A CRITERIA OF COMPLETENESS FOR COMPACT OPERATORS IN HILBERT SPACE

Julio Alcántara-Bode

Abstract

A necessary and sufficient condition is given for completeness of the set of eigenfunctions and generalized eigenfunctions associated to the non zero eigenvalues of a compact operator on a Hilbert Space.

Introduction and Main Result

We begin reviewing briefly some properties of compact operators on a Hilbert space H that will be needed later on [4], [5], [6], [7], [8]. If H is a Hilbert space $K(H), K_{1}(H)$ and $K_{2}(H)$ will denote, respectively the set of compact, nuclear and Hilbert-Schmidt operators in $B(H)$, the set of bounded operators in H. If $\operatorname{dim} H=\infty$, then $I \in B(H) \backslash K(H)$, where I is the identity operator on H. If $A \in K(H)$ and $\sigma(A)$ denotes the spectrum of A, then every $\mu \in \sigma(A) \backslash\{0\}$ is an eigenvalue, that is $\operatorname{Ker}(\mu I-A) \neq\{0\}$, and every element of $\operatorname{Ker}(\mu I-A) \backslash\{0\}$ is called an eigenvector of A corresponding to the eigenvalue μ, in this case the number $m_{\mu}=\operatorname{dim} \operatorname{Ker}(\mu I-A)$ is finite and it is called the geometric multiplicity of the eigenvalue μ. For such a μ the number $p_{\mu}=\operatorname{dim} \bigcup_{k=1}^{\infty} \operatorname{Ker}(\mu I-A)^{k}$ is also finite and it is by definition the algebraic multiplicity of μ. Evidently $p_{\mu} \geq m_{\mu}$, but for compact normal operators $p_{\mu}=m_{\mu}$. The inequality $p_{\mu}>m_{\mu}$ holds if and only if $\bigcup_{k=1}^{\infty} \operatorname{Ker}(\mu I-A)^{k} \neq \operatorname{Ker}(\mu I-A)$; in this case the elements of ${ }^{\infty}$
$\operatorname{Ker}(\mu I-A)^{k} \backslash \operatorname{Ker}(\mu I-A)$ are called generalized eigenvectors or root $k=1$
vectors of A associated to the eigenvalue μ. Evidently $\varphi \in H$ is a generalized eigenvector of A corresponding to the eigenvalue $\mu \in \sigma(A) \backslash\{0\}$ if and only if there is an $\ell \in \mathbb{N} \backslash\{1\}$ such that $(A-\mu I)^{\ell} \varphi=0$ and $(A-\mu I)^{\ell-1} \varphi \neq 0$, let's call such an ℓ the height of the generalized eigenvector φ; by definition the height of an eigenvector is 1 .

An important problem is to determine conditions on $A \in K(H)$, so that the smallest closed linear subspace that contains the set of eigenvectors and generalized eigenvectors associated to its non-zero eigenvalues coincides with $\overline{R(A)}$, the closure of the range of A. In the present note we give a necessary and sufficient condition for this to occur, that we have found useful in some problems arising from Number Theory.

If $A \in B(H)$, the resolvent set $\rho(A)$ of A is the set $\{\lambda \in \mathbb{C}:(\lambda I-$ $\left.A)^{-1} \in B(H)\right\}$ and by definition $\sigma(A)=\mathbb{C} \backslash \rho(A) ; \sigma(A)$ is compact and
non-empty. The function $\lambda \longrightarrow(\lambda I-A)^{-1}$ is an analytic function from $\rho(A)$ into $B(H)$ and it is called the resolvent of A. If $A \in K(H), \sigma(A)$ is at most countable with 0 as its only possible limit point, moreover $0 \in \sigma(A)$ if $\operatorname{dim} H=\infty$. In this case the resolvent of A has poles at every point of $\sigma(A) \backslash\{0\}$, more precisely if $\mu \in \sigma(A) \backslash\{0\}$ and $\varepsilon>0$ is chosen in such a way that $\Omega=\{\lambda \in \mathbb{C}: 0<|\lambda-\mu|<\varepsilon\}$ does not meet $\sigma(A)$, then in Ω is valid the following Laurent series expansion for the resolvent [6], [9].

