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ON THE JUSTIFICATION OF THE LEAST 
SQUARE METHOD FOR NONPOTENTIAL, 

NONLINEAR OPERATORS 

V. Filippov andA. Rodionov 

Suppose in a Hilbert (possibly, negative) space H with inner 
product (.,.) there is given an equation 

(1) N(u) =f. 

N is an operator with the domain D(N). We assume that 
D(N) is dense and convex in some Hilbert space H1 CH. 

(2) 

(3) 

R(N) =H; N(O) = O; 

<p1, <p2, ... <pn .•. - basis in H1. 

n 

Un= 2 a k <p k 
k=l 

The method of least squares (LSM) is to take as an approximate solution of 
(1) a linear combination of the given elements q:¡ 1, q:¡2, ••• ,q>0 whose unknown 
coefficients ak are determined from the condition 

(4) IIN(un) -f 1 H 112 = m in . 
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The most general result in theoretical justification of LSM has been 
obtained by A. Langenbach [1 ]. It is formulated in 

Theorem l. Suppose the condition (2) and 

[N(u1)- N(uz), U¡ - Uz] <!: C¡ l!u1 - uziH
1

11
2 

(5) V u1 ED(N), u2 ED(N) 

(6) 

are satisfied. Then the sequen ce {un} (3), ( 4) converges in H 1• 

(Here and then constants C¡ do not depend on u). 

If N is a linear operator, the condition of monotony (5) implies that N is 
positive definite operator. So, the theorem 1 can't justifícate LSM for the 
number of linear and nonlinear diferential equations. (See, for example, the 
parabolic problems). We shall gencralize the result of Langenbach in the 
following theorems. 

Theorem 2. Let N satisfies (2) and let B be an operator with D(B) ;;¿ D(N); 
R(B) ~H. 

lf 
[N(u¡)- N(ltz), B(u1 - llz)] <!: C3llu1 - uziH

1
II2 

(7) Vu 1ED(N), u2ED(N) 

and 

(8) IIB(u) 1 H 11 s C411u IH111 \fu ED(N), 

then the sequence {un} converges in H 1 for any f EH. 

Proof The conditions (2), (3), (4) imply that for every fixed element fin H 
there exists at least one sequence {un} such that 

(9) 11 N(un) - N(um) 1 H 11-+ O as n -+ oo and m -+ oo. 

With the help of (7) and (8) we get 

2 1 
llun - llm IH 11 S - 11 N(un) - N(um) IHII , 11 B(lln - llm) IHII S 

1 c3 

c4 
S -11 N( un)- N(um) IHII, llun- llm IH 11 c

3 
1 
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and thus, also 

(10) 

Now, (9), (10) imply the convergence of {un}· O 

Theorem3. 

a) Let N satisfy (2) and have a Gateaux differential 

d 
N' (u)h = {-N(u + ah)}a=O 

da 

continuous on any fine. 

If 

(11) (N'(u)h, Bh) ~ C31ih IH
1

II2 'Vu ED(N), 'Vh ED(N), 

then (7) is valid. 

b) If (7) and (8) are held, then N has inverse operator N 1 on R(N) and 
N 1 satisfies the Lipschitz condition. 

Proof 
a) On one hand for any u1 ED(N), u2 ED(N) 

1 

(N( u¡)- N(u2), B(u¡- u2)) = J (N'(tu 1 + (1-t)u2) (u 1 - u2), B(u 1 - u2))t. 

o 
(12) 

With (11) on the other hand we get 

(N(u 1)- N(uz), B(tt1 - llz)) ~ C31iu1 - uziH
1

112 . 

b) Let v1 and v2 are arbitrary elements in R(N). 
(7) implies that there exist uniquely determined elements u1 E D(N) and 
u2 E D(N) such that v1 = N(u1), v2 = N(u2). According to (10) 

(13) 
1 1 C4 11 N (v¡)- N (vz) IH 11 :s -11 V¡ - Vzl H JJ, V V¡,Vz E R(N). 

1 c3 

This inequality gives the Lipshitz constant estimate. O 
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Thus, the operator N 1 with the domain R(N) dense in 1/, could be 
extended continuously to the whole H. Now we are to introduce 

Definition l. Element u0 EH1 is said to be the generalized solution of (1) if 
there exists a sequence {un}, Un ED(N), such that 

(14) 11 N(un)- JI H 11-+ O as n-+ O 

and 

(15) llun - llo IH
1

11-+ O as n-+ O 

Corollary l. If the nonlinear operator N satisfies (2), (7), (8) then, for any 
f EH, there exist unique u0 EH1 - generalized solution of (1 ). 

