ON D-K-MACKEY LOCALLY K-CONVEX SPACES

Miguel Caldas

Abstract:

D-K-Mackey locally K-convex spaces are introduced and a description of their topologies is obtained.

Introduction.

The non-Archimedean analogues of Mackey, d-barrelled and d-infrabarrelled locally convex spaces over **R** or **C** were introduced by J. Van Tiel [8] and the author ([2], [3]) respectively. In the present article we define the larger class of D-K-Mackey non-Archimedean locally convex spaces over a spherically complete field K, which is an extension of the classical definition of J. Rojo [6]. The main goal of this paper is to give several characterizations of such space by means of topologies. Their relation with other significant class of non-Archimedean locally convex spaces over K (briefly locally K-convex) are stablished.

Departamento de Matemática Aplicada - IMUFF, R.J. Brasil.

Terminology and Notation.

We shall adopt the notation and terminology of [8], [9] and [3]. Some of the notations and terminology used in the sequel are as follows: K will denote a non-trivial spherically complete non-Archimedean valued field and (E,τ) a locally K-convex space endowed with the locally K-convex topology τ . As in [9], if A is a subset of E the pseudo-polar $A^p \cdot$ (respectively pseudo-bipolar A^{pp}) of A is defined as $A^p = \{g \in E^*; |g(A)| < 1\}$ (respectively $A^{pp} = \{x \in E; |A^p(x)| < 1\}$). We have $A = A^{pp}$ if and only A is K-convex and Closed ([9] Proposition 2)

In this paper E will always stand for a separated locally K-convex space over a spherically complete field K.

Definition 1. Let E be a locally K-convex space and E' its dual.

(i) (E,τ) is said to be K-Mackey if the topology τ coincides with $\tau_c(E,E')$, where $\tau_c(E,E')$ be the locally K-convex topology in E of uniform convergence on the collection of all K-convex bounded and c-compact subset of $(E', \sigma(E',E))$ and is the strongest (E,E')-compatible locally Kconvex topology on E.

(ii) (E,τ) is said to be d-K-Mackey, if each $\sigma(E',E)$ -bounded H of E' which is the countably union of equicontinuous subsets of E' and such that the K-convex hull of H is relatively c-compact for the topology $\sigma(E',E)$, is itself equicontinuous.

(See [7], for the concept and property of an *c*-compact subset).

Lemma 1. Let E be a locally K-convex space. Then the K-convex hull of a K-convex c-compact subset A of E is c-compact.

Proof. Since *K* is spherically complete, the set $B = \{\lambda \in K; |\lambda| \le 1\}$ is *c*-compact ([8] Theorem 2.6). Therefore it is enough to see that the *K*-convex hull of *A* is the image of $B \times A$ under the mapping $(\lambda, x) \rightarrow \lambda x$.

Proposition 1. Let *E* be a locally *K*-convex space and *E*' its dual. Every *K*-convex subset of *E*' which is bounded and relatively *c*-compact for the topology $\sigma(E',E)$ is bounded for the topology b(E',E).

Proof. Let *M* be a *k*-convex bounded and relatively *c*-compact of $(E', \sigma(E', E))$. By ([8] Theorem 2.5 and 2.7) and Lemma 1 the *k*-convex closed hull $N = \overline{C(M)}$ of the closure of *M* is a *k*-convex bounded and *c*-compact subset of $(E', \sigma(E', E))$. It's pseudo-polar N^{p} is a neighborhood of

zero in *E* for the topology $\tau_{C}(E,E')$. Let *B* be an arbitrary bounded subset of *E*. Then *B* is also bounded for the topology $\tau_{C}(E,E')$ ([1] p.70) and thus there exists $\lambda \in K^*$ such that $B \subseteq \lambda N^p$. But then $M \subseteq N = N^{pp} \subseteq \lambda B^p$. Hence by the definition of the topology b(E',E), the set *M* is b(E',E)-bounded.

Proposition 2. Let (E,τ) be a locally k-convex space with topology τ . Then τ coincides with the topology of uniform convergence on the equicontinuous subsets of E'.