$$
(\lambda I-A)^{-1}=\sum_{n=1}^{q_{\mu}}(\lambda-\mu)^{-n}(A-\mu I)^{n-1} P_{\mu}+\sum_{\ell=0}^{\infty}(\lambda-\mu)^{\ell} Q_{\mu}^{\ell+1}
$$

where $P_{\mu}=\frac{1}{2 \pi i} \oint_{|\lambda-\mu|=\varepsilon^{\prime}}(\lambda I-A)^{-1} d x$,

$$
Q_{\mu}=\frac{1}{2 \pi i} \oint_{|\lambda-\mu|=\varepsilon^{\prime}}(\lambda-\mu)^{-1}(\lambda I-A)^{-1} d x
$$

$0<\varepsilon^{\prime}<\varepsilon$ and the contour integrations are counter clockwise. Moreover, it holds that

$$
A P_{\mu}=P_{\mu} A, \quad P_{\mu}^{2}=P_{\mu}, \quad(A-\mu I)^{n} P_{\mu} \neq 0
$$

if

$$
\begin{gathered}
0 \leq n \leq q_{\mu}-1, \quad(A-\mu I)^{q_{\mu}} P_{\mu}=0, \quad A Q_{\mu}=Q_{\mu} A \\
P_{\mu} Q_{\mu}=Q_{\mu} P_{\mu}=0, \quad(A-\mu I) Q_{\mu}=P_{\mu}-I
\end{gathered}
$$

and P_{μ} is the Riez projection onto $\bigcup_{k=1}^{\infty} \operatorname{Ker}(\mu I-A)^{k}$. The order q_{μ} of the pole of the resolvent $(\lambda I-A)^{-1}$ at μ is equal to the maximum height of an element in $\bigcup_{k=1}^{\infty} \operatorname{Ker}(\mu I-A)^{k} \backslash\{0\}$. If the geometric multiplicity of $\mu, m_{\mu}=1$, then $\stackrel{k=1}{q_{\mu}}=p_{\mu}$, the algebraic multiplicity of μ. For compact normal operators $q_{\mu}=1$.

By Satz 5.15 in [6] there are elements $\varphi_{j, \ell}^{(\mu)}$ in $P_{\mu} H=\bigcup_{k=1}^{\infty} \operatorname{Ker}(\mu I-$ $A)^{k}$, where $1 \leq j \leq m_{\mu}, \ell=$ height of $\varphi_{j, \ell}^{(\mu)}, 1 \leq \ell \leq n_{j}$, such that

$$
(A-\mu I) \varphi_{j, \ell}^{(\mu)}=\left\{\begin{array}{ccc}
0 & \text { if } \quad \ell=1 \\
\varphi_{j, \ell-1}^{(\mu)} & \text { if } \quad \ell>1
\end{array}\right.
$$

$\sum_{j=1}^{m_{\mu}} n_{j}=p_{\mu}, q_{\mu}=\max _{1 \leq j \leq m_{\mu}}$. Similarly, one can choose elements $\psi_{r, s}^{(\bar{\mu})}$ in $P_{\mu}^{*} H=\bigcup_{k=1}^{\infty} \operatorname{Ker}\left(\bar{\mu} I-A^{*}\right)^{k}$, where $1 \leq r \leq m_{\bar{\mu}}, s=$ height of $\psi_{r, s}^{(\bar{\mu})}, 1 \leq$ $s \leq n_{r}, \sum_{r=1}^{m_{\bar{\mu}}} n_{r}=p_{\bar{\mu}}, q_{\bar{\mu}}=\max _{1 \leq r \leq m_{\bar{\mu}}}$, such that

$$
\left(A^{*}-\bar{\mu} I\right) \psi_{r, s}^{(\bar{\mu})}=\left\{\begin{array}{ccc}
0 & \text { if } & s=1 \\
\psi_{r, s-1}^{(\bar{\mu})} & \text { if } & s>1
\end{array}\right.
$$

and $<\varphi_{j, \ell}^{(\mu)}, \psi_{r, s}^{(\bar{\mu})}>=\delta_{j, r} \delta_{\ell, n_{r}-s+1}$ (note that $m_{\mu}=m_{\bar{\mu}}, p_{\mu}=p_{\bar{\iota}}, q_{\mu}=$ $\left.q_{\bar{\mu}}\right)$. In this case we have

$$
P_{\mu} \xi=\sum_{j=1}^{m_{\mu}} \sum_{\ell=1}^{n_{j}}<\xi, \psi_{j, n_{j}-\ell+1}^{(\bar{\mu})}>\varphi_{j, \ell}^{(\mu)} \quad \forall \xi \in H
$$

