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A CRITERIA OF
COMPLETENESS FOR
COMPACT OPERATORS IN
HILBERT SPACE

Julio Aledntara-Bode

Abstract

A necessary and sufficient condition is given for
completeness of the set of eigenfunctions and generalized
eigenfunctions associated to the non zero eigenvalues of a

compact operator on a Hilbert Space.
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Introduction and Main Result

We begin reviewing briefly some properties of compact operators
on a Hilbert space H that will be needed later on [4], [5], [6], [7], [§]. If
H is a Hilbert space K(H), K1(H) and K,(H) will denote, respectively
the set of compact, nuclear and Hilbert-Schmidt operators in B(H), the
set of bounded operators in H. If dim H = oo, then I € B(H)\K(H),
where I is the identity operator on H. If A € K(H) and o(A) de-
notes the spectrum of A, then every u € o(A)\{0} is an eigenvalue,
that is Ker(ul — A) # {0}, and every element of Ker(ul — A)\{0} is
called an eigenvector of A corresponding to the eigenvalue p, in this
case the number m, = dimKer(ul — A) is finite and it is called the
geometric multiplicity of the eigenvalue p. For such a g the num-

o0

ber p, = dim U Ker(ul — A)* is also finite and it is by definition

k=1
the algebraic multiplicity of u. Evidently p, > m,, but for compact
normal operators p, = m,. The inequality p, > m, holds if and

o0
only if U Ker(ul — A)F # Ker(ul — A); in this case the elements of
k=1

o0
U Ker(ul — A)*\Ker(ul — A) are called generalized eigenvectors or root
k=1
vectors of A associated to the eigenvalue u. Evidently ¢ € H is a gen-

eralized eigenvector of A corresponding to the eigenvalue p € o(A)\{0}
if and only if there is an £ € N\{1} such that (4 — pI)’¢ = 0 and
(A — ul)!1p # 0, let’s call such an £ the height of the generalized
eigenvector ; by definition the height of an eigenvector is 1.

An important problem is to determine conditions on A € K(H), so
that the smallest closed linear subspace that contains the set of eigenvec-
tors and generalized eigenvectors associated to its non-zero eigenvalues
coincides with R(A), the closure of the range of A. In the present note
we give a necessary and sufficient condition for this to occur, that we

have found useful in some problems arising from Number Theory.

If A € B(H), the resolvent set p(A) of A is the set {A € C: (A —
A)~! € B(H)} and by definition o(A) = C\p(A);o(A) is compact and
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non-empty. The function A — (A — A)~! is an analytic function from
p(A) into B(H) and it is called the resolvent of A. If A € K(H),o(A)
is at most countable with 0 as its only possible limit point, moreover
0 € o(A) if dimH = oco. In this case the resolvent of A has poles at
every point of o(A)\{0}, more precisely if u € 6(A4)\{0} and € > 0 is
chosen in such a way that @ = {A € C:0 < |A - p| < €} does not meet
o(A), then in Q is valid the following Laurent series expansion for the
resolvent [6], [9].

(Ip oo
A=A =3 (A=) A=~ uD)" " Pt Y (A~ w QL
n=1 £=0
where P, = %mf (M — A)~!dz,
[A—pl=¢’
— 1 -1 -1
Qu =5 | (A=p) ™ (M = A)™ da,

A—p|=¢'

0 < &’ < £ and the contour integrations are counter clockwise. Moreover,
it holds that

AP,=P,A, P!=P,, (A—pl)"P,#0

if
0<n<qu-1, (A—pul)%P, =0, AQ,=Q.A,
PQu=QuP, =0, (A-ul)Q,=PF, -1

o0
and P, is the Riez projection onto U Ker(ul — A)*. The order g, of
k=1
the pole of the resolvent (Al — A)~! at p is equal to the maximum height
oo

of an element in U Ker(ul — A)*\{0}. If the geometric multiplicity of
k=1
u, my, = 1, then g, = p,, the algebraic multiplicity of x. For compact

normal operators g, = 1.

By Satz 5.15 in [6] there are elements 90§~f2) in P,H = U Ker(pul —
k=1
A)*, where 1 < j < m,, £ = height of wgf;), 1 < ¢ < ny, such that
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0 if £=1
A—ul (#) —
( u )(p],[ { ‘P;f‘g)_l if £>1

My

E nj = pu,qu = max . Similarly, one can choose elements z/)£f§) i
1 1<j<my,

]:

o0
PrH = | J Ker(aI — A*)¥, where 1 < r < myz, s = height of ${%,1 <

k=1
mg
s < ng, _;_ Ny = Pg, gz = max , such that
1 1<r<mgp
r—

_ 0 if s=1
A* —@l (m — -
( B { ifts)_l if s>1

and < <p§f‘},¢$?2 >= 0;,00n,-s+1 (note that m, = my,py = P, qu =
gz). In this case we have
My Ny
P =30 <6 > eH
j=1¢=1
Therefore if w € H is orthogonal to all the eigenfunctions and generalized
eigenfunctions of A € K(H) corresponding to its non-zero eigenvalues,
we will have P;w = 0,y € 0(A4)\{0} and therefore the function defined
by
<&X T-ANTw>=< AT - A) 7w >

is entire V€ € H.

