube and let k be a positive
integer. If for every integer h such that 0 s h < k, ath is a number

satisfying:
- "dx s 2 inf —c|"dx
Spgla@-ay, Fdeszint [ lao)-elax,
then:

r r r h -1 r
an-a =C k |alls max( Q k.vix dx)
lag ~a | =,k llally , max(p" O™ [k v ()
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Proof:  We have

k-1
lag _GZlesh%IaZhQ _az”“Ql'

Since
Iath ‘azh+1Q|r =2 (|“2hQ ~a(x)"+ |‘1(x)-02h+1QIr )
we obtain:
1 yr
0 g =gl (P07 S plator-a [
“a bl -1 P\
+27 (12 2l f2h+1Qla(X)-azh+1Ql dx) :
Therefore:

r r r h -1 r
a, —-a sC k' ||a]|e max(Z n vi(x dx),
lag =a i, I,k llallty , max (2 QI [ v(2)
as we wanted to show.

Lemma 4.4 Let a€BMO(v,r), o' B E A,, and ap™ = .. Then, if s is such
that 1s s <o and o*,f*€A;, we have:

o™ [ la)-agl* o (»*dy= Cessinf.p (1),
xE0

for any constant aq satistying:
la(y)-ap| dys2inf J |a(y)-cldy,
fQ 0 cERfQ

where C is finite and independent of Q.

Proof: By Jensen’s inequality, we may assume s>1. We have:
5 —¢ ) o -
a0y -agl*a(n™dy= [, M7 (@-ag)(y) " a(y) ™" dy.

Then by theorem 3.2, we get:
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JMP@-ag)») ) dyscl laf () ak) dy.  (@45)
Since by definition of BMO(v,r) we have, for y&Q :
al? () scMl @)y =cME N,

we see that the second member of (4.5) is bounded by:
cfyMEC I e dy s v Ta ) dy=cf B () dy.

Thus, by our assumption that B~ €A,, the conclusion of the lemma holds. Q

Lemma 4.6 Let 1<p<>. Suppose that (o,p) € A,(V) and a€ BMO(v,r),
then with ag as before:

fQ|a(x) ~an[” B ()P drs can ()P dx
holds for all s = 1, such that f* € A..
Proof:  Since |a(x)-ag 3 M,Q (a-ag)(x),a.e.for xEQ, we have:
JJat)-agl™ B @) des [ M7 (@-ag)(x)™ p (x)*dx.
By theorem 3.2, the last integral is bounded by constant times
#,
J laf e or* s () ax,

and, by definition of the class BMO(v,r), this integral is bounded by constant
times

fQMlQ(v’)(x)psﬁ(x)psdstva(x)rpsﬁ(x)Psdx=Can(x)‘“dx.D

5. The commutator of the Hardy-Littlewood
maximal function

We define commutator of the Hardy-Littlewood maximal function as
follows:
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Given a function a(x) and O< r<
Ca () = suplQl™ [ laG)-a(I' | F )y,
x€0

where Q denotes a cube.

The LP estimates needed for C_ (f) are a consequence of the estimates
for a smooth variant of C,(f): Let ¢(x)20 be a smooth and rapidly
decreasing function and ¢ (x) =€™" ¢ (x/ €). For 0 < r <, we define

O ()(r) =supfon la(x)-a()" b (x-y)| £ (Pldy.

>0

These operators C‘: and (I>; have been studied in [S-T 2] and [S-T 3] for
integral values of r.

Now we are ready to state the results on C,, (f) and @ (f).

