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EXTRAPOLATION AND 
COMMUTATORS 

OF 
SINGULAR INTEGRALS 

Carlos Segovia 

l. Introduction 

In these notes we shall present results concerning 
LP inequalities with different but related weights 

for commutators of singular and strongly singular integrals. 
These commutators turn out to be controlled 

by commutator of fractional arder 
ofthe Hardy-Littlewood maximal operator. 

The boundedness properties are obtained 
by extrapolation from infinity. 

These notes are based mainly on [G-H-S-T]. 

We denote by Rn the n-dimensional euclidean space. The Lebesgue 
measure of a Lebesgue measurable set E C Rn is denoted by !El. If Q is a 
cube in Rn and y is a real number, then yQ shall stand for the cube with the 
same center as Q and side y times that of Q. A weight w(x) is a non-negative 
measurable function on Rn.The measure associated with w is the set function 
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given by w(E) =fe w(x)dx. By LP (w), O< p < oo, we denote the space of 

all Lebesgue measurable functions f(x) such that 

11!11 P =<f. n if(x)IPw(x)dx) 11
P < oo. 

L (w) R 

The average of locally integrable function f over a cube Q is defined as 

mQf =IQ¡-
1 JQ f(x)dx. Given a cube Q e R" and O< r < oo, the Hardy-

Littlewood maximal function with respect to Q of a function f(x),x E Q, is 

defined as 

Mf (f)(x) = sup (IJ¡-
1 JJ lf(y)ir dy)

11
r, 

xEJCQ 

where J is any cube satisfying the condition. If Q = R" we simply write 

Mr (f) instead of M~n (f) and if, in addition, r =1, just M(f). Given 

1 < p < oo, a necessary and sufficient condition for a weigth w(x) to satisfy 

with a constant e independent off, is that w belongs to the class Ap of 
Muckenhoupt, i.e. that w satisfies the condition: 

[ 

1 lp-1 
sup(IJI-

1 f, w(x)dx) 1Jr
1 f, w(x) p-

1 
=e p (w) < oo, 

JCQ 

where J is a cube. The condition A 1 is, by definition, the limit of AP for p-1, 
that is to say »E.4 1 if and only if 

sup(IJ¡-
1 

JJ w(x)dx) (esssup. w(x) -l) = e 1 (w) < oo. 
JCQ xEJ 

The class A"' is the union UAp; 1<p<<X>. Equivalently »EA"' if and only if 
there exist two constants O«'lsl and e>O such that for every cube J and 
every measura ble set E e J 
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w(E) s: e(~)<> 
w(J) IJI 

holds. As references for theAP classes we give [M] and [G-R). 

2. Extmpolation 

Let v be a weight By Ap(v) , l<p<oo, we denote the class of all pairs of 
weights a and ~ such that aP and ~P belong to Ap and v=a~·1 • Por these 
classes we ha ve the following so called extra polation theorem: 

Theorem 2.1 Let T be a sublinear operator and 1 <q<oo. lf for every pair 
(a,~)EAq(v), 

holds with a eonstant Ca,Jl depending only on Cq(aq) and Cq(~q), then 

IITfiiLP(~ p) S: ca~ II!IILP(aP) 

ho/ds for every 1 <p<oo, provided that (a,~)EAp(v). 

Por the proof of this result and more references, see [S-T1 ], [H-M-S] and 
[G-R]. 

The following theorem deals with extrapolation from infinity: 

Theorem 2.2 Let v be a given weight, and Tan operator sueh that 

11 ~ Tflloo S: ell ~ flloo 

holds whenever W1 and (v~)'1 belongs to A1 with a eonstant e depending on 
3 and v only. Then, for 1 < p < oo, 

IITfiiLP (~ p) s: e p 11 !IILP(~ p) 

ho/ds whenever the pair (a, 13) E Ap(v), with a eonstant cP depending on 
p,a, ~ and v only. 
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This theorem has its origin in [H-M-S] and was proved in [S-T 1 ]. In 
order to prove Theorem (2.2) we shall need a result due to J.L.Rubio de 
Francia and J.García Cuerva, see [G-R]. 

Lemma 2.3 Let t..t be a positive measure and S( u) an operator defined for 
u ELP (f..t). We assume that S satisfies 

S(u)(x) ~O, 

S(i-.u)(x) = li-.IS(u)(x), 

S(u1 +u2 )(x)sS(u1 )(x)+S(u2 )(x) and 

IIS(u)IILP(~) s IISII.IIuiiLP(~) · 

Then, given u ~ O there exists U such that 

u(x) s U(x), 

IIUIILP(!t) s 2lluiiLP(~) 

S(U)(x) s 2IISIIU(x). 

and 

Proof. Let S0(u) = u and sk+
1(u) = S(S\u)). We define 

"' 
U(x)= }:(ZIISII)-kSk(u)(x). 

k-O 

Then, u(x) s U(x) and 

Moreover, 
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"' 
IIUIILP(~) s t