According to LSM, the approximatc solution is determined from (3), (4) 
which are cquivalent to the systcm of the algebraic equations: 

(16) 
a z - IINn(u)- !III 11 =o , k= 1,2, ... ,n. 

a ak 

After the differentiation (16) transformes (according to [1]) into 

(17) (N'(un)<Jlk, N(un)- f) =O, k= 1,2, ... ,n. 

Let's establish, in view of completeness, the solvability of the system (17) 
under the conditions (7), (8). 

Lemma l. Let the operator N has a continuous Gateaux derivative N', 
N(O)=O, and let basis { <rn} be orthonormal in H1 

If the conditions (7), (8) are satisjied, then LSM system of algebraic 
equations (17) is salvable for any n=1,2, ... 

Proof Using (7), (8)wc get VunED(N) 

C4ll N(un) 1 H 11, llun IH
1

11 ~ (N(un), B(un)) ~ C3lllln IH
1

II 2 
• 

That leads to 

(18) C411 N(un) 1 H 11 ~ C3ll Un IH
1

11 

{ <rn} is an orthonormal set in 1!1 so, for un derived from (3) we obtain 
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Under the assumptians af the thearem the functian 

F(a¡,a2, ••• ,an) = 11 N(un) - t 1 H 11
2 has continuaus partial derivatives af the 

first arder in an arbitrary ball 
11 

" 2 2 ,¿ak ~R. 
k=l 

Furthermare, 

The last inequality takes place an the surface af the ball as saan as R is great 
enaugh. That implies 

IIN(un)- ti H 11
2 ~ 11 N(un)l H 11' {IIN(un) 1 H 11- 2lltl H 11} + 

(19) +lltiHUZ~IItiHW 

At the same time there exist at least ane paint (un =O) where 

11 N( un)- ti H 11
2 = lltl H W · 

Thus, the functian t has its minimun inta thc ball and in this paint (17) is 

held. Therefare, (17) is salvable. O 

Remark l. It is rather difficult ta set up the canditians far (17) ta have the 
unique salutian. We are nat familiar with any results af that kind formulated 
in terms af aperatars investigated in this paper. 

Remark 2. An auxiliary aperatar B, figurated in (7), (8), exists far an 
arbitrary linear aperatar N= A with a baunded in verse. 

Really, let B = (K1 )*S, where S is an arbitrary aperatar such that 
D(S)=D(A) and 

(20) (Su,u) ~ C1llu IH
1

II2 
, 'Vu ED(S) 

(21) 11 Su 1 H 11 ~ Csll u IH
1

II2
, 'Vu ED(S) 
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For any u, u1, u2 - elements of D(A), are evident the inequalities 

(71) (A( u¡- Uz), B(u¡- Uz)) ~ C1ll U¡- UziH
1

11
2 

and 

(81) 11 B(u) 1 H 11 = II(X1 
)*Sul H 11 s C9ll Su 1 H 11 s C10ll u IH

1
11. 

Whether the nonlinear operator N has the continuous Gateaux derivative 
N'(x), we are able to construct the operator B. 

Let B = ([N'(O)r1 )*S, where S satisfies (20), (21) and ([N'(O)r1 )* is 
supposed to exist. If 

(22) 

(23) 

11 ([N'(O)r
1 

)*v IHII s Cull v IHII 

(N'(x)u, Bu)~ C 12(N'(O)u, Bu), 

then 

(N(u1) - N(u2), B(u1 - u2)) = (N'(u 1 + 8(u1 - u2)) (u 1 - u2), B(u1 - u2)) ~ 

~ C¡z(N'(O)(u¡ -uz), B(u¡ Uz)) = CdN'(O)(u¡ -uz), ([N'(O)r1 )*S(u¡- uz)) 

= c12((u¡ - llz), S(u¡ - llz)) ~ c12 C711 U¡- Uz1Hlll
2 

(7z) 

(8z) IIB(u)IH II=II([N'(O)r
1 

)*SuiHII s Cui!SuiHII s Cu Csll uiH
1

II
2

• 

Tbus, the operators N and B satisfy the assumptions of the theorem 2. 

Let's note, that inequality (23) was cosidered in [ 4]. lt turned out to be 
usable for extanding the direct variational method to nonlinear equations 
with nonpotential operators. 

Remark 3. If B is symmetric and positive in H, we are able to define 
Hilbert space H 8 as a completation of D(B) in metric 

(24) llu IHB 11 = [ u,u ]vz 

(25) [u,v] = (u,Bv). 

