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Abstract

The present paper is in continuation to authors earlier
paper [9] where two variable analogues of certain fractional
integral operators of M. Saigo were investigated. This paper
deals with the effect of operating two variable analogues of

Mellin and Laplace transforms on these two variable
analogues of fractional integral operators of the earlier paper.
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Introduction

In 1978, M. Saigo [15] defined certain integral operator involving the
Gauss hypergeometric function as follows:

Let o > B and 7 be real numbers. The fractional integral operator 1257,
which acts on certain functions f(z) on the interval (0, 00) was defined
as

g h

I(a)
Under the same assumptions in defining (1.1), he also defined the integral
operator J3#7 as

I:,ﬁ,n f=

$(:c—t)°‘_1F(a+ﬂ, ;1 — i)f(t) da  (1.1)
0 z

JpPnf = ﬁ /:o(t —g)* PR (a +B,-ma51 — %) f(t)dt(1.2)

Later on in 1988, Saigo and Raina [17] obtained the generalized

fractional integrals and derivatives introduced by Saigo [15]-[16] of the
system S7'(x), where the general system of polynomials.

[n/d] (=n)
Sp(z) =Y ~—L An, 2’

7!
r=0
were defined by Srivastava [18], where ¢ > 0 and n > 0 are integers, and
A, are arbitrary sequence of real or complex numbers.

In an earlier communication the present authors [9] defined and studied
certain two variables analogues of (1.1) and (1.2) which are as given
below:

I. Let ¢ > 0, a, b, ' be real numbers. A two variable analogue of
fractional integral operator Iy f’" due to M. Saigo i.e. of (1.1} is
defined as

a
b0 —
Y ) = / / (v — v)° x

/. L
) [ @, v ] £ (u, v)dvdu.

C;

(1.3)
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SPECIAL CASES:

(i)

(iii)

Fora=b="b =0,c= ¢, (1.3) reduces to
118,’2;’8;,: f(l',y) = IRO z: O,y IE y)
T Ty / /

( —v)“ U f(u,v) dvdu. (1.4)

Here (1.1) may be considered as a two variable analogue of
Riemann - Liouville fractional integral operator R§ .

Fora=c=a, b=—n, ¥ =0, (1.3) becomes

oo fay) = (Egl, fla,

i L [

(y —0)* Y f(u,v)dvdu.  (1.5)

Fora=c=a, b=0, ¥ = —n, (1.3) gives

IS5 f(z,y)

i

yEg’zWOy
= T@r / /
(y —v)*~ 1v"f(u,v)dvdu. (1.6)

Here (1.5) and (1.6) may be considered as two-variable
analogues of Erdélyi-Kober fractional integral operator E(‘i o

Under the same conditions of (1.3), a two variable analogue
of another fractional integral operator J;’,gﬁ;" due to M. Saigo
i.e. of (1.2) is defined as follows:

1
{T(0)}?

/ / (u—x2) v —y)! x

1—21-4%
Fll:a,z’_b’ uvl v X

185 f(2,y) =

u” %7 f(u, v)dvdu. (1.7)
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SPECIAL CASES:

(i) Fora=b=¥Y =0, ¢ =q, (1.7) reduces to

1w f(2y) = LwM@m<xw
— a—1
- } / / §
('U —y)* 1 f(u,v)dvdu. (1.8)

It can be considered as a two variable analogue of Weyl
fractional integral operator Lg

(iiy Fora=c=a, b=—-n, ¥ =0, (1.7) becomes

1Ja: ooj]y? af(m y) = ng‘go,y oo
= }2 / / u—z)"
(v —y)* > My~ f(u, v)dvdu.
(1.9)
(iii) Fora=c=a, b=0, b = —n (1.7) gives
ljgooo,ynég f(z,y) = ng,go,y,
y" o
= u‘,P/ / "_m)l
(v — )* %=1 f(u, v)dvdu.
(1.10)

Here (1.9) and (1.10) may be considered as two variable analogues
of Erdélyi-Kober fractional integral operator K'7.