Theorem 5.1 Given a weight v and a function a in BMO(v,r), O<r<x , then
the operator ., is bounded from L (a?) to L¥ (B ¥) provided (o,f)
belongs o A, (v")and 1< p <.
Theorem 5.2 Let v be a weight such that " e ,. Then, the following
statements are equivalent:
(i) For some p, 1<p<w, the operator C, is bounded from LP@?) to
LP (B ?) provided (o, B ) belongsto A, (v").
(ii) For every p, 1<p<, the operador.C; is bounded from L? (@ ?) to
LP (B P) provided (o, ) belongs to A, o).
(iii) a belongs to BMO(v,r).
We begin by proving a lemma on weights that shall be needed.
Lemma 5.3 Letr=ri+ry,r; >0 fori=12and 1s p<o. If a ? and
B ? belong 0 A, and af -l v', theny =a. nlr B i satisfies:

(i) y® belongsto A, and
(ioayt=v".andypt=v"2.
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Proof: It 1< p < », by Hélder’s inequality, we have:
r2 ri
-1 Ve -1 PN P p
(1o fyr 7as) * s(ler [, 2ax) 2 (10" f, B 7ax) 2
and

r2 ri1
t 1/P| ' __, ' ——-.
(1o fyyac)  s(lor fo a7 (1o f,p ~as)e"
By multiplying these two inequalities we get that y ¥ €A,. If p = 1, the proof
is even simpler. Q
Proof of Theorem 5.1: First of all, we observe that if there is a pair of
weights (a,f) € A,(V), then V' €A, C A. (see [S-T 1]). Thus, if r = 1, by
Proposition 4.2, a € BMO(v,r) is equivalent to a € BMO(v,1). We shall

estimate the sharp maximal function of the following auxiliary maximal
function: Let N > 0, then set

O, v (@)= sup fonla()-a) oe -y ()dy.

O<e<N

Let Q be a cube and x, €Q. Let ag be a number satisfying
r . r
lea(x)—aQ| dxs 2:22fQ|a(x) - dx,

and

cQ= sup IQI'lfQ Jenla) -agl 0ez- 9l F()x

n,, - (¥)dy|dz.
0<E<N RTAQ
Then, for x&€Q we have
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% v (F)09) - g
pUR la(®) - a) b (x - F ()ldy
&0

-|Q|“fQ(L,,|a<y>—aQ|’ <be(z—y)lf(y)IxR,,MQ(,V)dy)JZ{

la(x) - a()I" -la() - apl"| b (x-S (Wldy

= supj;a,,
S0
+supflala() -agl” e (x-S X 4o O}y
S0

oro)a

+:i|grl fQ (fR () -apl loe(x-y)-oez-MIF x R0

=AZ () +45 )+ 4L ().

Let us consider first the term A3Q (x). Since x,x,,2E€Q and y&4Q, the
mean value theorem can be used to obtain:

suplope (x= ¥) - e (z-y)|S CB /|x - y"*,
>0

where 0 is the sidelength of Q. Therefore:
< —kyk -1 r
AP @ sc 32t ol [ ) -agl £ (lay.
k=0

Thus, if we define

a3(F)(xo) = sup o™ [, AT (x)ax,
xg€EQR

we get:
ok k-1
03(N)xo)sC sup 27RO [k la)-apl 17 (Mldy.
x0€Q0 kw0
We shall show that Theorem 2.2 applies to 03. Let « and 8 be two weights
such that !, B €4, and of = V" Then
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R Q" [ jla()-agl If (ldy
sClifalle R* QI frpla)-a x o () dy

k -1 -1
#Cll ol lag ~a g I RF QI Sy ().

By Lemma 4.4 the first term is bounded by C||fa|l, B (xo)_l. Since
ot €A,. Proposition 4.3 implies that the second term above is bounded by:

Nl & s (R 4 v ) inf @)™ < Cll k"B ()™
O=<hsk - ve2" g

After adding up in k, we obtain

03(f)(x0) s Cll fr | B (%) 7"

Let us consider next the term AZQ (x). We have:

AZ(x)scM(la-agl |f1x 4p)):

Thus, defining o, (f)(x;) by

o (N)xo) = sup QI [ A7 (i,
erQ

we can write:

0 (N)xo) = C sup [0 [, M{la-ag['| flx ap)(x).
xo€Q

We shall show that the extrapolation Theorem 2.2 can also be applied to &2 .
Let o, and v as before. Then, for s > 1, but close enough to 1,

1/s
o™ [ Mla-agl lxag)okde sl (17 [ late) g a9 at]
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Arguing as in the case of o3 for k=2, we obtain:

02 (f)xg) s Cll fell B (%)~

Finally, we consider the term AIQ (x). Here, we shall distinguish two cases:
O<rs1and 1 <r <, Inthe first case, we have:

lla(x)-a(y)" - la(y)-apl |sla(x)-ag|".