In view of (24), (25) we can rewrite (7), (8) as 

(73) [N(u¡)- N(uz), U¡ - Uz] ~ C3llu1 - UziH
1

II 2 Vu¡ED(N), uzED(N) 
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and 

[Bu,u] s C411uiH
1

II2 't/u ED(N) 

Example: Let's justify LSM for the following nonlinear parabolic problem: 

a u n-la 2u a 2(x,t,u) 
N(u)=--~-2 - 2 =g(x,t), (x,t)EQ, 

a t f::t a X¡ a Xn 
(26) 

where the bounded domain 

(27) 

(28) 

(29) 

Q = {(x,t) = (x¡, ... ,X0 ,t): X¡ E (a;,b;), i=1, ... ,n, t E(0,1)}. 

u(x,t) =O as t =O, X;E( a;,b;), i=1, ... ,n, 

u(x,t) =O as xi = bi, x; E (a;,b;), i=1, ... ,n, i-"j, tE (0,1). 

a u(x, t) . . . 
--- =O as Xj = ai, X; E (a;,b;), t=1, ... ,n, l-"J, tE (0,1). 

a n 

, 3 a z 
(30) g(x,t) EL2(Q); (l;,'YJ,s) E c-w ); 3a .. - ~ a > O, V u ED(N). 

a u 

Here D(N) = { u(x,t) 1 u(x,t) E e;:: ( Q) satisfying (27), (29)}. We define the 

auxiliary operator B by the equality 

x,. ~ 

(31) Bh(x,t) =- J cfS J h(X¡,Xz, ... ,X0 .¡, 8,t)d8, D(B) =D(1). 
b11 a11 

Remark 4. lt is easy to see, that operator B, defined by (31) is symmetric 
and positive in L2(Q). Really, integrating by parts we obtain 

( X 11 ~ \ 

(Bu,v)L2(Q) = n-Jdl; fu(X¡,Xz, ... ,X11 _1,8,t)d8JvdQ= 
Q\ b11 a11 

(JZ) ~ sj]u(xl, Xz, ... ,x
11

_ 1 ,8, t)d8, J v(xl ,Xz, ... ,X
11
_1,8, t)d8, }dQ. 

Q a" an 

That equality makes the assertion trivial. 

Lemma 2. IfH1 is the completion of D(N) in metric 
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(33) 11 u IHlll = [u,u ]uz 

2 n-1 x. a u 
[u, v] = j{a uv + )' [.(-(xpx2 , ••• ,X

11
_p8,t)d8, 

Q ft a x¡ 

.e ~(Xp X2 , • •• , Xn-1'8, t)] d8 }d Q 
0 n a X¡ 

(34) 

and (30) is satisfied, then the conditions of the theorem 2 are held for the 
operators N (26)- (30) andE (31). 

Proof. Integrating by parts on D(N), we obtain, by (30) 

11-l x, 
a 2 '"" J a h ]2} 2 +-h + .¿[ -(x1,x2 , ••• ,x11 _ 1 ,8,t)d8 dQ~IIhiH 11 . 
a ll i~l a a X¡ 1 

" 

According to the theorem 3 (7) is satisfied. The validity of (8) can be 
established by direct computation: for all h ElJ(N) 

60 



The theorems prooved above make it possible to formulate 

Corollary 2. If N(O) =O; R(N) = H; basis { IPn} is orthonormal in H¡, then 
the following assertions are true. 

a) For any g(x,t) EL2(Q) there exists the unique element u0 E H1 and 
sequence {un}, unED(N) such that, as n-oo, 

" 
b) The sequence {un}; u,.= 2>k1Pk; can befoundfrom the sufficient 

k-1 
condition of LSM functional' s mínimum: 

(35) F(a¡, ... ,an) = 11 N(un)- g lr
2 
(Q)II- min, 

leading to the system of algebraic equations 

(36) f{N' (u,. )q¡ k [ N(u11 )- gJ}dQ =O, k= 1, ... ,n. 
Q 

e) The system of nonlinear algebraic equations (36) is salvable for al! 
g(x,t) EL(Q),for any n=l,2, .... 

Remark 5. The Least Square Method for linear parabolic operators has 
been developed by R. S. Anderssen [2] andA. Carasso [3]. 

The symmctrizing operators looking like (31) were used in [ 4] for the 
investigation of linear parabolic problcms. Results based upon the 
variational theory has been developed by Martynyuk A., Petryshyn W.V. and 
Shalov V. M. [5]. For the complete list ofreferences see [4]. 
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