II. Let ¢ > 0, ¢' > 0, a, b, b’ be real numbers. Then a second two
variable analogue of Iy B is as given below: '

5 ¢,c' z”y™? f—
20£g,y flzy) = yc,)// (y —v)° 1 x
bb1—2 12
Fz[acc, y]f(u v)dvdu.
(1.11)
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SPECIAL CASES:

(i) Fora=b=b =0, c=a, ¢ =d«, (1.11) reduces to

0,0,0;cx,
210:01, f(z,y) = 2R0z0,yf(

= F(aF(a //(x

(y — 'v) “1f(u,v)dvdu.  (1.12)

Here (1.12) may be taken as second two variable analogues
of Riemann-Liouville fractional integral operator R§,. For
o' = a, (1.12) reduces to (1.4).

(ii) Fora=c=a, b=-n, b' =0, ¢ =a’, (1.11) becomes
TN fmy) = TESRNF (=)

- o [ e

(y — v)* 1" f(u,v) dvdu.
(1.13)

For o' = a, (1.13) reduces to (1.5).
(ii) Fora=c=a, =0, b' = -7, ¢ = a, (1.11) gives

,0,— 50,0
oIg g o flz,y)

Il

Eg;’o"}, (z,

- terer ), / ==

(y —v)" 1o f(u,v) dvdu.
(1.14)

For o' = a, (1.14) reduces to (1.6).

Here (1.13) and (1.14) may be taken as second two variable
analogues of Erdélyi-Kober fractional integral operator Eg, .

Under the same conditions of (1.11), a second two variable analogue
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of J,‘:’g’" is as defined below:

by 1 0 poo .
I T = oy [ ot
z y
e abb;1—2 1%
e R P
u %" f(u,v) dvdu. (1.15)

SPECIAL CASES:

(i) Fora=b=¥4 =0, c=a, ' =a’, (1.15) reduces to

. !
2 IS fz,y) = szyoo (,y)

@ |, -

(v—9)* " f(u,v) dodu.  (1.16)

We may consider (1.16) as second two variable analogues of
Weyl fractional integral operator Lg ,. For @' = «, (1.16)
reduces to (1.8).

(if)y Fora=c=a, b=—-n, b' =0, = a', (1.15) becomes

0; s
ZJ:ootlyoga f(:c,y) = ngC?O,‘;OO

= a’)/ / (u—z)*~ 1

(v — ) "Ly ey £y, v) du du.
(1.17)
For o' = a, (1.17) reduces to (1.9).
(ili) Fora=c=a, b=0, ' = -7, ¢ =o', (1.15) gives

2JEG e fz,y) = SKSET f(x,y)

yn o0 o0
a) a’ / / u—x)a 1
Yy

(v— y)""lu_"v 277 f(u,v) dvdu.
(1.18)

For o' = o, (1.18) reduces to (1.10).



We may consider (1.17) and (1.18) as second two variable analogues
of Erdélyi-Kober fractional integral operator KIS

HI. Let ¢ > 0,a, a’, b, b’ be real numbers. Then a third two variable
analogue of I, @bn'is as follows:

b
Ig;o?y ¢ f(xay)

- L / S

]2 q_2
F3[aa /0,0 2l=y ]f(u,v)dvdu.

c b
(1.19)
SPECIAL CASES:

(i) Fora=d' =0, ¢ = q, (1.19) reduces to

,b
Igggy > f(zly) = leyz;O,y f(fl', y)

- {r((lx)p /0z /Oy(x —u)* Ny —v)*" f(u,v) dvdu.

which is (1.4).
(ii) Fora=c=a, a' =0, b= —n, (1.19) becomes

,0,—n,b';

slowon” “f(@,y) = §Eg o, f(@Yy)

(1.20)

{[‘—(Z);z/ / :c —u a 1 v)““lunf(u,v) dv du.

(1.21)
(iif) Fora =0, o' =¢c=a, b' = —n, (1.19) gives
slosoy " f@y) = §E5To, f(@,9)
y " / / z—u)* Hy —v)* 10" f(u,v)dv du.
(1.22)
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Here (1.21) and (1.22) may be thought of as the third two variable
analogues of Erdélyi-Kober fractional integral operator E(‘)’g

Under the same conditions of (1.19), a third two variable analogue
of J;;ﬁ;” is as defined below:

3'] z . ( ay)

s [

1 /. _x _ ¥ 1
F [ bl ]“““”‘“ f(u,v)dv du.

