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ON THE JUSTIFICATION OF THE LEAST
SQUARE METHOD FOR NONPOTENTIAL,
NONLINEAR OPERATORS

V. Filippov and A. Rodionov

Suppose in a Hilbert (possibly, negative) space H with inner
product (.,.) there is given an equation

(D Nu) =f.
N is an operator with the domain D(N). We assume that

D(N) is dense and convex in some Hilbert space H, C H.
R(NY=H; N(0) = 0;

(2) @1, Q2,...Qn ... - basis in H,.
o

3) U= D 9k 9y
k=1

The method of least squares (LSM) is to take as an approximate solution of
(1) a linear combination of the given elements ¢,, a,...,, Whose unknown
coefficients a, are determined from the condition

4 IN(o) - f| p || = min .
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The most general result in theoretical justification of LSM has been
obtained by A. Langenbach [1]. It is formulated in

Theorem 1. Suppose the condition (2) and
[NG) - N(uo), uy - u2) = Cy | uy - u lHl I?
o) Y u; € DIN), u; € DN)

©) lululi=Cllulgl VueD®)

are satisfied. Then the sequence {u,} (3), (4) converges in H,.
(Here and then constants C; do not depend on u).

If N is a linear operator, the condition of monotony (5) implies that N is
positive definite operator. So, the theorem 1 can’t justificate LSM for the
number of linear and nonlinear diferential equations. (See, for example, the
parabolic problems). We shall generalize the result of Langenbach in the
following theorems.

Theorem 2. Let N satisfies (2) and let B be an operator with D(B) 2 D(N);
RB)C H.

If
[N(ul) - N(uy), B(u, - uz)] 2Cl|lui-uz |Hl "2
@) Yu,eD(N), u,cD(N)
and
® 1B | arll < Collulpg | Vu ey,

then the sequence {u,} converges in H, for any f e H.

Proof. The conditions (2), (3), (4) imply that for every fixed element f in H
there exists at least one sequence {u,} such that

©) I N@) - Nun) |HI—0  as n—w and m— .
With the help of (7) and (8) we get

1
Nt -t |, I = o ING) - New) [l 5 1| Bl - ) a1l
3

C4
= E_ ”N(”n)'N(um) |H”§ ” Uy 'umlfllll
3
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and thus, also
Gy
(10) o - e | gy Il = o | N(a) - N(u) - N(uw) | 1 ||
3

Now, (9), (10) imply the convergence of {u,}.
Theorem 3.

a) Let N satisfy (2) and have a Gateaux differential

d
N’ (uh = {E N(u + oh) } o

continuous on any line.

If
) (N ()b, Bh) = Cs ||h | g, I> Yu eD(N), Yh eD(N),

then (7) is valid.

b) If (7) and (S) are held, then N has inverse operator N'* on R(N) and
N satisfies the Lipschitz condition.

Proof.
a) On one hand for any u; e D(N), u; € D(N)
1
(NG - N(ua), Bl - 1)) = | (N*(tuy + (1-8)3) (1 - 3), By - up))t.
0
(12)

With (11) on the other hand we get
(W) - N(wa), By - 12)) 2 Cs llus - wal g |-

b) Let v, and v, are arbitrary elements in R(N).
(7) implies that there exist uniquely determined elements u; € D(N) and
uy € D(N) such that v, = N(i), v» = N(iz). According to (10)

C
(13) IV 00 -N' 0 |l s ool vl ¥ vive <RED.

This inequality gives the Lipshitz constant estimate. [
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Thus, the operator N with the domain R(N) dense in H, could be
extended continuously to the whole /1. Now we are to introduce

Definition 1. Element uyeH, is said to be the generalized solution of (1) if
there exists a sequence {u,}, u, e D(N), such that

(14) N@)-flull—0 as n—0
and
(15) || -llolHl"—)O as n—0

Corollary 1. If the nonlinear operator N satisfies (2), (7), (8) then, for any
feH, there exist unique uyell; - generalized solution of (1).