0
(2IISII)-ki1Sk (u)IILP(~) 

s(~z-k)lluiiP ,..zlluiiP · 
k·O L ( ~) L ( ~) 

"' 
S(U) s }:CZIISII)-ksk+l(u) 

k·O 

00 

~ 211s11}: (2llsll) -(k+l) sk+t (u) s z11s11u 
k=O 

o 



ProofofTheorem 2.2 Let jEU(~P), 1< p< oo, where ~P and aPEAr, 
aW1 

=V. We can assume that ~(x) >o for every x. We define g(x) as 

g(x)=lf(x)l~p'(x)/II!IIP P if f(x) .. Oand 
L (~ ) 

') 

g(x) = e-n(x)-lp~ (x)p'/p otherwise. 

For this function g(x) we ha ve 

a) g(x) >O for every x, 

b) llf(x)~(x)p'g-\x)II"'=II/IILP<~P) and 

e) J g(x)P ~ (x)-p' d.x s 2. 

Let us define 

1 1 1 1 1 

S(h)(x)= ~(x)P M(~ -ph)(x)+v(x)~(x)P M(v- ~ -ph)(x). 

This operator S satisfies 

fs(h)(x)P~ -p'(x)d.x=f~ P[M(~ -p'h)]Pd.x+JvP~ P[M(v-1 ~ -p'h)td.x 

s[cp(~ P)P +cp((v~ )P)PÚiJtiP ~ -p'd.x. 

Thus, by Lenm1a (2.3) there is a function G such that 

e) g(x) s G(x) a.e., 

t) J oP ~ -p'd.x s 4 and 

g) S(G)(x)s2[cp(~P)P+cp((v~)P)P]G(x) a.e. 

The inequality in g) implies 

h) M(j3 -p'G)(x) ::;;cj3 -p'(x)G(x) and 

i) M(v-1 ~ -p'G)(x)scv-1 (x)~ (x)-p'G(x). 

Then, by a), b) ande) we have 

On the other hand, since op-r' and v·1p-r'o belong toA¡, by hypothesis, we 
get 
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Thus, 

s 411
P cll13 p'a-l !!loo s 411P cllfll p p 

L (~ ) 

3. The sharp maximal function 

We shall need the following version of the sharp maximal function: 

Definition 3.1 Let O<r<oo and Q a cube properly contained in Rn. Given a 
function f(x), xEQ, we define: 

fr#,Q (x) = sup{ inf(II¡-1 L lf(y)-clr dy tr } .. 
xEJ cER 

where J is any cube contained in Q. Moreover, fr# (x) stands for the 

function defined above where the supremum is taken foral/ cubes JCRn. 

Then we ha ve the following theorem: 

Theorem 3.2 Let c0 be a constant satisfying: 

Then, given O<p<oo and wEA"", there exists a constante such tltat 

lwlds for every f The constant e does not depend on Q. 

Proof· lt is enough to prove the theorem for the dyadic maximal 

function Mf(f-cQ)instead of Mf(f-cQ) since for »EA"' they have 

equivalent LP(w) norms, see [G-R], p.l36. Let g = f- c0. We obse!Ve that 

fr#,Q (x) = l·Q (x) bolds for every point xEQ. Let J.. ~-IQ¡-1 JQig(xt dx 

150 



and A. i!: ixJ. We apply the Calderón-Zygmund decomposition to the function 

jgl' with parameter f.! obtaiuiug a disjoiut sequeuce {/k} of dyadic subcubes 
of Q satisfyiug: 

A.' < II k l-1 J, 1 g(x)l' dx s 2" f.! . 
¡k 

Applyiug agaiu the Calderóu-Zygmuud decompositiou to lgl', but this time 
with parameter 3°1..', we get a disjoiut sequeuce {Jh} of dyadic subcubes of Q 
satisfying: 

We observe that every cube Jh is contained in oue and ouly oue cube /k. 
Besides, we have: 

Thus, iflh C/k, we have: 

Therefore, since the cubes Jh are disjoint, we get: 

A.'IIkl-
1 

_¿¡I¡.Is lhr
2 ~k~Jg(x)l' -ig(y)i'ldxdy. 

l¡,Cik 

If 0< r s 1, then 

holds for every constant c. Thus 

A. 'II k l-1 _¿ II h is 2 inf II k l-1 J lg(x)- e¡' dx s 2[/,#,Q (z)f 
JhCik cER ¡k 

holds for every zEI .... If 1 < r < oo, since 

llg(x)l' -lg(y)l' 1 s r(!g(x)- el+ lg(y)- el) (lg(x)l'-1 + lg(y)l'-1
) 

151 



holds for every constante, by Holder's inequality, we get: 

A riid-1 :LIJhjsCr[fr#,Q(z)]A r-1 

JhClk 

for every zElk. Then, for Ü<r<oo, if there is a point zElk such that 

fr#,Q (z) <yA, it follows that 

j/kj-1 :LIJhjsCrymin(r,l)' 

JhClk 

where C, depends on r and n but not on Q. Thus we have shown that for 
A~ A 0 and ro E A00 

(3.3) 
s Cy ¡¡ min(r,l)w( {x E Q: M~ (g)(x) >A}) 

holds. Here () is the exponent in the A,. condition for w. For AS A 0 , we use 

the obvious estima te 

W ( {x E Q: Mf (g)(x) > 3"1
r A}) sw (Q). 