(1.23)

SPECIAL CASES:

(i) For a =a’' =0, and ¢ = ¢, (1.23) reduces to

.,
3‘]:(:),’2(’),1’}),6;? f(z,y) = ng,oo;y,oo f(wyy)

_ {_F(%}T/:o /yoo(u_x)a—l(u — ) ix (1.24)

f(u,v) dvdu

which is (1.8).
(i) Fora' =0, a=c=aq, b= —n, (1.23) becomes

3JE%TT fle,y) = §KSL, 00 F(3,Y)

- {ch:)}? /:o /:o(“ — o) -y e (1.25)

f(u,v) dvdu.



iii) Fora=0, ' =¢c=aqa, b = -7, (1. gives
iii) Fi 0, a 3 1.23) gi

sJogh T f(z,y) = §KIL.,  f(2,y)

= {T-?CZW /:o /yoo(u —2)* o ~y)* v % (1.26)

f(u,v) dvdu.

Here (1.25) and (1.26) may be taken as the third two variable
analogues of Erdélyi-Kober fractional integral operator K3, .

IV. Let ¢ > 0, ¢ > 0, a, b be real numbers. Then a fourth two variable
analogue of Ig"f’" is as defined below:

Igi 8,; f(.’E, C)F(C’ / / r — U C 1 v)c'—l x
(1.27)

F4[ab1 a1y ]f(u,v)dvdu.

¢ c;

Under the same conditions of (1.27), a fourth two variable analogue
of J:&:1 is as given below:

a,b;c,c T 1 Oo 00 —-.'I:C_l
S @) =ty [ e

' '_ -z - ¥
(U _y)c —1F4 [ a’b;l u)]. v ] u_av_ax

G C5

f(u,v) dvdu.
(1.28)

The aim of the present paper is to study the effects of integral transforms
say the Mellin and Laplace transforms on the two variable analogues
of fractional integral operators introduced in [9] and reproduced here
through (1.3), (1.7), (1.11), (1.15), (1.19), (1.23), (1.27) and (1.28).

We shall also need here the definitions of certain generalizations of
Appell’s functions studied by the present authors in a separate communi-
cation [8].
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For convenience we reproduce the definitions of only those functions of
[8] which we need in this paper. Two such functions M; and M, needed
in this paper are defined as

] ! ! I.
Ml(a,a,b,b,c,c,d,e,e,z,y)

_ o (@) (@) n(B)m(b)n(C)m(c)n ™ y"
=2 T g @n (1.29)

Maz{Jal, lyl} < 1;

My(a,b,b,c,c,d e e;z,y)

i i @)mtn(B)m (B )n()m(c')n f_riﬁ (1.30)

e~ (d)m+n e)m(e In m! n!’

Maz{|z|,|yj} < 1.
We also need the results of the following theorems of [9] in this paper:

Theorem 1.1. For functions of two variables f(z,y) and g(z,y) defined
in the positive quadrant of the zy-plane and ¢ > 0, we have

o0 o
| t@ungts s ds
o Jo
: (1.31)
=[] stewaztic f@y) dyas
o Jo
provided that each double integral exists.

Theorem 1.2. For functions of two variables f(z,y) and g(z,y) defined
in the positive quadrant of the zy-plane and ¢ > 0,¢’ > 0, we have

oo o0
/ /0 F(@,9) 0500507 g(z,y)dy dz
0
(1.32)

o <] o0
=/ / g9(@,y) 22000 f(z,y) dydz
0 0

provided that each double integral exists.
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Theorem 1.3. Under the conditions stated in theorem 1.1, we have

/ / Fl@, ) sIESHYe g(z,y) dyds
(1.33)

00 poo
:/0 /0 9(z,y) J:goyzbooc f(z,y) dydz

provided that each double integral exists.

Theorem 1.4. Under the conditions stated in theorem 1.2, we have

o0 o o]
/O/Of(z,y)dgiéj 9(z,y) dyde
(1.34)

o0 oo
= [ st rztsi f@) dyds
0
provided that each double integral exists.

The present paper also indicates representation of the results of the
following theorems of [9] in terms of double Mellin transforms.

1
Theorem 1.5. For functions f(z,y),9(z,v),f (% 5) and g (—,l)
defined for 0 <z < 00, 0 <y < o0 and ¢ > 0, we have

/ / (zy)* 7' f <— —) Igttieg(2,y) dydo
- /°° /00(93 yemet 11 IEhYe f(z,y) dydz
- 0 o y g w’y 1 0,z;0,y )y y

provided that each double integral exists.