Proof. Let Θ the collection of all equicontinuous subsets of E' and τ_{Θ} be the locally k-convex topology on E of uniform convergence on Θ . If U is a k-convex τ -neighborhood of zero in E, then $U^{\mathfrak{p}}$ is equicontinuous in E'. Hence $U = U^{\mathfrak{pp}}$ is a τ_{Θ} -neighborhood of zero in E. Thus τ_{Θ} is finer than the topology τ . Conversely, let H be a equicontinuous set in E', we can find a k-convex τ -neighborhood U of zero in E such that |H(U)| < 1. Then $H \subset U^{\mathfrak{p}}$. It follows that $H^{\mathfrak{p}} \supset U^{\mathfrak{pp}} = U$; i.e., $H^{\mathfrak{p}}$ is a τ -neighborhood of zero in E. Thus τ_{Θ} is established.

Our next goal is to prove certain characterizations of d-k-Mackey spaces. In order to do so we shall the following.

Definition 2. Let *E* be a locally k-convex space and let Γ be the collection of all k-convex bounded relatively c-compact subset of $(E', \sigma(E', E))$, which is the countably union of equicontinuous subset of *E'*. Then the corresponding Γ -topology on *E* of uniform convergence on Γ will be denoted by $\Gamma_d(E, E')$.

Clearly $\sigma(E,E') \leq \tau_d(E,E') \leq \tau_c(E,E') \leq b(E,E')$. Therefore, the topology $\tau_d(E,E')$ is (E,E')-compatible.

The following proposition prove that the given topology of a *d*-*k*-infrabarrelled space E ([3]), over a spherically complete field k is the $\tau_d(E,E')$ locally *k*-convex topology on E.

Proposition 3. If (E,τ) is d-k-infrabarrelled, then the topology τ coincides with the topology $\tau_d(E,E')$.

Proof. If is enough to apply Proposition 1.

Theorem 1. For a locally k-convex space (E,τ) , the following conditions are equivalent:

(i) (E,τ) is *d*-*k*-Mackey. (ii) $\tau = \tau_d(E,E')$. *Proof.* (i) \rightarrow (ii): $\tau = \tau_{\Theta}$ (Proposition 2) where τ_{Θ} be the locally *k*-convex topology on *E* defined by the family $\Theta = \{H \subset E'; k\text{-convex equicontinuous}\}$. Since, every *k*-convex equicontinuous subset of *E'* is relatively *c*-compact for the topology $\sigma(E,E')$ ([8] Theorem 4.4 (b)). Then $\Theta \subset \Gamma$ (Γ as in definition 2). Hence τ_{Θ} is weaker than $\tau_d(E,E')$. Let now $H \in \Gamma$. By Lemma 1 and hypothesis, *H* is equicontinuous. Thus $H \in \Theta$. Hence $\tau_d(E,E')$ is weaker than τ_{Θ} and the desired equality $\tau = \tau_d(E,E')$ is established.

(ii) \rightarrow (i): Let $H \sigma(E',E)$ -bounded of E' which is the countably union of equicontinuous subsets of E' and such that the *k*-convex hull C(H) of H is relatively *c*-compact for the topology $\sigma(E',E)$. Then C(H) is a *k*-convex, bounded e relatively *c*-compact subset of $(E',\sigma(E',E))$. Therefore its pseudo-polar $(C(H))^{P} \subset (H)^{P}$ is a neighborhood of zero in E for the topology $\tau_{d}(E,E')$; i.e., by hipothesis a τ -neighborhood of zero. Hence H is equicontinuous. This proves (i).

As a direct consequence of Theorem 1. We have:

Corollary 1. A k-Mackey space is always d-k-Mackey.

Proof. Let (E,τ) be a *k*-Mackey space. We shall show that τ is the topology $\tau_d(E,E')$. Indeed. By definition 1(i) and remark of definition 2 implies that $\tau_d(E,E') \leq \tau_C(E,E') = \tau$. On the other hand $\tau = \tau_{\Theta} \leq \tau_d(E,E')$. Therefore $\tau = \tau_d(E,E')$. This prove that (E,τ) is a *d*-*k*-Mackey space (Theorem 1).

Remark 1.

(i) It follows from Proposition 3 and Theorem 1 that every d-k-infrabarrelled space is a d-k-Mackey.