Thus,
AL (1) s|a)-apl” M(F)|f ().
Then, defining
01 (f)xo) = sup QI [ AP (e)a,
xg€EQ
we get

0, (f)x) = C sup |OI™" [ lax) - ag|” M(f)(x)dx.
X0EQ

We shall show that oy satisfies the conditions for extrapolation in Theorem
2.2. Let o, and v be as before. Then since ||[eM(f)||.. s Cl| fx ||, we obtain

S laG)-agl M()@)dx s Cll feulla [ la(x) - agl o (x) " dx.

Thus, by Lemma 4.4, it follows that
-1
a1 (f)(xe) s Cll fr [l B (x0) ™ -

For the case 1< r < o, we use the inequality

la(x)-a)I -la(y)-apl| s C, (a(x)-apl +la()-ag| la(x)-a(n) ™).
Thus,

AL (x) s Ca(¥) - anl” M())Ha(x) -ag |87 (F)()).

By averaging A1Q (x) over Q, we get:
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sup 01" [ AP (e sup (107" [ Ja(@)-al” M/ x))
02 R

1 sup (10 [ Ja0) gl ()00 = Clona (X #0105 k0
LIS

We can deal with oy as we did with o in the case 0 < 7 < 1, obtaining

011 (f)(x0) 5 €|l f |l B (x0) ™"

As for a,,, we observe that it coincides with o, in case r = 1, therefore

012 (8)x0) s Cllgy Il B (x0) 7",
ifYB -1 =

We have shown that all the o's defined can be extrapolated from infinity.
Thus, for 1<p <o and 0 <r =< 1, we get:

3
o (NI

q)f
1% v (O pp) = L g

PG N

£

= ’
whenever aP,B"EAP and (xﬁ_1=v, provided CI);,N (HEL’(B?). For
1< r < o, let y be the weight given in Lemma 5.3 with r, =1, =r-1.
Then, since

(@, x ()Y () s Co1, (F)0) +012 (@ (F)(Xo) +05 (F)(%0) +T3(F) (X)),

we get

@l v EN*l sc(|f] e (Nl

P ?) Lp(ap) F(y P)

If we assume that the theorem holds for (I>;'1 , then

@, v (NI clifll

PEhy s P@?y

In order to complete the proof of the theorem, we shall show that the
Fefferman-Stein theorem 3.5 on the sharp maximal function can be applied
if fis a bounded function with compact support. We observe that in this case

@,  (f) is also a function with compact support. This was the main reason
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for introducing (I>; N - Let O be a cube containing the supports of both f and
@, x (f). Then

qu’;,N ()P B (x)Pdxs CfQ|a(x) —apl? M(f)(x)? B (x)Pax
+Cf, M(a-agl'| f)()” B ()" dx.
Then @  (f)ELP(B ). Thus,if 0<rs1,

S Py (NP B (97 desClw®, v (1) B ()P des I

P@?y’
where the constant C does not depend on N. Since <I>;, ~ (f)(x) tends to
@ (f)(x) point-wisely as N tends to . Fatou’s lemma gives us:
, » » p
(nl@L (0N? B )P ax) * <clifl )
forevery (a,B)E A P(v’). This finishes the proof of the theorem. Q