(1.35)

Theorem 1.6. Under the conditions stated in theorem 1.5, we have

/ / (zy)e =t f(z y) b g(z,y) dyds
Y e 1, (11 bY';

=[] @ g(—,—) LTEEYe  f(z,y) dyde
0 0 Ty

provided that each double integral exists.

(1.36)
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11 11
Theorem 1.7. For functions f(z,y), g(z,y), f (;, 5) and g (;, §>
defined for 0 <2< 0,0<y < o0 andc >0, ¢ >0, we have

11 Jabbie
/ / gy °‘1f( —) AP (2, y) dy do
(1.37)

© [ a—c—1,a—c —1 11 a,b,b ic,c’
= T y I\23 2lgmo,y - f(z,y) dydz
0 0

provided that each double integral exists.

Theorem 1.8. Under the conditions stated in theorem 1.7, we have

/ / go—clya—c'~ lf(— _> 2Jabbyoog(my)dyda:
(1.38)

[ a—c—1, a—c —1 11 a,b,b ;c,c!
=) ) ° y 9\ 2y 2z o0iye0 £(2,y) dydz

provided that each double integral exists.

1
Theorem 1.9. For functions f(z,y), g(z,y), f (i,i—) andg( 1)
Y
defined for 0 <z < 00, 0 <y < o0 and ¢ > 0, we have

[ [ (L) s ot dves
(1.39)

* [ a—c—1,a —c—1 11 a,a’,b,b";e
= z Y gl == ) slyyoy © flz,y) dydz
0 0 ry ’

provided that each double integral exists.

Theorem 1.10. Under the conditions stated in theorem 1.9, we have

_ 11 " pb'
[ e (32 aamdate e dvda

11
/ / zo—c-1 a—c 19(_,5) J:;:Iog;f’goc (m,y) dyda:

provided that each double integral exists.
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11 11
Theorem 1.11. For functions f(zx,y),g(z,y), f <-1;, 5) and g (;, —)
defined for 0 < z < 00,0 <y < oo and ¢ > 0,¢' > 0, we have

|7 ey (1) anpts ot ayds
a c— a c'— 11 abcc
/ / . lg<x y) algyy flz,y) dydz

provided that each double integral exists.

(1.41)

Theorem 1.12. Under the conditions stated in theorem 1.11, we have

/ / =yt °‘1f< ) e oo 9(@,y) dy da
78— a ¢ — 11 a,bic,c’
/ / ! 19( y) aIglee ) fz,y) dyds

provided that each double integral exists.

(1.42)

2 Mellin Transformation

In this section we shall study the effect of operating two variable
analogues of Mellin transform on the above defined operators. A two
variable analogue of Mellin transform of a function f(z,y) of two
variables  and y is defined as follows:

M{f(u,v) : st} = /000 /000 u* Lot f(u, v) dvdu. (2.1)

The effects of operating (2.1), on the operators (1.3), (1.7), (1.11),
(1.15), (1.19), (1.23), (1.27) and (1.28) are given in the form of the
following theorems:
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Theorem 2.1. Forc > 0,Rl(l1+a—-c—35)>0,Rl(l+a—-c—1t) >0,
we have

l+a—c—s)I(l+a—-c—1t)
Fl4+a—-s)T'(1+a—1%)

. r
M { A fley) et} = D

a; b V;ecel,l
4 Cil+a—s,1+a—t;

] M{(zy)*=f(z,9) : 5,1}
(2.2)

provided that term by term integration is valid and My is given by (1.30).

Theorem 2.2. For ¢ > 0, Rl(s) > 0, RI(t) > 0, we have

o L T
M{ 1Jz,golzy,oo f(xay) " S’t} - F(S +C)F(t +C)

a; b, Ve 1,1
Cis+c, t+c¢;

] M{(zy)® f(z,9): 5,6}
2.3)

provided that term by term integration is valid and My is given by (1.30).

k}
Theorem 2.3. Forc > 0,¢' > 0, RI(14a—c—s) > 0, Rl(1+a—c'—t) > 0,
we have

M{ 213,,;);8,;6,6 flz,y) S,t}

Tl+a-c—sP(1+a—c — L1 -t —b)
- Fl+a-s)I(1+a—t—bT(1-1t)

a, b, t;1 cma.c—a '
+F [ 1+a—s,t+b; ] M{z*"%y f(z,y) 5,1}

(2.4)

provided that term by term integration is valid.
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Theorem 2.4. Forc > 0,c' >0
M{ Jggoby,” fz,y) :s,t}

_ L)) (t+c —b —a)
T T(s+l(t+c —¥)T(t+c —a) X

a, b, 1+a-c—-t1 o
’ [+ Tramt—c—t }M{af “y =2 f(z,y) : 5,t)

(2.5)

provided that term by term integration is valid.