Since 

holds for every xEQ, we get: 

From (3.3) and (3.4), the proof of the treorem follows as usual, namely: 
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foiíf (g)(x)P 11-(x)dr 

= cf; pf... p-111-({xEQ:M9 (g)(x) > 3nlrf...})df... 

S cfoio pf...p-1df...~Q)+C.Cpf...p-1~{xEQ:Mf(g)(x) > 3n/rf...,fr#,Q(x) <yt..}~ 

+C.Cptr1~{t:'Q(x) >yt..}) 

S C~Q)~ +Cy [) min(r,1) ropf...P"-1~ {x EQ:M9 (g)(x) >t..}) 

+C{0pf...P"-1 ~{xEQ:fr#,Q(x) >yt..}) 

S cfQUr#,Q (x))p 11-(x)dx + cy [) min(r,1) fQM"f (g)(x)P 11-(x)dx. 

By taking y small enough, we obtain the required inequality. O 

Let Q e Q', then 

leQ- eQ'IP s 2Pif(x)- eQIP + 2P lf(x)- eQ'IP. 

Averaging on Q, 

icQ- eQ'IP s 2P w(Qf
1
JQ Cl f(x) -eQIP + lf(x) -eQ'iP )w(x)dx 

s 2P w(Qf
1
lfQif(x)-eQiP w(x) + JQ,if(x) -eQ'IP w(x)dx). 

By Theorem 3.2, we get 

ieQ- eQ,¡P s 2P e P w(Q) -1 J fr# (x)P w(x)dx. 

This shows that e0 tends toa finite limite when the cube Q increases to Rn. 
Moreover, 

Sin ce 

Mf (!- e)(x) s 2Mf (!- eQ )(x) + 2leQ- el, 
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we have 

~Mf(f -e)(x)P u{x)dxs2P JQMf<t -eQ)(x)Pu{x)dx+2PicQ -qP 1-\{Q)u{Q) 

s 22P e PJ fr# (x)P 1-\{x)dx. 

Therefore, 

J Mr (f -e)(x)P w(x)dx s e~J fr# (x)Pw(x)dx. 

If in addition we assume that w({x:lf(x)l> A.}) is finite for every A> O, it 
turns out that e=O. Thus we ha ve proved the following theorem: 

Theorem 3.5 Let wEA.,. Then, for O<p<~X~, 

JI f (x)- eiP w(x)dx :s J M r (f- e)(x)P w(x)dx 

se p,rJ fr# (x)P w(x)dx 

holds with a eonstant ep,r depending on p,r and w only. lf in addition m? 

assume that w({x:lf(x)l> A.}) is finite for every A> O then e is equal to 

zero. 

4. B.M.O Spaces 

Next we shall consider some B.M.O. spaces that are both relevant and 
natural in the theory of commutators. 

Definition 4.1 Let v be a weight and Ü<S<IXI. We shall say that a fimetion 
a belongs to the class BMO (1~s) is there exists a finite constant C such that 
for every cube Q: 

The smallest suclz constant C is denoted by llall!,v,s. 

Next we shall apply Theorem 3.2 to derive some properties of the classes 
BMO(v,s), which we believe have an independent interest. 
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Proposition 4.2 lf a E BMO(v,s), and r > s then a E BMO(v,r). lf r < s 
and u' EA .. , then a E BMO(v,s), implies that a E BMO(v,r). 

Proof· Let a0 satisfy 

lQia(x)- aQ ¡s dx s 2 inf l la(x)- cls dx. 
cER Q 

Then by Theorem 3.2 and the definition of BMO(u,s), we ha ve: 

JQ!a(x) -aQir dx s cfQ[a!•Q (x)f dx s Cllall:,v,sfQ[Mf (vs)(x)f/s dx, 

where C is independent of Q. if r > s, by the Hardy-Littlewood maximal 
theorem if follows that 

If v' E A .. and r>s, there exists p such that rp/s > 1 and v'1' E A ... This 
implies (see [S-W]) that v satisfies a reverse Holder's inequality with 
exponent p. Thus, by HOlder's inequality and the Hardy-Littlewood maximal 
theorem, we get: 

( )

1/p 
S Cllall:,v,s JQ[ Mf (v s)(x)]rp/s dx IQI1Jp' 

s Cllall~.v.s (JQ v(x)rp dx tp IQil/p' s Cllall~.v.s (IQ v(x/ dx) 

