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ON D-K-MACKEY LOCALLY
K-CONVEX SPACES

Miguel Caldas

Abstract:

D-K-Mackey locally K-convex spaces are introduced
and a description of their topologies is obtained.

Introduction.

The non-Archimedean analogues of Mackey, d-barrelled and
d-infrabarrelled locally convex spaces over R or C were

introduced by J. Van Tiel [8] and the author ([2], [3])
respectively. In the present article we define the larger class of
D-K-Mackey non-Archimedean locally convex spaces over a
spherically complete field K, which is an extension of the
classical definition of J. Rojo [6]. The main goal of this paper is
to give several characterizations of such space by means of
topologies. Their relation with other significant class of
non-Archimedean locally convex spaces over K (briefly locally
K-convex) are stablished.
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Terminology and Notation.

We shall adopt the notation and terminology of [8], [9] and [3]. Some of the
notations and terminology used in the sequel are as follows: K will denote a
non-trivial spherically complete non-Archimedean valued field and (E,x) a
locally K-convex space endowed with the locally K-convex topology T. As in
[9], if A is a subset of E the pseudo-polar AP -(respectively pseudo-bipolar
APPy of A is defined as AP = {geF’; [g(A)| < 1} (vespectively AP = {xeE;
|AP(x)| < 1}). We have A = A™ if and only A is K-convex and Closed ([9]
Proposition 2)

In this paper £ will always stand for a separated locally K-convex space
over a spherically complete field K.

Definition 1. Let E be a locally K-convex space and E” its dual.

(i) (E,7) is said to be K-Mackey if the topology T coincides with t.(E,E”),
where t(E.E’) be the locally K-convex topology in E of uniform
convergence on the collection of all K-convex bounded and c-compact
subset of (E’, o(E’,E)) and is the strongest (E,E’)-compatible locally K-
convex topology on E.

(i) (Ex) is said to be d-K-Mackey, if each o(E’,E)-bounded H of E’
which is the countably union of equicontinuous subsets of E’ and such that
the K-convex hull of H is relatively c-compact for the topology o(E’E), is
itself equicontinuous.

{See {7], for the concept and property of an c-compact subset).

Lemma 1. Let E be a locally K-convex space. Then the K-convex hull of a
K-convex c-compact subset A of E is c-compact,

Proof. Since K is spherically complete, the set B = {A eK; [M < 1} is ¢-
compact ([8] Theorem 2.6). Therefore it is enough to see that the K-convex
hull of A is the image of BxA under the mapping (A,x)—>Ax.

Proposition 1. Let E be a locally K-convex space and E’ its dual. Every K-
convex subset of E’ which is bounded and relatively c-compact for the
topology o(E’,E) is bounded for the topology b(E’E).

Proof. Let M be a k-convex bounded and relatively c-compact of
(E’,0(E,F)). By ([8] Theorem 2.5 and 2.7) and Lemma 1 the k-convex
closed hull N = ¢ (M) of the closure of M is a k-convex bounded and c-

compact subset of (E’,o(L’,E)). It’s pseudo-polar N* is a neighborhood of
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zero in E for the topology tc (E,E’). Let B be an arbitrary bounded subset of
E. Then B is also bounded for the topology tc (E,E”) ([1] p.70) and thus
there exists A € K* such that BEANT. But then MCN = NPPCAB®. Hence by
the definition of the topology b(E’,E), the set M is b(E’,E)-bounded.

Proposition 2. Let (E,t) be a locally k-convex space with topology t. Then ©
coincides with the topology of uniform convergence on the equicontinuous
subsets of E°.

Proof. Let © the collection of all equicontinuous subsets of E” and te be the
locally k-convex topology on E of uniform convergence on ©. If U is a k-
convex t-neighborhood of zero in E, then UP is equicontinuous in E’. Hence
U = U” is a te-neighborhood of zero in E. Thus te is finer than the
topology t. Conversely, let H be a equicontinuous set in E’, we can find a k-
convex T-neighborhood U of zero in E such that |H(U)| < 1. Then HCUP. It
follows that HPDU® = Uj i.e., HF is a t-neighborhood of zero in E. Thus T is

finer than the topology te and the desired equality t=Tg is established.

Our next goal is to prove certain characterizations of d-k-Mackey spaces.
In order to do so we shall the following.