Theorem 2.5. Forc>0,Rl{1+a—c—5s)>0,RI(1+a' —c—1t)>0,
we have

M{ SI5edye f(@,y) s 5.t}

I‘(l+a—~c—s)I‘(1+a’——c—t))<
'l+a-3s)I'(1+a' —1%)

a,a’;b,b;cc 1,1 c—ayo—d
M [c1+a—c1+a t; ZIM{::: f=,y) : 5,8}

(2.6)

provided that term by term integration is valid and M is given by (1.29).

Theorem 2.6. For c > 0, Rl(s) > 0, RI(t) > 0, we have

M{ Jaalbbse xy):s,t}

T,00;Y,00

__ Ire)
" I(s+c)l(t+c)

a,a’;h, b'5e,c;1,1 c—a, c—a' )
My | B9 VAL e ) 1)

2.7)

provided that term by term integration is valid.
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Theorem 2.7. Forc > 0,¢' > 0, Rl(1+a—c—s) > 0, Rl(1+a—c'—t) > 0,
we have

M{ ISEEE F@y) 5.t

_Tl+a-c—s)[(1+a—-c -t)['(1-t-b)
T T TO+ta—sT1-Dl(l+ta—b-1) |

a, b, tab+t_a;}11 c—a,c —a .
4F3[1+a—s,%(b+t),%(1+b+t);]M{m v () st}

(2.8)

provided that term by term integration is valid.

Theorem 2.8. For ¢ > 0,¢' > 0, RI(s) > 0, RI(t) > 0, we have

L@+ —a—10)
s+e)l(t+c —a)T(t+c —b) X

M{ sl fe0)} = g

F a,bl+a—c —t,14+b—c —t;1 9
3 st i(ltatb—c —t),i2+a+b-c - t)
M{ze=oy" = f(z,y) : 5,1}

(2.9)

provided that term by term integration is valid.

From the above theorems of this section certain interesting coroll-
aries readily follow giving the effects of operating (2.1) on the operators
(1.4), (1.5), (1.6), (1.8), (1.9), (1.10), (1.12), (1.13), (1.14), (1.16), (1.17),
(1.18), (1.20), (1.21), (1.22), (1.24), (1.25) and (1.26).

Further, in view of results of theorems 1.1, 1.2, 1.3 and 1.4 we
give some more theorems connecting double Mellin transform and the
operators (1.3), (1.7), (1.11), (1.15), (1.19), (1.23), (1.27) and (1.28).

Theorem 2.9. For a function of two variables f(z,y) defined in the
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positive quadrant of the xy-plane and ¢ > 0, we have
o oo b b"
/ / F@,y) 150y {o° v Yy dz
o Jo (2.10)
= M{ IJ::&Q;},COO f(xay) : 37t}

provided that the double integrals involved exist.

Theorem 2.10. Under the conditions stated in theorem 2.9, we have
lo o] o0 ,

[ [ r@w ety ayas

o Jo (2.11)

= M{ lzg;;’;g; f(z,y) : 5,1}

provided that the double integrals involved exist.

Theorem 2.11. For a function of two variables f(x,y) defined in the
positive quadrant of the xy-plane and ¢ > 0,c' > 0, we have

o0 o0 , ,
/ / F(@,0) IS5 {2971yt Yy d
o Jo (2.12)
= M{2J005e f(z,y) 5,8}

Z,00Y,00

provided that the double integrals involved ezist.

Theorem 2.12. Under the conditions stated in theorem 2.11, we have

/ / F(z,y) 2ol (25 1yt =V} dy do
o Jo (2.13)

,b,b"5e,c’
= M{ gIg’m;O,; ¢ flz,y) :s,t}

provided that the double integrals involved exist.
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Theorem 2.13. Under the conditions stated in theorem 2.9, we have
0o 0o .
L[ s s ety ayaa
o (2.14)
= M{3J25007 f(z,y) 5,1}

provided that the double integrals involved exist.