Proposition 4.3 Let a E BMO('u,r), /et Q be a cube and let k be a positive 
integer. Jf for every integer h such that O s h s k, a h is a number 

2 Q 
satisfying: 

then: 
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Proof: We have 

k-1 

laQ -a k ls 21a_h -a h+l 1· 
2 Q h-o z·Q 2 Q 

Sin ce 

la h -a h+l 1' s 2' (la h - a(x)l' + la(x)- a h+l 1' ), 
2Q 2 Q 2Q 2 Q 

we obtain: 

Therefore: 

as we wanted to show. O 

Lemma 4.4 Let aEBMO(v,r), a·\W1E A¡, and a¡~-I = v. Then, if s is such 
that ls s < oo and a"",j3 ... EA 11 we have: 

1Qr1 JQia(y)- aQ l's a (y) -sdy se ess inf. ~ (x) -s, 
xEQ 

for any constant a0 satistying: 

f la(y)-aQI' dy:s2üúl la(y)-cj'dy, 
Q cER Q 

where e is ftnite and independent ofQ. 

Proof· By Jensen's inequality, we may assume s>l. We have: 

Then by theorem 3.2, we get: 
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Since by definition of BMO(v,r) we have, for yEQ : 

a~·Q (y) s CMf (v )(y)= C(Mf (v r )(y))llr, 

we see that the second member of (4.5) is bounded by: 

cfQ Mf (v')(y)sa (y)-s dy s cfQ v(y)'sa (y)-s dy = cfQ f3 (y)-s dy. 

Thus, by our assumption that f3-s EA¡, the conclusion of the lemma holds. O 

Lemma 4.6 Let 1<p<oo. Suppose that (a,f3) E Ap(v') and aE BMO(v,r), 
tlzen with ao as before: 

holds foral/ s ~ 1, su eh that f3sp E A ... 

Proof: Since ia(x) -aQ ls Mf (a- aQ)(x),a.e. for xE Q, we have: 

JQia(x)-aQirps f3 (x)P''ctxsfQMf(a-aQ)(x)'ps f3 (x)psdx. 

By theorem 3.2, the last integral is bounded by constant times 

i [a~'Q(x)(psl~ (x)psdx, 
Q 

and, by definition of the class BMO(v,r), this integral is bounded by constant 
times 

5. The commutator of the Hardy-Littlewood 
maximal function 

We define commutator of the Hardy-Littlewood maximal function as 
follows: 
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Given a function a(x) and Ü< r< oo 

e~ (f)(x) = supiQI-
1 J ia(x)-a(y)¡rjf(y)jdy, 

xEQ Q 

where Q denotes a cube. 

The LP estimates needed for e:(!) are a consequence of the estimates 

for a smooth variant of e:(!): Let <j> (x) ::e O be a smooth and rapidly 

decreasing function and <j>E(x) =E-n <1> (x/E). ForO< r < oo, we define 

<I>: (f)(r) = sup kn ja(x)- a(y}( <I>E (x- y)j f (y )jdy. 
E> O 

These operators e~ and <1>: have been studied in [S-T 2] and [S-T 3] for 

integral values of r. 

Now we are ready to state the results on e: (f) and <1>: (f). 

Theorem 5.1 Given a weight v anda fimction a in BMO(v,r), Ü<r<OC, tllen 

the operator <I>: is bounded from LP (a P) to LP (~ P) provided (a, f3) 

belongs to AP (vr) and 1 < p < oo. 

Theorem 5.2 Let v be a weiglzt suc/1 tlzat v' E~. Titen, tite following 

statements are equivalent: 

(i) For sorne p, 1 <p<oo, the operator e; is bounded from LP (a P) to 

LP (~ P) provided (a,~) belongs to A P (vr ). 

(ii) For every p, 1 <p<oo, the operador e; is bounded from LP (a P) to 

LP (13 P) provided (a,~) belongs to A P (/ ). 

(iii) a belongs to BMO(v,r). 

We begin by proving a Iemma on weights that shall be needed. 

Lemma 5.3 Let r = r1 + r2 , r¡ >O for i = 1,2 and 1 s p < oo. If a P and 
p -1 r r2 /r r1/r . 13 be long to Ap and al3 = v , titen y =a 13 satlsfies: 

(i) y P belongs to Ap a nd 
(ii) ay"1 = v r¡ . and yj3 -l = v rz . 
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Proof: If 1<p < oo, by HOlder's inequality, we have: 

r 2 r 1 

(IQI-1 JQ y P dx) 
11 

p s (IQI-1 JQ a P dx) ;; (IQI-1 JQ ~ P dx) ;; 

and 

r 2 r 1 

(IQI-1 JQ y -p'dx tp' s (IQI-1 JQa -p'dx f p' (IQ¡-1 JQ ~ -p'dx f p'. 