(ii) The following diagram helps to remember some of the relations proved in this and their relation with other classes:

$$k\text{-barrelled} \xrightarrow{[2]} d\text{-}k\text{-barrelled}$$

$$[clear] \downarrow \qquad \downarrow \qquad [clear]$$

$$k\text{-infrabarrelled} \xrightarrow{[3]} d\text{-}k\text{-infrabarrelled}$$

$$[5] \downarrow \qquad \downarrow \qquad [Proposition 3]$$

$$k\text{-Mackey} \xrightarrow{[Corollary 1]} d\text{-}k\text{-Mackey}$$

Theorem 2. Let *E* and *F* be two separated locally k-convex spaces. Then every linear mapping $f: E \rightarrow F$ which is continuous for the topologies $\sigma(E,E')$ and $\tau_d(F,F')$, is also continuous for the topologies $\tau_d(E,E')$ and $\tau_d(F,F')$.

Proof. Let $V=H^p$ be a neighborhood of zero in F for the topology $\tau_d(F,F')$, where $H = \bigcup_{n \ge 1} H_n$ is a k-convex, bounded, relatively c-compact subset of

 $(F',\sigma(F',F))$ and H_n equicontinuous $(n \ge 1)$. Since ${}^tf: F' \rightarrow E'$ (tf transpose of f) is continuous for the topology $\sigma(F',F)$ and $\sigma(E',E)$ ([1] p.101), the set $X = {}^tf(H)$ is a k-convex bounded relatively c-compact of $(E', \sigma(E',E))$ which is the countably union of ${}^tf(H_n)$ equicontinuous subsets and thus $U = X^p$ is a neighborhood of zero in E for the topology $\tau_d(E,E')$,. Since $X = {}^tf(H)$, we have ${}^t(f)(X^p) \subset H^p$, that is $f(U) \subset V$, which proves that f is continuous for the topologies $\tau_d(E,E')$ and $\tau_d(F,F')$.

Corollary 2. Let (E, τ_E) and (F, τ_F) be locally k-convex spaces, (E, τ_E) d-k-Mackey. Then every linear mapping $f: E \rightarrow F$ which is continuous for the topologies $\sigma(E, E')$ and $\sigma(F, F')$ is also continuous for the topologies τ_E and τ_F .

Proof. By the assumption and by Theorem 2 the mapping *f* is continuous for the topologies $\tau_E = \tau_d(E, E^*)$ and $\tau_d(F, F^*)$. But $\tau_d(F, F^*)$ is finer than τ_F . Then *f* is continuous for the topologies τ_E and τ_F .

Let us recall that the hypothesis of this corollary is satisfied if E is an d-k-infrabarrelled space (Proposition 3).

Theorem 3. For a locally k-convex space (E, τ_E) the following conditions are equivalent:

(i) (E, τ_E) is d-k-Mackey.

(ii) For every locally k-convex space (F,τ_F) , each linear mapping $f:E \rightarrow F$ which is continuous for the topologies τ_E and $\sigma(F,F')$ is also continuous for the topologies τ_E and $\tau_d(F,F')$.

Proof.:

(i) \rightarrow (ii): By ([1] p.103) the mapping *f* is continuous for the topology $\sigma(E,E')$ and $\sigma(F,F')$. By the Theorem 2 it is also continuous for $\tau_d(E,E')$ and $\tau_d(F,F')$. Finally since $\tau_E = \tau_d(E,E')$ (Theorem 1), *f* is continuous for τ_E and $\tau_d(F,F')$ (also, since $\tau_F \leq \tau_d(F,F')$ the mapping *f* is continuous for τ_E and τ_F).

(ii) \rightarrow (i): Since $\sigma(E,E') \leq \tau_E$, the mapping canonical imbedding $j:E \rightarrow E$ is continuous for the topologies τ_E and $\sigma(E,E')$. By the assumption (ii) it is also continuous for the topologies τ_E and $\tau_d(E,E')$. Hence $\tau_d(E,E') \leq \tau_E$. Therefore $\tau_d(E,E') = \tau_E$.

d-k-Mackey spaces have remarkable stability properties which we list in the following Proposition and that reasoning as in [3] can be proved.

Proposition 4. Let (E, τ_E) and (F, τ_F) be two locally k-convex spaces.

(i) Let D a dense k-subspace of E. Then (E, τ_E) is d-k-Mackey if (D, τ_D) is d-k-Mackey.