According to [.SM, the approximate solution is determined from (3), (4)
which are equivalent to the system of the algebraic equations:

3
(16) P No@) - fFl P =0, k=12,n
g

After the differentiation (16) transformes (according to [1]) into
17 N (u)pe , Nwy) -H =0, k=1.2,..n

Let’s establish, in view of completeness, the solvability of the system (17)
under the conditions (7), (8).

Lemma 1. Let the operator N has a continuous Gateaux derivative N’,
N(0)=0, and let basis {¢@,} be orthonormal in H,

If the conditions (7), (8) are satisfied, then LSM system of algebraic
equations (17) is solvable for any n=1,2,...

Proof. Using (7), (8) we get Yu,ED(N)

Coll V@) Il o Ly, 2 Vo), Bu) 2 Cs o | I -

That leads to

(18) Call N@a) 11| = Cs [l a1z,

{®.} is an orthonormal set in H, so, for u, derived from (3) we obtain
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" 1/2
2
I un|H1||=[2ak) :

k=1
Under the assumptions of the theorem the function

F(ay,az,...,a,) = || N@,) - f| g IF has continuous partial derivatives of the
first order in an arbitrary ball
n
zaz <R
k=1

Furthermore,

n

1/2
2
Eak] =2C ||| |l

k=1

CollN@) 112 Call L gy | = €5

The last inequality takes place on the surface of the ball as soon as R is great
enough. That implies

INGea) - FLa P 2 IN@) Nl NNy [l - 21 L} +
(19) +If el =0l uIP

At the same time there exist at least one point (u, = () where

IN@) - Fla =l fIm

Thus, the function f has its minimun into the ball and in this point (17) is
held. Therefore, (17) is solvable. []

Remark 1. It is rather difficult to set up the conditions for (17) to have the
unique solution. We are not familiar with any results of that kind formulated
in terms of operators investigated in this paper.

Remark 2. An auxiliary operator B, figurated in (7), (8), exists for an
arbitrary linear operator N = A with a bounded inverse.

Really, let B = (A'l )*S, where S is an arbitrary operator such that
D(S)=D(A) and

(20) (Su) = Cs lfu |y, I?, Yu e D(S)

1) ISulHl| < Celluly I, YueDS)
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For any u, u,, u, - elements of D(A), are evident the inequalities
M) (A(uy - wy), B(uy - u3)) 2 Cs || wy - uy |1, I
and

@) 1B [ all=lA" )y SulgllsCollSulall s Croll | gy I
Whether the nonlinear operator N has the continuous Gateaux derivative

N’(x), we are able to construct the operator B.

Let B = ([N’(0)]" )*S, where S satisfies (20), (21) and ([N’(0)]" )* is
supposed to exist. If

(22) v OT )y vIgh=Cullvigl
(23) (N°()u, Bu) = C(N’(Q)u, Bu),
then

(N(wy) - N(uz), B(uy - u)) = (N* (1 + O(us - u2)) (1 - up), B(uy - u)) =

2 Cio(N’ (0)(u1 -tt2), B(uy 142)) = Cro(N’ (0)(tty -42), (N’ (O)]" Y*S(uy - u3))
= Cpo((uy - 12), Sy - 12)) = Cy Co | uy - uz lHl I

(72)

@) 1Bl =IO )*Sul gl s Cui ISul i l| s Cu Callul g, I -

Thus, the operators N and B satisfy the assumptions of the theorem 2.

Let’s note, that inequality (23) was cosidered in [4]. It turned out to be
usable for extanding the direct variational method to nonlinear equations
with nonpotential operators.

Remark 3. If B is symmetric and positive in H, we are able to define
Hilbert space Hp as a completation of D(B) in metric

@4 | gz Il = )

(25) [w,v] = (u,Bv) .
In view of (24), (25) we can rewrite (7), (8) as
(73) [NQuy) - N(uo), ;- ug] = Cs || uy - 1 | H IF Yu,eD(N), u,eD(N)
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and
(83) [Buu) s Cilju|py, > YueD®)
Example: Let’s justify LSM for the following nonlinear parabolic problem:

du Qd’w d%(x,tu)
26 Nuwy=s —- - Sk
(26) ) at Hax? a x>

= g(x,1), (x,1)el,

where the bounded domain

Q = {(x,0) = (X1,...,%0,0): X; € (@, 1y), i=1,...,n, t €(0,1)}.