Proof of Theorem 5.2: Let us show that (i) implies (ii). Since the classes
A,(v") allow extrapolation (see [S-T 1]), if the operator C, is bounded
from L?(a?) to LZ(B Z) for every pair (a,B )€ A,(v"), for a given value of
D, then by Theorem 2.1, the same is true for any p such that 1<p<oo. Let us
prove that (ii) implies (iii). Since " €A, (otherwise the classes A,(v") are
empty, see [S-T 1]) we can factor v" -vlvz-l with v. €A for i = 1,2. If

1,12 1,12
) )

a =V, and' B =(v,vq , then (a,B)E A,(v"). We observe that

o =P land a® =v". We have
inff la(x)-¢| dx s inff la(x)-a(y)| dx
%Y yeQ @

stol™ [, J, lax) - a(y) dy

12

s (fQ(lerfQM(x) —a(y)lrdy)2 B (x)zdx) (an (x)zdx)m.
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Since for x&Q

-1 r r

o™ [ la@) -a()l'dy = ¢ (x o)),
we get
N ) 172 172
int [ o)l de= ([, €100 (07 B (%) ([ v ax)

Then, since we are assumming that (ii) holds, we get:

inf [ |a(x)-cldrsCf v(x) dx,

cer"? e
as we wanted to show. Finally, in order to prove that (iii) implies (i), we
choose ¢, a rapidly decreasing function such that (xixs2) SO~ Then,
Cl (f)x) sC @, (f)(%), and consequently, (iii) implies (i) by Theorem 5.2 0

6. Commutators of singular and
Strongly singular integral operators

Given a positive real number’d and a smooth radial cut-off function 6(x)
supported in the ball {x: |x| s 2}, we consider the strongly singular kernel:

i

e
k(x)= —0 (x).
|

Let us denote by Tf the corresponding singular integral operator:
Tf (x) = pv-fou k(= y) f (9)dy.

This operator has been studied by several authors. Among others, we
mention I. LHirschman [H], S.Wainger [W], C.Fefferman and E.M. Stein
[F-S] and S.Chanillo [C]. In particular, S.Chanillo developed the weighted
LPtheory using as a basic tool a result stated as Lemma 2.1 in [C, p.82]. For
the commutator of the Hilbert transform, we mention R.Coifman,
R.Rochberg and Guido Weiss [C-R-W] for the unweighted case, and
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S.Bloom [B], who introduced the classes of weights we shall be dealing
with. The case of general singular integrals with extrapolation methods was
considered by C.Segovia and J.L.Torrea in [S-T 1] and [S-T 2].

Our purpose is to obtain weighted LP estimates with pairs of weights for
commutators of the strongly singular integral operator T. More precisely, we
define the commutator of orden m,m a positive integer, with a function a(x)
as:

TP (F)) = pv-Jon (a(x) - a(y) ™k (2= ) £ ()dy.

We shall reduce the study of this commutator to that of the commutator of

fractional order C (f) of the Hardy-Littlewood maximal operator defined

in §5. More precisely, our technique consists in controlling the sharp
maximal function of the commutator of the operator T by the commutator of
the Hardy-Littlewood maximal function. This type of argument can also be
applied to commutators of standard singular integrals and fractional

integrals, providing proofs which we believe are simpler than those obtained
before.

Now we are ready to state our results

Theorem 6.1  Let a(x) be a locally integrable function. For any number r
such that 1< r < =, the exists a constant C, such that

m-1
@ N o) sc,d D MEr T W) M) A fI o)l }

h=0
holds for every f €Cy (R"), almost everywhere in x, ER".

Theorem 6.2  Let a €BMO(v,1). Then, the commutator T,' is a
bounded operator from L? (@ ?) to L? (B ?) provided (o) belongs to
A,(v")and1<p<o.

Proff of Theorem 6.1: Our purpose is to estimate (T;,m(f))#(xo),xo €R".

Let Q be a cube with sidelength 9, such that xy €Q. Let d; be a number

satisfying 40, =63/1+b. Obviously, 8y < 1. Let us consider the case & < 8.