By multiplying these two inequalities we get that y P EAP. If p = 1, the proof 

is even simpler. O 

ProofofTheorem 5.1: First of all, we observe that if there is a pair of 
weights (a,~) E Ap(v'), then v' E A 2 CA'"' (see [S-T 1 ]). Thus, if r :t: 1, by 
Proposition 4.2, a E BMO(v,r) is equivalent to a E BMO(v, 1). We shall 
estímate the sharp maximal function of the following auxiliary maximal 
function: Let N > O, then set 

<l>:,N (f)(x) = sup Ln la(x)- a(yt el> E (x- Y)l f(y)ldy. 
Ü<E<N 

Let Q be a cube and x0 EQ. Let a0 be a number satisfying 

and 

Then, for xEQ we ha ve 
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I<I>:,N (f)(x)- cQ 1 

s sup~nla(x) -a(yt 4>E(x- y)lf(y)ldy 
E> O 

-IQI-1JQ(~nla(y)-aQir c!>E(z- Y)lf(y)lx Rn\
4
Q (y)dy )4 

s sup~n lla(x) -a(yl-la(y) -aQirlcj>E(x- Y)lf(y)ldy 
E> o 

+ sup~nla(y) -aQ¡r c!>E(x- Y)lf(y)IX4Q(y)dy 
E> o 

+ supiQr1LQ(~n·la(y) -aQ¡rjcj>E(x- y)- c!>E(z- y)llf(y)lx n (y)dy) dz 
E>o R \4Q 

= Af (x) + Af (x) +A~ (x). 

Let us consider first the term A~(x). Since x,x
0
,zEQ and y~4Q, the 

mean value theorem can be used to obtain: 

suplc!>E(x-y)-cj>E(z-y)lseb /lx0 -yl"+
1

, 

E> O 

where bis the sidelength of Q. Therefore: 

00 

A~ (x) se 2 2-k l2k Ql-1 fzk Q la(y)- aQ Ir 1 f(y)ldy. 
k·O 

Thus, if we detine 

o 3 (f)(x0 ) = sup IQI-
1 

JQ A~ (x)dx, 
xoEQ 

we get: 

00 

03(f)(xo) S e sup :¿2-k l2k Ql-l fzkQia(y)-aQir lf(y)ldy. 
xoEQk·O 

We shall show that Theorem 2.2 applies to o3• Let a and 13 be two weights 
such that a·1

, 13"1 EA1 and aj3 = v'. Then 
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12k Qr1 
fzkQia(y)-aQr lf(y)ldy 

s Cllfa lloo 12k Q¡-1 fzk Qla(y)- a 
2

k Q 1' a (x) -l dy 

+CIIfix lloo laQ -a iQI' tlk Q¡-1 
fzk Qa (x)-

1
dy. 

By Lemma 4.4 the first term is bounded by Cllfixlloo ~ (x0 )-
1

. Since 

a -1 EA¡. Proposition 4.3 implies that the second term above is bounded by: 

After adding up in k, we obtain 

Let us consider next the term Af (x). We have: 

Thus, defining a 2 (f)(x0 ) by 

a 2 (f)(x0 ) = sup IQI-1 JQ Af (x)dx, 
xoEQ 

we can write: 

az (f)(xo) S e sup IQI-1 
JQ M(la -aQ I'I!IX4Q)(x)dx. 

xoEQ 

We shall show that the extrapolation Theorem 2.2 can also be applied to az . 
Let a,~ and vas before. Then, for s > 1, but close enough to 1, 
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Arguing as in the case of a 3 for k=2, we obtain: 

Finally, we consider the term Af (x). Here, we shall distinguish two cases: 

O < r s 1 and 1 < r < oo. In the first case, we have: 

Thus, 

Af (x) s la(x)- aQ Ir M(f)l f (x). 

Then, defining 

weget 

a1 (f)(x0 ) = sup IQ¡-1 fQAf (x)dx, 
xoEQ 

a1 (f)(x0 ) se sup IQI-1 JQia(x)- aQ ¡r M(f)(x)dx. 
xoEQ 

We shall show that a 1 satisfies the conditions for extrapolation in Theorem 
2.2 . Let a,~ and v be as befo re. Then since llaM(f)lloo s e11 fU lloo, we obtain 

Thus, by Lemma 4.4, it follows that 

a¡(f)(xo)seiiJUIIoo ~(xo)- 1 . 

For the case 1< r < oo, we use the inequality 

lla(x)- a(y)l' -la(y)- aQ 1' 1 se, (la(x)- aQ 1' + la(x)- aQ 1 la(x)- a(y)lr-l ). 

Thus, 

Af (x) s e(la(x)- aQ Ir M(f)(x)+la(x)- aQ I<P:-l (f)(x)). 

By averaging Af (x) over Q, we get: 
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sup IQI-1 
foAf(x)dxs e sup (IQI-1 foia(x)-aQ¡r M(f)(x)dx) 

xoEQ xoEQ 

+C sup (IQI-1 
JQia(x)-aQI<I>:-1 (f)(x)dx)- C(cr11 UXx0 ) +cr12 (<I>:-1(f))(x0 )). 

xoEQ 

We candeal with cr11 as we did with cr1 in the case O< r s 1, obtaining 

As for cr12, we observe that it coincides with cr1 in case r = 1, therefore 

ify~ -l =V. 