Definition 2. Let E be a locally k-convex space and let T" be the collection
of all k-convex bounded relatively c-compact subset of (E’,o(E’E)), which
is the countably union of equicontinuous subset of E’. Then the
corresponding T-topology on E of uniform convergence on I" will be
denoted by Uy(E,E°).

Clearly o(£,E) s w(E,E’) < tc (E,E”) < b(E,E”). Therefore, the topology
Td(E,E’) is (E,E”)-compatible.

The following proposition prove that the given topology of a d-k-
infrabarrelled space E ([3]), over a spherically complete field & is the

t4(E,E’) locally k-convex topology on E.

Proposition 3. If (E,t) is d-k-infrabarrelled, then the topology T coincides
with the topology ta(E,E°).
Proof. If is enough to apply Proposition 1.

Theorem 1. For a locally k-convex space (E,1), the following conditions
are equivalent:

(1) (&) is d-k-Mackey.

(i1) t=Ta(E,E").
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Proof. ()—(ii): tT=te (Proposition 2) where 1o be the locally k-convex
topology on E defined by the family @={HCE’; k-convex equicontinuous}.
Since, every k-convex equicontinuous subset of E’ is relatively c-compact for
the topology o(E,E’) ([8] Theorem 4.4 (b)). Then ©CT" (I" as in definition

2). Hence tg is weaker than wy(E,E’). Let now Hel'. By Lemma 1 and
hypothesis, H is equicontinuous. Thus He®. Hence tq(£,E”) is weaker than
T and the desired equality T=t4(E,E’) is established.

(ii)—(i): Let H o(E’,E)-bounded of E’ which is the countably union of
equicontinuous subsets of £” and such that the k-convex hull C(H) of H is
relatively c-compact for the topology o(£’,E). Then C(H) is a k-convex,
bounded e relatively c-compact subset of (£”,0(F”,E)). Therefore its pseudo-
polar (C(H))P C (H) is a neighborhood of zero in E for the topology
T4(E,E”); i.e., by hipothesis a t-neighborhood of zero. Hence H is equi-
continuous.This proves (i).

As a direct consequence of Theorem 1. We have:
Corollary 1. A k-Mackey space is always d-k-Mackey.

Proof. Let (E,x) be a k-Mackey space. We shall show that t is the topology
T4(E,E”). Indeed. By definition 1(i) and remark of definition 2 implies that
w(EE") < tc(E,E’) = 1. On the other hand t=tg < ty4(E,E’). Therefore
t=14(F,E’). This prove that (E,t) is a d-k-Mackey space (Theorem 1).
Remark 1.

(i) It follows from Proposition 3 and Theorem 1 that every d-k-
infrabarrelled space is a d-k-Mackey.

(ii) The following diagram helps to remember some of the relations
proved in this and their relation with other classes:

k-barrelled ——m@ d-k-barrelled

[clear] | } [clear]
[3]

k-infrabarrelled ——— d-k-infrabarrelled

(5] i | [Proposition 3]

[Corollary 1]
—_————

k-Mackey d-k-Mackey
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Theorem 2. Let E and I’ be two separated locally k-convex spaces. Then
every linear mapping f. E—F which is continuous for the topologies
o(E,E’) and ©a(F,I"), is also continuous for the topologies to(E,E”) and
T(FLE7). .

Proof. Let V=H* be a neighborhood of zero in F for the topology ta(F,F’),
where H = UHn is a k-convex, bounded, relatively c-compact subset of

n=1 .
(F’,o(F”,F)) and H, equicontinuous (nz1). Since tf F-E (tf transpose of f)
is continuous for the topology o(F’,F) and o(E’,E) ([1] p.101), the set
X =[f(H) is a k-convex bounded relatively c-compact of (E’, o(E’,E)) which is
the countably union of tf(Hn) equicontinuous subsets and thus U=X" is a
neighborhood of zero in E for the topology ta(£,E”),. Since X=tf(H), we have
'‘‘HE®) C HP, that is fI)CV, which proves that f is continuous for the
topologies ta(E,E”) and to(I,F”).
Corollary 2. Let (I,tg) and (F, tF) be locally k-convex spaces, (I,TE) d-k-
Mackey. Then every linear mapping f. E—F which is continuous for the
topologies o(LL,E) and o(F,I") is also continuous for the topologies tg and
TF .
Proof. By the assumption and by Theorem 2 the mapping fis continuous for
the topologies tp = Ta(E,E”) and ta(F,F”). But Tq(F.F”) is finer than . Then
fis continuous for the topologies tx and Ttg.