Therefore if $\omega \in H$ is orthogonal to all the eigenfunctions and generalized eigenfunctions of $A \in K(H)$ corresponding to its non-zero eigenvalues, we will have $P_{\mu}^{*} \omega=0, \forall \mu \in \sigma(A) \backslash\{0\}$ and therefore the function defined by

$$
<\xi,\left(\bar{\lambda}^{-1} I-A^{*}\right)^{-1} \omega>=<\left(\lambda^{-1} I-A\right)^{-1} \xi, \omega>
$$

is entire $\forall \xi \in H$.
We have found this last condition useful for a certain family of compact operators that arise in Number Theory. To state our results we need further information about compact operators. If $A \in K(H)$, let $\left\{s_{n}^{2}(A): n \in \mathbb{N}\right\}$, be the sequence of eigenvalues of $A^{*} A$, each one of them repeated a number of times equal to its algebraic multiplicity and ordered in such a way that

$$
s_{n}(A) \geq s_{n+1}(A) \geq 0 \quad \forall n \in \mathbb{N}
$$

If $0<p<\infty$ we say that $A \in K_{p}(H)$ when $\sum_{n=1}^{\infty} s_{n}(A)^{p}<\infty ; K_{p}(H)$ is a two sided ideal in $B(H)$, until now the more useful of these ideals have been $K_{1}(H)$, the ideal of nuclear operators, and $K_{2}(H)$, the ideal of Hilbert-Schmidt operators. If $A, B \in K_{2}(H)$ then $A B \in K_{1}(H)$. Let $\left\{\mu_{n}(A)\right\}_{n \geq 1}$ he the sequence of eigenvalues of the compact operator A, ordered in such a way that $\left|\mu_{n}(A)\right| \geq\left|\mu_{n+1}(A)\right| \forall n \in \mathbb{N}$ and each one of them being counted according to its algebraic multiplicity, then $\forall A \in K_{p}(H)$ hold the inequalities of Weyl [4], [5], [7], [8].

$$
\sum_{j=1}^{n}\left|\mu_{j}(A)\right|^{p} \leq \sum_{j=1}^{n} s_{j}(A)^{p} \quad \forall n \geq 1
$$

Therefore if $A \in K_{1}(H)$ the series $\sigma_{1}(A)=\sum_{j=1}^{\infty} \mu_{j}(A)$ converges absolutely and it is called the trace of A. The trace of $A^{r}, r \in \mathbb{N}$, is denoted by $\sigma_{r}(A)$. There are two results of Lidskii [5], [8] that enable us in some cases to find the trace of a nuclear operator without prior knowledge of its spectrum: if $\left\{\varphi_{n}\right\}_{n \geq 1}$ is a complete orthonormal set in H then $\sigma_{r}(A)=\sum_{n=1}^{\infty}<A^{r} \varphi_{n}, \varphi_{n}>$ and when A is an integral operator $\sigma_{r}(A)$ is given as an integral of the "kernel" of the operators A^{r}. If $A \in$ $K_{1}(H)$ then $\mu \in \sigma(A) \backslash\{0\}$ if and only if $D\left(\mu^{-1}\right)=\operatorname{det}_{1}\left(I-\mu^{-1} A\right)=0$ where D is the entire function, known as the Fredholm determinant of $I-\mu^{-1} A$ given by the following formulae of Plemelj [4], [5], [7].

$$
\begin{gathered}
D(\lambda)=\sum_{n=0}^{\infty} d_{n} \lambda^{n}, \quad d_{0}=1 \\
d_{n}=\frac{(-1)^{n}}{n!}\left|\begin{array}{ccccc}
\sigma_{1}(A) & n-1 & 0 & \cdots & 0 \\
\sigma_{2}(A) & \sigma_{1}(A) & n-2 & \cdots & 0 \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
\sigma_{n-1}(A) & \sigma_{n-2}(A) & \sigma_{n-3}(A) & \cdots & \sigma_{1}(A) 1 \\
\sigma_{n}(A) & \sigma_{n-1}(A) & \sigma_{n-2}(A) & \cdots & \sigma_{2}(A) \sigma_{1}(A)
\end{array}\right| \\
n \geq 1
\end{gathered}
$$

If k is the algebraic multiplicity of μ then $D^{(\ell)}\left(\mu^{-1}\right)=0$ for $0 \leq$ $\ell \leq k-1$ and $D^{(k)}\left(\mu^{-1}\right) \neq 0$. The Hadamard factorization of the entire function $\operatorname{det}_{1}(I-\lambda A)$ is $\prod_{i=1}^{\infty}\left[1-\lambda \mu_{i}(A)\right]$.