We have shown that all the a's defined can be extrapolated from infinity. 
Thus, for 1<p < oo andO< r s 1, we get: 

3 

II<~>:,N(f)llff<~P) s CII<<~>:,N(f))*llff<~P) s C~llcr¡ (f)llff<~P) s C11tllff(aP), 

whenever aP,~PEAP and ~-1 
.. v, provided <~>:,N(f)ELP(~ P). For 

1< r < oo, Jet y be the weight given in Lemma 5.3 with r2 = 1,r1 = r -l. 
Then, since 

weget 

Ifwe assume that the theorem holds for <I>:-l, then 

In order to complete the proof of the theorem, we shall show that the 
Feffennan-Stein theorem 3.5 on the sharp maximal function can be applied 
if[is a bounded function with compact support. We observe that in this case 

<~>:,N (f) is also a function with compact support. This was the main reason 
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for introducing <~>:,N. Let Q be a cube containing the supports of both f and 

<I>: N (f). Then 
' 

IQ <I>:.N (f)(x)P ~ (x)P dx :S efQia(x) -aQirp M(f)(x)P ~ (x)P dx 

+ efQ M(la -aQrlfl)(x)P ~ (x)P d.x. 

Then <l>:,N (f) ELP (~ P). Thus, if 0 < r s 1, 

~n <l>: N (f)(x)P ~ (x)P dx S ef.Rn <l>: N (f)# (x)P ~ (x)P dx :S ellfllpp P , 
' ' L (a ) 

where the constant e does not depend on N. Since <~>:.N (f)(x) tends to 

<I>: (f)(x) point-wisely asNtends to oo. Fatou's Iemrna gives us: 

for every (u, 13) E Ap(vr). This finishes the proof ofthe theorem. O 

Proof of Theorem 5.2: Let us show that (i) implies (ii). Since the classes 

A P ( vr) allow extrapolation (see [S-T 1 ]), if the operator e; is bounded 

from LP (a P) to LP ( j3 P) for every pair (u, j3) E Ap(vr ), for a given val u e of 

p, then by Theorem 2.1, the same is true for any p such that l<p<oo. Let us 

pro ve that (ii) implies (iii). Since vr EAz ( otherwise the classes A P ( vr) are 

empty, see [S-T 1]) we can factor vr -v1v:i1 with V¡ EA1 for i = 1,2. If 

a =(v1v21l 12 and ~ =(v2v¡1
)112 , then (u,j3)EA2(vr). We observe that 

a=~ - 1 and u 2 = vr. We ha ve 

inf i la(x)- cr dx :S inf i la(x)- a(yt dx 
cER Q yEQ Q 

siQI-1 
JQJQia(x)-a(y)¡' dxdy 

( 2 \1/2 1/2 

:slJQ(1Qr
1
fQia(x)-a(yfdy) ~(x) 2 d.xJ (IQa(x)

2 d.x) . 
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Since for xEQ 

weget 

Tben, since we are assununing that (ii) holds, we get: 

infl la(x)-clrtb:seJ v(x)rtb:, 
cER Q Q 

as we wanted to show. Finally, in order to prove that (iii) implies (i), we 
choose cjl, a rapidly decreasing function such that X {x~xis2} s cjl. Tben, 

e; (f)(x) S e <1>: (f)(x), and consequentJy, (iii) implies (i) by Tbeorem 5.2 0 

6. Commutators of singular and 
Strongly singular integml operato1·s 

Given a positive real number o and a smooth radial cut-off function S(x) 
supported in the ball {x: ~~ s 2}, we consider the strongly singular kernel: 

e 
iJxl-h 

k(x) =--e (x). 
lxl" 

Let us denote by Tf the corresponding singular integral operator: 

Tf(x) =p. v.JR" k(x- y)f(y)dy. 

Tbis operator has been studied by several authors. Among others, we 
mention J. I.Hirschman (H], S.Wainger [W], C.Feffennan and E.M. Stein 
[F-S] and S.Chanillo [C). In particular, S.Chanillo developed the weighted 
LP·theory using as a basic tool a result stated as Lemma 2.1 in (C, p.82]. For 
the conunutator of the Hilbert transform, we mention R.Coifman, 
R.Rochberg and Guido Weiss [C-R-W] for the unweighted case, and 
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S.Bloom [B], who introduced the classes of weights we shall be dealing 
with. The case of general singular integrals with extrapolation methods was 
considered by C.Segovia and J.L.Torrea in [S-T 1] and [S-T 2]. 