We have found this last condition useful for a certain family of
compact operators that arise in Number Theory. To state our results
we need further information about compact operators. If A € K(H),
let {s2(A) : n € N}, be the sequence of eigenvalues of A*A, each one of
them repeated a number of times equal to its algebraic multiplicity and
ordered in such a way that

sn(A) > sp41(4) >0 VneN.
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o0

If 0 < p < oo we say that A € K,(H) when Y _ s,(4)” < 00; K,(H)
n=1

is a two sided ideal in B(H), until now the more useful of these ideals

have been K;(H), the ideal of nuclear operators, and K2(H), the ideal
of Hilbert-Schmidt operators. If A,B € K»(H) then AB € K;(H).
Let {¢n(A)}n>1 he the sequence of eigenvalues of the compact operator
A, ordered in such a way that {un(A)] > |pnt1(A4)|¥n € N and each
one of them being counted according to its algebraic multiplicity, then
VA € K,(H) hold the inequalities of Weyl [4], [5], [7], 8]

S lpi(AP < 5P Vo1
j=1 j=1

(e o)
Therefore if A € K;(H) the series 01(A4) = Z“j(A) converges

=1
absolutely and it is called the trace of A. The trace of A",r € N, is
denoted by o,(A). There are two results of Lidskii [5], [8] that enable
us in some cases to find the trace of a nuclear operator without prior
knowledge of its spectrum: if {¢n}n>1 is a complete orthonormal set in

H then o,.(A) = Z < A"pn,en > and when A is an integral operator
=1
or(A) is given as an integral of the “kernel” of the operators A™. If A €

K;(H) then p € o(A)\{0} if and only if D(u~1) =det; (I —p~'4) =0
where D is the entire function, known as the Fredholm determinant of
I — ' A given by the following formulae of Plemelj [4], [5], {7].

D) =Y duX*, do=1

n(4)  n-1 0 - 00
| 02(4) o1(4) n—2 00
dn=(_1,) 2
P ona(d) oua(4) ona(4) - oA
on(A)  on_1(A) on_2(4) -+ o02(A)o1(4)
n>1
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If k is the algebraic multiplicity of p then D®)(p=1) = 0 for 0 <
£<k—1and D®(u1) #0. The Hadamard factorization of the entire
o0

function det; (I — AA4) is H[l = A (A4)].
i=1

Hilbert observed that if A € Ky(H) the above formulae for the
Fredholm determinant still make sense if we take o1(4) = 0 (if A €
Ky(H)\K1(H) the series that defines o;(A) may be divergent). The
function defined in this way is called the modified or renormalized Fred-
holm determinant for A € K5(H) and it is denoted by dets(I — AA).

The Hadamard factorization of the entire function dety(I — AA) is

o0

H[l — i (A)]e* (4 (the exponential factors e**(4) make the infinite
i=1 o

product H[l — A (A)] convergent).

i=1

A similar procedure is used to define renormalized Fredholm deter-
minants of operators in K,(H),p > 2.

In previous work [1], [2], [3] we have reformulated the Riemann

Hypothesis (RH) as a problem of Functional Analysis by means of the
Hilbert Schmidt (non nuclear, non normal) integral operators on L2[0, 1],

Va8
4,110 = [ o (2) 1o
where « €]0,1] : RH holds if and only if
R(A,(a)*) D L*(0,0), «€]0,1]

(if it holds for one «, it holds for all others « in this interval).

In [2] we have evaluated the modified Fredholm determinants
detal — A, ()] = e Ta ()
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where

r+1 (r+1)(r+2)/2 T
2 Hc (€+ 1)
(r+Dl(r+1)

Tolu) —l—au+2

We also have closed formulae for the eigenfunctions and generalized
eigenfunctions of the operators A,(a),a €]0,1]. This information has
been used in [3] to prove that the set of eigenvectors and generalized
eigenvectors associated to the non-zero eigenvalues of A,(«a),a €]0,1[ is
total in L2(0,1), but it is not part of a Markushevich basis in L2(0, 1).
We have not been able to extend this result to A,, since the proof de-
pends essentially on the fact that T, is an entire function of order zero
for a €]0,1[, but Ty has order 1.
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