Hilbert observed that if $A \in K_{2}(H)$ the above formulae for the Fredholm determinant still make sense if we take $\sigma_{1}(A)=0$ (if $A \in$ $K_{2}(H) \backslash K_{1}(H)$ the series that defines $\sigma_{1}(A)$ may be divergent). The function defined in this way is called the modified or renormalized Fredholm determinant for $A \in K_{2}(H)$ and it is denoted by $\operatorname{det}_{2}(I-\lambda A)$.

The Hadamard factorization of the entire function $\operatorname{det}_{2}(I-\lambda A)$ is $\prod_{i=1}^{\infty}\left[1-\lambda \mu_{i}(A)\right] e^{\lambda \mu_{i}(A)}$ (the exponential factors $e^{\lambda \mu_{i}(A)}$ make the infinite product $\prod_{i=1}^{\infty}\left[1-\lambda \mu_{i}(A)\right]$ convergent $)$.

A similar procedure is used to define renormalized Fredholm determinants of operators in $K_{p}(H), p>2$.

In previous work [1], [2], [3] we have reformulated the Riemann Hypothesis $(R H)$ as a problem of Functional Analysis by means of the Hilbert Schmidt (non nuclear, non normal) integral operators on $L^{2}[0,1]$,

$$
\left[A_{\rho}(\alpha) f\right](\theta)=\int_{0}^{1} \rho\left(\frac{\alpha \theta}{x}\right) f(x) d x
$$

where $\alpha \in] 0,1]: R H$ holds if and only if

$$
\left.\left.\overline{R\left(A_{\rho}(\alpha)^{*}\right)} \supset L^{2}(0, \alpha), \quad \alpha \in\right] 0,1\right]
$$

(if it holds for one α, it holds for all others α in this interval).
In [2] we have evaluated the modified Fredholm determinants

$$
\operatorname{det}_{2}\left[I-\mu A_{\rho}(\alpha)\right]=e^{\alpha \mu} T_{\alpha}(\mu)
$$

where

$$
T_{\alpha}(\mu)=1-\alpha \mu+\sum_{r=1}^{\infty} \frac{(-1)^{r+1} \alpha^{(r+1)(r+2) / 2}}{(r+1)!(r+1)} \prod_{\ell=1}^{r} \zeta(\ell+1) \mu^{r+1}
$$

We also have closed formulae for the eigenfunctions and generalized eigenfunctions of the operators $\left.\left.A_{\rho}(\alpha), \alpha \in\right] 0,1\right]$. This information has been used in [3] to prove that the set of eigenvectors and generalized eigenvectors associated to the non-zero eigenvalues of $\left.A_{\rho}(\alpha), \alpha \in\right] 0,1[$ is total in $L^{2}(0,1)$, but it is not part of a Markushevich basis in $L^{2}(0,1)$. We have not been able to extend this result to A_{ρ}, since the proof depends essentially on the fact that T_{α} is an entire function of order zero for $\alpha \in] 0,1\left[\right.$, but T_{1} has order 1 .

References

[1] J. Alcántara-Bode: An Integral Equation Formulation of the Riemann Hypothesis. J. Integral Equations and Operator Theory, 17 (1993) 151-168.
[2] J. Alcántara-Bode: An Algorithm for the Evaluation of Certain Fredholm Determinants. J.Integral Equations and Operator Theory, 39 (2001) 153-158.
[3] J. Alcántara-Bode: A completeness problem related to the Riemann Hypothesis. J. Integral Equations and Operator theory, to be published, (2005).
[4] I. Gohberg, S. Goldberg, and M. A. Kaashoek: Classes of Linear Operators. Vol, I, Birkhäuser. Verlag, Basel, (1990).
[5] I. Gohberg, S. Goldberg and N. Krupnik: Traces and Determinants of Linear Operators. Birkhäuser Verlag, Basel, (2000).
[6] K. Jörgens: Lineare Integraloperatoren. Teubner, Stuttgart, (1970).
[7] R. Meise and D. Vogt: Einfübrung in die Funktional Analysis. Vieweg, Wiesbaden, (1992).
[8] J. R. Retherford: Hilbert Space: Compact Operators and the Trace Theorem. Cambridge University Press, Cambridge, (1993).
[9] K. Yosida: Functional Analysis. Springer, Berlin, (1980).

Julio Alcántara-Bode
Sección Matemática, Departamento de Ciencias
Pontificia Universidad Católica del Perú jalcant@pucp.edu.pe