Our purpose is to obtain weighted LP estima tes with pairs of weights for 
commutators of the strongly singular integral operator T. More precisely, we 
define the commutator of orden m,m a positive integer, with a function a(x) 
as: 

Tam (f)(x) = p.v.~n (a(x)- a(y))mk(x- y)f(y)dy. 

We shall reduce the study of this commutator to that of the commutator of 

fractional order e; (f) of the Hardy-Littlewood maximal operator defined 
in §5. More precisely, our technique consists in controlliug the sharp 
maximal fuuction of the commutator of the operator T by the commutator of 
the Hardy-Littlewood maximal function. This type of argumeut can also be 
applied to commutators of standard singular integrals and fractional 
integrals, providing proofs which we believe are simpler than those obtained 
befo re. 

Now we are ready to state our results 

Theorem 6.1 Let a(x) be a locally integrable function. For any number r 
such that 1< r < oo, the exists a constante, such that 

(Tam (!))# (xo) Ser !11 
M(e:;-h (T;· (f)))(xo) + [ M)c:;'r Cl !Ir ))(xo)]11r} 

h-0 

holds for every fE e; (R" ), almost everywlzere in x0 E R". 

Theorem 6.2 Let a E BMO(v ,1). Titen, the commutator Tam is a 

bounded operator from LP(aP) to LP(f3 P) provided (a,f3) belongs to 

Ap(vm) and 1 <p < oo. 

Proff o[Theorem 6.1: Our purpose is to estímate (Tam(/)) 11 (x0),x0 ER 11
• 

Let Q be a cube with sidelength b, such that x0 E Q. Let 60 be a number 

satisfying 46 0 = 6 t/l+b. Obviously, 60 < l. Let us consider the case 6 < 60• 

Let Q be another cube with the same ceuter as Q but with sideleugth 6 1/l+b. 
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We decompose f as f = /1 + /z + /3, where / 1 = fx 4Q, fz = fx Q\4Q and 

/ 3 = fx n _. Since 
R \Q 

we have: 

m-l(m\ 
T

0
m (f)(x) =- _¿¡ J<mQa- a(x))m-h T

0
h (f)(x) 

h-0' J¡ (6.3) 

+ JR" (mQa- a(y))m k(x- y)f(y)d, 

o where T
0 

(f) .. Tf. We define 

cQ =IQI-1 
JQ(JRn (mQa- a(y))m k(z- y)IJ(y)dy Pz· 

Then: 

2 

+ ~IQI-lJQ~n (mQa -a(y))m k(x- y)f; (y)dy~ 
1-1 

(6.4) 

+IQI-1 JQ(IQ¡-1 JQ~~~ (mQa -a(y))m[k(x- y)-k(z- y)]f3 (y)dyldz }tx. 
Then terms under the first summation sign are bounded by: 

The integral in (6.4) involving/1 is bounded by: 
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and, by the LP boundedness of T with respect to Lebesgue measure, this is 
bounded by: 

[ 
mr r ]l!r se M(ea (lfl )(xo) 

As for the integral in (6.4) involving[2, we decompose itas the sum of two 
terms like in [C], p.88, obtaining: 

~n(mQa -a(y))m k(x- y)fz (y)4Y = 

f eilx->fh a (x-y)( 1 1 l m 
lx->in(2+b)!r' lx-Yln(l-(2+b)!r? -lxo _ >i't(l-(2+b)/r? (mQa -a(y)) fz(y)4Y 

eilx->fb 9(x-y) (mQa-a(y))m fz(y) 

+J l >i't(2+b)!r' l >in(l-(2+b)!r? 4Y = A(x) + B(x), 
X- x0 -

where r is taken so close to 1 as to guarentee that 2+b<r'. The term A(x) is 
bounded in the following way: 

00 

IA(x)ls e :¿:z-k (2-k () f"f¡y-xoJs2k+lll lmQa -a(y)lm lf(y)ldy 
k-0 

( 00 \ 

s eiQ¡-1 
fQdzl 2: 2-k (2k o f" fJy-xJszk+2 11 la(z)- a(y)lm 1 f(y)ldy) 

\k-o 

s eM(e'; (f))(x0 ). 

For B we get, following Chanillo's argument: 
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-1 -1/r'( lmQa-a(y)lnv lh(Y)Ir lllr 
IQI ~IB(x)dx s CIQI JK, IY -xol'.r(l-(2+b)!r') dy 

:S c¡Q¡-llr' ( ~(2k b) (r-l)(l+b)n (2k b) -n ~y-xoJ<l+la lmQa -a(y)lmr lf(yt dylllr' 
k-0 

1 

wherekosatisfies zkol) <ll w :s2ko+lll. Thuswearriveat: 

Let us consider now the integral in (6.4) involving [3. It follows from the 
mean value theorem and the boundedness of the support of k that for 
x E Q,z E Q and y E Rn \ Q there exists a constant C such that 

lk(x- y) -k(z- y)ls C6 !ly-zln+b+l. 