Theorem 2.14. Under the conditions stated in theorem 2.9, we have

o0 o0 , ,
/ / F(@,9) 5T e (91t Y dy da
o Jo (2.15)
= M{3I$:280"% f(z,y) : 5,1}

provided that the double integrals involved exist.

Theorem 2.15. Under the conditions stated in theorem 2.11, we have

oo [e e} b ,
/ / f(@,9) alg gy {2z° 'yt Yy dz
o e (2.16)

= M{4J25es, f(z,y) : 5,1}

provided that the double integrals involved exist.

Theorem 2.16. Under the conditions stated in theorem 2.11, we have

/ / F(@,y) 478058 (2*~ 1y Ydy da
o Jo (2.17)

= M{uIg5oy f@y) st}
provided that the double integrals involved exist.

Theorem 2.17. For functions of two variables f(z,y)and g(z,y)
defined in the positive quadrant of the zy-plane and ¢ > 0, we have

M [f@y) I ey g y)} - o.t]
(2.18)
= M [g(a, yh e (e Y T f(z,9)} 5]
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Theorem 2.18. For functions of two variables f(z,y) and g(z,y)
defined in the positive quadrant of the xy-plane and ¢ > 0,¢' > 0, we
have

M [f(z,y) DG e (g 1yt g(z, )} - s,t]
(2.19)
= M [g(@,)2Je8es oo~y flm,0)} : s,t]
Theorem 2.19. Under the conditions stated in theorem 2.17, we have
M [f(z,9) 050 {o ty*g(z,9)} < 5,¢]
(2.20)
=M [y(w, Y)sJoa bV ie{zs-1yt=1f(z,y)} : s,t] -
Theorem 2.20. Under the conditions stated in theorem 2.18, we have
M [f(x,y) JAgEec {01yt~ 1g(z, y)) - s,t]
(2.21)
=M [g(:v,y)4J§:3£€’yc,'oo{z"1yt‘1f(z,y)} : s,t] -
It is interesting to not that in terms of double Mellin transforms

the results (1.35), (1.36), (1.37), (1.38), (1.39), (1.40), (1.41) and (1.42)
respectively can be written as

M{f(5,4) 15505 g(oy) ia—c a—c}

(2.22)
=M {g (%, %) 1Ig”;’;’g:;; flz,y):a—c, a— c} ,
M {f (%, %) 1J;:g<’£;jfoo g(z,y):a~c,a— c}
(2.23)
=M {g (%, i) IJ:Z&E;},C@ flz,y):a—c,a— c} )
M{f(%3) 520 9@y a—ca=c}
(2.24)

bb'ic,c!
=M {g (%7 %) 2I(()l,’z;0,yc ¢ f(xay) ‘a—-¢a— C,} )
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Ja,b,b’ iec’

) 2

g(z,y) 1 a—c, a—c’}

T’y ,00;y,00
(2.25)
=M {g(L,1) 2Jetdied flmy)a—ca=-c},
M {f (%7 %) 3 gv,;dl,)!}b “ g(a:,y) ta—c,a — c}
(2.26)
=M {g (%’ %) 3[&’&6{’2’;’ “ flzy)ia—c a — c} ,
M {f (%’ %) SJ::g;;I;’,b;C;)C gz, y)ra—c,a — c}
(2.27)
=M {g (%’ %) BJS,’é‘é;Z’,’is“ flz,y):a~c,a — c} ,
M{f(2,3) 8% gla)ia-ca-c)
(2.28)
—u{g(L.3) ks few)ra-ea-c},
M{f (l l) 4Ja,b;c,c’ g(m y) ‘a—c a__c,}
T’y T,00;Y,00 5 : ,
(2.29)

11
'y

- ufo

) 4

Ja,b;c,c'
z,00;Yy,00

f(z,y):a—c,a—c’}.

3 Laplace Transformation

The double Laplace transform of a function of two variables f(z,y)
defined in the positive quadrant of the zy-plane is defined by the equation

L{fe) sty = [

/00 e Y f(z,y)dydz. 3.1)
0

Making use of results of theorems 1.1, 1.2, 1.3 and 1.4 the relation-
ships of (3.1) with the operators (1.3), (1.7), (1.11), (1.15), (1.19), (1.23),
(1.27) and (1.28) are given in the form of the following theorems:
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Theorem 3.1. For a function of two variables f(x,y) defined in the
positive quadrant of the xy-plane and ¢ > 0, we have

oo o0 B
|| rew sty iy de
0 0]

(3.2)
= L{1 I35 f(e,y) st}
provided that the double integrals involved exist.
Theorem 3.2. Under the conditions of theorem 3.1, we have
le o} [ee) ,
[ ] tew etle =y do
o Jo (3.3)

b8 5e,¢!
= L{QIg,z;O,yc ¢ f(z,y) : 'S?t}

provided that the double integrals involved ezist.