(ii) Let f be a linear continuous, almost open (a fortiori, open) and surjective mapping from E into F. Then (F,τ_F) is d-k-Mackey if (E,τ_E) is d-k-Mackey.

(iii) If (E,τ_E) is a d-k-Mackey space and M a closed k-subspace of E. Then the quotient space E/M is a d-k-Mackey space.

(iv) Let \pounds be the family of all d-k-Mackey. Then \pounds is stable under the formation of arbitrary direct sums, inductive limits, and arbitrary products.

Finally we apply these notion of d-k-Mackey to the space of the continuous mappings.

We suppose that X is an ultraregular space, that is a separated topological space where every point has a filterbase of clopen neighborhoods. C(X,E) the space of all continuous *E*-valued mappings on X, endowed with the compact-open topology. We call a topological space *w*-compact if every countable union of compact set is relatively compact.

Theorem 4. If C(X,E) is a d-k-Mackey space, then C(X,K) and E are d-k-Mackey spaces.

Proof. In ([4], Proposition 2.1 and 2.2) it has been show that C(X,K) and E are closed complemented k-subspaces of C(X,E). Therefore, there exist two separated quotients spaces of C(X,E) which are isomorphous to C(X,K) and E, respectively. Since by Proposition 4(iii) the property of being *d*-k-Makey is invariable under separated quotient formation, C(X,K) and E are *d*-k-Mackey.

Theorem 5. Let X be an ultraregular w-compact space and (E_n, τ_n) be a crescent sequence of locally k-convex spaces. If $(E, \tau) = Lim(E_n, \tau_n)$ then the

inductive limit Lim $C(X, E_n)$ is a dense topological k-subspace of C(X, E).

Proof. See ([4] Theorem 2.5).

Corollary 3. Let X be an ultraregular w-compact space and E be the inductive limit of E_n , where $(E_n)_{n \in \mathbb{N}}$ is a crescent sequence of non-Archimedean normed spaces. Then C(X,E) is an d-k-Mackey space.

Proof. By Theorem 5, the inductive limit of spaces $C(X,E_n)$ is a dense topological k-subspace in C(X,E). Since E_n is non -Archimedean normed and by ([4] Theorem 4.8) can be proved that the space $C(X,E_n)$ is *d*-k-infrabarrelled. Hence and Remark 1(i) $C(X,E_n)$ is *d*-k-Mackey. By Proposition 4(iv), the inductive limit of spaces $C(X,E_n)$ is *d*-k-Mackey and by the same Proposition 4(*i*) it results that C(X,E) is *d*-k-Mackey.

References

- [1] N. Bourbaki. Espaces Vectoriels Topologiques. Chap.3, 4 et 5, Hermann, Paris (1967).
- [2] *M. Caldas.* Uma Generalização Não-Arquimediana do Teorema de Mahowald Para Espaços d-Tonelados. Portugaliae Math. V.49 (1992).
- [3] *M. Caldas.* Stability of Barrelledness and Infrabarrelledness in Locally K-Convex Spaces. Bull. Cal. Math. Soc. 84 (1992), 97-102.
- [4] *S. Navarro.* Espaços Vetoriais Topologicos de Funçoes Continuas. Tese de Doutorado. Brasil (1981).
- [5] D. Pombo Jr. A note On Infrabarrelled Locally k-Convex Spaces. Indian J. Pure Appl. Math. 22 (1991), 575-578.
- [6] J. Rojo. Diversas Caracterizaciones de la Noción Tonelaje. Rev. Contri. Cient. y Tec. 31 (1978), 47-61.
- [7] *T.A. Springer*. Une Notion De Compacite Dans La Theorie des Espaces Vectoriels Topologiques. Indag. Math. 27 (1965), 182-189.
- [8] J. Van Tiel. Espaces localement k-Convexes. Indag. Math. 27 (1965) 249-289.

[9] J. Van Tiel. Esembles Pseudo-Polaires Dans les Espaces Localement k-Convexes 28 (1966), 369-373.

> gmamccs@vmhpo.uff.br Departamento de Matemática Aplicada - IMUFF Universidad Federal Fluminense Rua São Paulo s/n. CEP: 24210 Niteroi, RJ - Brasil