Therefore, the integral in (6.4) involving/3 is bounded by: 

CIQI-1 JQ( 6 t-xoJ>(1/Z)bl/(1+b) lmQa- a(y)lm IY- zl-(n+b+l) 1 f (y)ldy ~ 

s CIQ¡-1 JQ[ ~2-• (2'~) -,:, ~+''''' ¡V(I+b) miQ a -a(y)im if(y)Jdy L_ 
k-0 r 

s CM(C'; (f))(x0 ). 

Finally, if 6 :2: 60 we do not substract the constant c0 • To estímate the 
averages of the terms under the sununation sign in (6.3) we proceed as 
above. As for the average of the last tenn we observe that, for 

y - 46 01 ,x E Q and y f/:. y Q we ha ve 1x - Yl > 2. Therefore, if we write 

¡ - fx + fx , only the first tenn in this sum can contribute anything 
yQ Rn \yQ 

to this average, which is consequently bounded by 
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[ 
mr r ]1/r 

sC M(Ca (1/1 ))(xo) · 

Collecting our estima tes, we have shown that 

(Tam (!))# (xo) S c{~l M(c;:-h (T: f))(xo) + [ M(C';r (1 tr ))(xo)]11
r }· 

h-0 

for any r such that 1 < r < oo, and this completes the proof of the theorem. Q 

ProofofTheorem 6.2: We shall assume that Theorem 5.2 holds. By 
Proposition 4.2 aEBMO(v,mr) for any r>l. If (a,~)EAp(vm) then 

(a r, ~ r) E A p/r (v mr) for r> 1 and el ose enough to l. Indeed, Jet r be such 

that 1< r <panda P,~ PEAp;n then a'~ -r = vmr and (a')P1', (~ ')P1'EAp/r· For 
this choice of r we ha ve 

~n[Mcc;:r <lfr ))y1
r ~ (x)P dx 

= ~n [ M(c;:r (l!lr )) r/r [~ (x)r ]p/r dx S cJJII rc;:r d!l' )(x)]P1'[ ~ (x/ ]p/r dx. 

Then, applying Theorem 5.2, this is bounded by 

On the other hand, by Lenuna 5.3, talking r1 = h and r2 = m-h, there exist Yb 

such that (Yh•~)EAP(vm-h) and (a,yh)EAP(vh). Thus, again by 

Theorem5.2 
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~n M( c;-h (T: (f)))(x)P ~ (x)P dx 

s C~nC7h(Tah(f))(x)P ~ (x)P dx s C~nlr: (f)(xfy h (x)P dx. 

If in Theorem 6.1 we take m = 1, then h = O and y0 = a., thus by the weighted 
LP estima tes for T dueto S. Chanillo [C], we get 

Assuming that we can apply the Feffennan-Stein theorem on the sharp 
maximal function, the last inequality would imply 

which proves the theorem for m = l. By induction on m and the arguments 
given above, the theorem follows for every m, provided that the conditions 
required to apply the aforemantioned Feffennan-Stein theorem are fulfilled. 
Let f be a bounded function with compact support. Since the kernel k has 

also compact support the same happens for the function r:;'(f). Let Q be a 

cube containing the supports ofbothfand r:;'(f). Then, since 

m (m) m h m~ 
(a(y)-aQ) • }:1 (a(y)-a(x)) (a(x)-aQ) , 

¡..o\h 

wehave 

m-1 

Tam (f)(x) S e }:la(x)- aQ ¡m-hIT: (f)(x)l 
h-1 (6.5) 

+ ia(x)- aQ lm IT(f)(x)l + IT((a- aQ )m f)(x)l. 

Let us consider the last term. We ha ve 

JQIT((a -aQ)m f)(x)IP (3 (x)P dx 

S C fQ ia(x)- aQ ¡mp 1 f (x)lp ~ (x)P dx S Cll /11~ fQ ia(x)- aQ ¡mp ~ (x)P dx 
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By Lemma 4.6, the last term is bounded by 

For the term la(x)- aQ ¡m 1 T(f)(x)l in (6.5), we ha ve, if r> 1 is el ose enough 

tol 

In the case m=l, this is all we need in order to apply the Feffennan-Stein 
theorem, obtaining: 

for any bounded function f with compact support. If we assume that for 
O<h<m 

holds for any (a, ~ ) E A P (v h ), then for the tenns under the summation 

sign in (6.5) we get 

S (fQia(x)- aQ ¡mp ~ (x)P dx rm-h)lm (IQ IT: (f)(x)jPm/h ~ (x)P dx t/m 

( )
(m-h )/m ( pm/h )h/m 

sC JQa(x)Pdx JQIT:(f)(x)lpm/h (~ (x)h/m) dx . 

(6.6) 
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Since of3-1-vmanlaP,j3PEAP, we have a h/m(j3 h/m)-1 -vh and 

a P, 13 P EAmp/h, i.e., (a h!m, 13 h/m) E Amp!h (v h ). Thus (6.6) is bounded by 

and the proof is complete O 
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