Theorem 3.3. For a function of two variables f(x,y) defined in the
positive quadrant of the xy-plane and ¢ > 0,¢' > 0, we have

o0 o0 b ,
| [ttt e ayde
0 0

(3.4)
= L{oJgbes f(z,y) 1 st}
provided that the double integrals involved ezist.
Theorem 3.4. Under the conditions of theorem 3.3, we have
oo oo , ,
[t szttt s may de
o J0 (3.5)

ybyblly s !
= L{zlg,a:;o,yc ¢ f(:l:,y) : S7t}

provided that the double integrals involved ezist.
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Theorem 3.5. For a function of two variables f(x,y) defined in the
positive quadrant of the zy-plane and ¢ > 0, we have

0 0 ’ 7
| rematsagy ey s
0

= L{3J&3 00 f(z,y) : 5,1}

provided that the double integrals involved exist.

Theorem 3.6. Under the conditions stated of theorem 3.5, we have
o0 oo , ,
|7ty sazgite ey o
o Jo - (3.7)
= L{algsey * fl@y) : .t}
provided that the double integrals involved exist.

Theorem 3.7. For a function of two variables f(z,y) defined in the
positive quadrant of the xy-plane and ¢ > 0,c' > 0, we have

[ [ s ety e ay aa
o Jo (3.8)
= L{a 5850 Fa9) i 5t}
provided that the double integrals involved ezxist.
Theorem 3.8. Under the conditions stated of theorem 8.7, we have
[ @) wztsg ey da
o Jo (3.9)
= L{aI525y f(@,9) 5,8}
provided that the double integrals involved exist.

We further give relationships among double Laplace transform,
double Mellin transform and the operators (1.3), (1.7), (1.11), (1.15),
(1.19), (1.23), (1.27) and (1.28) in the form of the following theorems:
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Theorem 3.9. For functions of two variables f(z,y) and g(z,y) defined
in the positive quadrant of the zy-plane and ¢ > 0, we have

M [f(w,y) gy {e7 " g(z,y)} : s,t]
(3.10)
= L [g(z,4) 1 J2805% {o* 7y f (,9)} 1 s,¢]

Theorem 3.10. For functions of two variables f(z,y) and g(z,y) de-
fined in the positive quadrant of the zy-plane and ¢ > 0,c’' < 0, we have

M [f(z,9) oI008 0 {em " g(z, )} : 5,1]
(3.11)
=L [g(w,y) 2JEY el {aolyt1 f(z,y)} - s,t] .

Theorem 3.11. Under the conditions stated in theorem 3.9, we have

M [f(w,y) ooy < {e7 " g(z,y)} : s,t]
(3.12)

=L [g(w,y) sJe Gt (ool f(a,y)} st
Theorem 3.12. Under the conditions stated in theorem 3.10, we have
M [f@,y) dgncy {em** g(z,0)} : 5,¢)
(3.13)
= L[g(e,9) a2tisse 2* 1 (@00} 2 5,2]
Further, we have
Theorem 3.13. Under the conditions stated in theorem 3.9, we have
L[f@,u) 10520 {7 g(w,0)} : 5,1
(3.14)
= L [9(e,9) 198885 {7 f(z,9)} - 5,1]

Theorem 3.14. Under the conditions stated in theorem 3.10, we have

L[£(o,9) 25885 {ems=tvg(z,9)} : 5,1]
(3.15)
= L[g(z,9) 2J28858 ("~ (@,0)} : 5,1 .
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Theorem 3.15. Under the conditions stated in theorem 3.9, we have

L[f(a, ) sTgit e (e g(a, 1)} 5 1]
(3.16)
= L[ge,9) I8 8% {0 f(z,9)} : 5,1] -

Theorem 3.16. Under the conditions stated in theorem 3.10, we have

L [f(x,y) JI5ies {es=Wg(z,y)} : s,t]
(3.17)
= L [g(a,y)a Ity {em (@)} 1 5,
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