Let 0 be another cube with the same center as Q but with sidelength & Visb
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We decompose fas f = fi + f» + f5, where fi = fiXap, f2 = Mgy 204

= .. Since
f3 fXR”\Q 1

m (m
(mpa-a(y)” = E(h)(mQa—a(x))m_h @a(x)-a(y)",

h=0
we have:
m m—l(m\ m—~h h
T (f)(x) = - EL j [mea=aC) ™ T ()
h=0\"t ' (6.3)
+fon (mga-a(y)" k(x-y)f (Y)d,
where Tao (f)=Tf . We define
cg =101 [ ([ (mga-a())™ k(z- » £3()ay iz
Then:
o™ [, |77 (F)x) - cglax
m-1
=C Yo [ Imga -Gl T ()00l
w0 (6.4)

2
e D10l [ [ tmga-a()™ kx- ) f; )bkie

i=1
A0 {10 [ |for (mga-a) ™ k(=) k(= 13 )bl .

Then terms under the first summation sign are bounded by:

o™ (107 [ Ja@- aor* 17 sz s ez o) 5o €0

The integral in (6.4) involving f; is bounded by:

r
IO [, 1Tmng -a)™ ol [\ Tng - £ ) 1< <,
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and, by the LP boundedness of T with respect to Lebesgue measure, this is
bounded by:

-1 mr r e
cller f,ghmg -al™ 17 ax)

< C(IQI‘1 fQ(|Q|'1 [ la()-a AT dx)dz)llr

yr

sc[mer a1 o))

As for the integral in (6.4) involving f>, we decompose it as the sum of two
terms like in [C], p.88, obtaining:

Jen(mga-a()™ k(x5 £, )y =

.k
FH g (x-y)f 1 1 .
oy GO “x_yln(l—(2+b)/r') _|x _ @y (mga-a(y))” fr()dy

N o) (ra=at)" 1,0)
P GO e dy = A(x) +B(x),

where r is taken so close to 1 as to guarentee that 2+b<r’. The term A(x) is
bounded in the following way:

lalsc T2 @ o)™ |k, Impa-a®I” 1 £ (idy
k=0 0

[ \
< CIQI‘ldeZL 2248 ke la@-a()]” If(y)ldyJ

k=0

sCM(C, (f)(xp)-

For B we get, following Chanillo’s argument:
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vr
_ el ¢ Imga-a™ 1£200
o™ [ IBeods s clor™” | [, == : y)

|nr(1—(2+b)/r')

ly=-xg

< C|Q|_1/r' ( %(Zké )(r—l)(1+b)n (2k6 )—n

vr
ket Imga—-a)™ | FI dy) ,
k=0

y—xgl<2

1
where ko satisfies 205 <5 1+0 5 2%0*15 . Thus we arrive at:

o™ [ 1BColax s [ ey (71 )] o)

Let us consider now the integral in (6.4) involving f;. It follows from the
mean value theorem and the boundedness of the support of k that for
xE€Q,z€Q and y € R" \J there exists a constant C such that

[k (x=) - k(z=y)|s CB /]y =21

Therefore, the integral in (6.4) involving f; is bounded by:

cier o,

m —(n+bt
e (/2 VB Imga=a(l” |y -2 (b p (y)ldy)rlz

n

s CIQI'lfQ 227 @%) 1+bfLy_z|<z(z"a by mlg a=aO)"™ | £ (ldy
k=0

s CM(C (£ )(Xo)-

Finally, if 8 =2 &, we do not substract the constant cq. To estimate the
averages of the terms under the summation sign in (6.3) we proceed as
above. As for the average of the last term we observe that, for

y =455 ,xeQand y¢y @ we have |x - y| > 2. Therefore, if we write
f =y + I Ao only the first term in this sum can contribute anything

to this average, which is consequently bounded by
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|Qr1fQ[fYQ (mQa-a(y»”'k(x-y)f(y)dyldx

i/r
<cller™ [, tmoa-at)™ 1701 &)

r
= c(lgrlfg (e f la@=-aO)™ 1£ON dy)dz)