(v4)] u(x,ty=0as t=0, xe(a,by), i=1,...,n,

(28) ux,ty=0 as x;=b;, xe(a,b), i=1,...,n, i=j, te(0,T).
d u(x, 1) . .

(29) =0 as x;=aq;, xe(a,b), i=1,..,n, i=j, te(0,1).

an

(30) g(x.f)eLAQ); (EM,0) eCYRY); 3a= 5—- = ol > 0, Yu eD(N).
u

Here DN) = {u(x,0) | u(x,f) e Cf,l ( Q) satisfying (27), (29)}. We define the
auxiliary operator B by the equality

*n 13
GB1) Bh@i)=-[de [ h(xixs.tos, 6,0d8,  D(B) = D(T).
by ay

Remark 4. It is easy to see, that operator B, defined by (31) is symmetric
and positive in L,(€2). Really, integrating by parts we obtain

( *n 3 \
(Buv) 1y = J| - Jd& Juexi.xz,...%,1,8,0)d8 |v =
Q\ by, ay
(32) n Xn
=f fu(xl,xz,...,x,,_l,e,t)dB,fv(xl,xz,...,x,,_l,e,t)d6, dQ.
Q{an an

That equality makes the assertion trivial.

Lemma 2. IfH, is the completion of D(N) in metric
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(33) g, I = fe0] ™

[u,v]= f{a uv+2[f
e

(xl, 2 0,1)do,

n~1’

39

(X, Xy,.05X,_,0,1)]dO }d Q

and (30) is satisfied, then the conditions of the theorem 2 are held for the
operators N (26) - (30) and B (31).

Proof. Integrating by parts on D(N), we obtain, by (30)

oh "2Da’h a2
(N', b By = [1—- > —-

2 2
Q at i= la Xi J Xn
x, &
- J & [hx),xp,x, 1,8 ,0)d0 1dQ =
b, ay
*n xn
=f{fh(xl’ Xy 1’8 [)6 f (xl’ ’xn—l’e’t)e +
Q a, an
n-1 ,xn

Jdu i1 a,

d
+—h +E[fa—x(x1’x2» Xy 1,0, t)de] }dQZ”th ||

1

According to the theorem 3 (7) is satisfied. The validity of (8) can be
established by direct computation: for all A eD(N)

{ n g \2 2
2 (bn '—an) 2
1B\ = f| - [ fn(x),xz, 0%, 1,0, 0)d8 Qs ————lhly, |l
Q\ by, ay
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The theorems prooved above make it possible to formulate
Corollary 2. If N(0) = 0; R(N) = H; basis {@,} is orthonormal in H,, then
the following assertions are true.

a) For any g(x,t) €L,(R2) there exists the unique element uy € H; and
sequence {u,}, u,eD(N) such that, as n—»,

-0 |, 1= 05 11 V) - g1, @l =>0.

n

b) The sequence {u.}; u, = Eakcp & 5 can be found from the sufficient

condition of LSM functional’s mirfi;lzum:

(35) F(@,e.) = || N@w) - g, @) = min,
leading to the system of algebraic equations

(36) £ {N' ()0 [N@,) - g1}dQ =0,k =1,...,n.

¢) The system of nonlinear algebraic equations (36) is solvable for all
g(x,t)eL(82), for any n=1,2,... .

Remark 5. The Least Square Method for linear parabolic operators has
been developed by R. S. Anderssen [2] and A. Carasso [3].

The symmetrizing operators looking like (31) were used in [4] for the
investigation of linear parabolic problems. Results based upon the
variational theory has been developed by Martynyuk A., Petryshyn W.V. and
Shalov V. M. [5]. For the complete list of references see [4].
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