Let us recall that the hypothesis of this corollary is satisfied if I is an d-
k-infrabarrelled space (Proposition 3).

Theorem 3. For a locally k-convex space (E,tg) the following conditions
are equivalent:

(1) (&.tg) is d-k-Mackey.

(ii) For every locally k-convex space (I',TF), each linear mapping fE—F
which is continuous for the topologies tg and o(I,F”) is also continuous for
the topologies g and ty(F ,F’).

Proof.:

(1)—(ii): By ([1] p.103) the mapping fis continuous for the topology o(E,E”)
and o(f,F”). By the Theorem 2 it is also continuous for t4(E,E’) and
ta(F,F"). Finally since tg = to(E,E”) (Theorem 1), fis continuous for tg and
T4(F.F”) (also, since t¢ = ty(F,[) the mapping fis continuous for T and TF).
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(if)—(i): Since o(£,E’) = tg, the mapping canonical imbedding j:E—F is
continuous for the topologies T and o(E,E’). By the assumption (ii) it is
also continuous for the topologies T and ty(E,E’). Hence ty4(E,E’)<tE.
Therefore ta(E,E) = tE.

d-k-Mackey spaces bave remarkable stability properties which we list in
the following Proposition and that reasoning as in [3] can be proved.

Proposition 4. Let (E,tg) and (F,tF) be two locally k-convex spaces.

(i) Let D a dense k-subspace of E. Then (E,tg) is d-k-Mackey if (D,tp) is
d-k-Mackey.

(ii)Let f be a linear continuous, almost open (a fortiori, open) and
surjective mapping from E into F. Then (F,tg) is d-k-Mackey if (E,xg) is d-k-
Mackey.

(iii) If (E,tg) is a d-k-Mackey space and M a closed k-subspace of E.
Then the quotient space E[M is a d-k-Mackey space.

(iv) Let £ be the family of all d-k-Mackey. Then £ is stable under the
ormation of arbitrary direct sums, inductive limits, and arbitrary products.
y yp

Finally we apply these notion of d-k-Mackey to the space of the
continuous mappings.

We suppose that X is an ultraregular space, that is a separated
topological space where every point has a filterbase of clopen
neighborhoods. C(X,E) the space of all continuous E-valued mappings on X,
endowed with the compact-open topology. We call a topological space w-
compact if every countable union of compact set is relatively compact.

Theorem 4. If C(X,E) is a d-k-Mackey space, then C(X,K) and E are d-k-
Mackey spaces.

Proof. In ([4], Proposition 2.1 and 2.2) it has been show that C(X,K) and E
are closed complemented k-subspaces of C(X,E). Therefore, there exist two
separated quotients spaces of C(X,E) which are isomorphous to C(X,K) and
E, respectively. Since by Proposition 4(iii) the property of being d-k-Makey
is invariable under separated quotient formation, C(X,K) and E are d-k-
Mackey.
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Theorem 5. Let X be an ultraregular w-compact space and (Entn) be a
crescent sequence of locally k-convex spaces. If (E,t) = Lim( En,To) then the

-

inductive limit Lim C(X,Ey) is a dense topological k-subspace of C(X,E).
Proof. See ([4] Theorem 2.5).

Corollary 3. Let X be an ultraregular w-compact space and E be the
inductive limit of E, where (E))neN is a crescent sequence of non-
Archimedean normed spaces. Then C(X,E) is an d-k-Mackey space.

Proof. By Theorem 5, the inductive limit of spaces C(X,Ep) is a dense
topological k-subspace in C(X,E). Since E, is non -Archimedean normed
and by ([4] Theorem 4.8) can be proved that the space C(X,Ey) is d-k-
infrabarrelled. Hence and Remark 1(1) C(X,E,) is d-k-Mackey. By
Proposition 4(iv), the inductive limit of spaces C(X,En) is d-k-Mackey and by
the same Proposition 4(i) it results that C(X,E) is d-k-Mackey.
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