=M st )]

Collecting our estimates, we have shown that

h=0

m-1
@ (¥ (xo) = C{ > ME @) OXxo) +IMEC £ o) }

for any r such that 1 < r < e, and this completes the proof of the theorem. (]

Proof of Theorem 6.2: We shall assume that Theorem 5.2 holds. By
Proposition 4.2 a€EBMO(v,mr) for any r>1. If (o,p)EA,(V™) then

(@",B")EA,, (v™) for r>1 and close enough to 1. Indeed, let  be such

that 1< r < p and o *,8 €A, then o B ™ = v™ and (o), (B "Y""EAps. For
this choice of r we have

Falmc arr )" 6 o7 ax
<fa[brc st ] 1B @71 descf (eI (AT X1 (B )V
Then, applying Theorem 5.2, this is bounded by
S F1P" @) dx = [l fIP o P,
On the other hand, by Lemuma 5.3, talking r; = & and r, = m-h, there exist y,

such that (yh,ﬁ)EAP(v”"h) and (a,yh)EAp(vh). Thus, again by
Theorem 5.2
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Jon M@ (PP B (0P e

< ClaCI M (@2 (NP B ()P e < Cla T (1)) Y4 ()P

If in Theorem 6.1 we take m = 1, then & = 0 and v, = «, thus by the weighted
L” estimates for T due to S. Chanillo [C], we get

LT @) B P descfal f @ o (x)? dx.
R R

Assuming that we can apply the Fefferman-Stein theorem on the sharp
maximal function, the last inequality would imply

Jor

which proves the theorem for m = 1. By induction on m and the arguments
given above, the theorem follows for every m, provided that the conditions
required to apply the aforemantioned Fefferman-Stein theorem are fulfilled.
Let f be a bounded function with compact support. Since the kernel k has

also compact support the same happens for the function T;'(f). Let Q be a

T} (00| B () s ol F Pt ()P,

cube containing the supports of both fand T,"(f). Then, since

m { —
@()-ag)" = E(Z)(a(y)-a(x»"(a(x)-aQ) g

h=0

we have

m-1
T (f)(x) s C Da(x)-agl™ |1} (£)x)|
hml (6.5)

+la(x)-ag|™ [T(f )0 +|T(a~ag)™ F)(X).

Let us consider the last term. We have
L11(@-ag)™ )@ B ()7 dx

sCf la@) -ao™ |F (N B ()7 dxs I [ lat)-ap™ B (x)F dx
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By Lemma 4.6, the last term is bounded by
ClI I Jyo ()7 e <

For the term |a(x) - aQ|'" |T(f)(x)| in (6.5), we have, if r>1 is close enough
to1

Jpla)-agI™ IT(F )N B (x)P dx

yr'

1r ,
s([la)-ag™ B " ax] " ([iTCrr )
1r U
scl oo as) 110" <.

In the case m=1, this is all we need in order to apply the Fefferman-Stein
theorem, obtaining:

S| T (@I B ()P de s Cllnl O o ()P,

for any bounded function f.with compact support. If we assume that for
O<h<m

h
S\ TZ (O B ()7 de s Lo f ()P @ (x)Pdx,
holds for any (a,B)€E A, (vh), then for the terms under the summation
sign in (6.5) we get

Jola@)=agl ™™ |1 (PP B ()7 dx

(m—h)/m him
([ laG)-agl™ B (x)7 dx LITE e B (x)? ax
Q Q

)(m—h)/m

m/h him
sclfpa@ra (fngJ'(fXac)l"'"”'(ﬁ(x)"/"')" dx) :

(6.6)
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Since oﬁ'l-vmzmdap,ﬁ"EAp, we have oM™y 1oyt and

af,BPEA, i, (@ him o himy e Ao (v ™. Thus (6.6) is bounded by

h/

(m-h)/m m
dfpa@?a) (L@ awra) sl f @,

and the proof is complete )
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