ON A NEW CLASS OF CONTINUITY VIA RARE SETS

Miguel Caldas¹ Saeid Jafari²

Abstract

The notion of rare continuity was introduced by Popa {15} as a new generalization of weak continuity {7}. In this paper, we introduce a new class of functions called rarely pre-0-continuous functions as a new generalization of the class of strongly 0-precontinuous functions and investigate sorne of its fundamental properties.

Key words: Rare set, pre-9-open, rarely continuous, rarely almost compact.

¹*Dpto. de Mat. Aplicada, Universidade Federal Fluminense, Brasil*

²*Department of Mathematics and Physics, Roskilde University, Denmark*

Introducción

In 1979, Popa [15] introduced the useful notion of rare continuity as a generalization of weak continuity [7]. The class of rarely continuous functions has been further investigated by Long and Herrington [8] and Jafari $[5]$ and $[6]$. In 2001, Noiri $[12]$ introduced the notion of pre- θ -open sets which are stronger than preopen sets.

The purpose of the present paper is to introduce the concept of rare $pre-\theta$ -continuity in topological spaces as a new type of rare continuity. We investigate several properties of rarely pre- θ -continuous functions. The notion of I .pre- θ -continuity is also introduced which is weaker than strongly θ -precontinuity and stronger than rare pre- θ -continuity. It is shown that when the codomain of a function is pre-regular, then the notions of rare pre- θ -continuity and *I*.pre- θ -continuity are equivalent.

1 Preliminaries

Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If *S* is any subset of a space *X,* then *Cl(S)* and *Int(S)* denote the closure and the interior of *S*, respectively. Recall that a set *S* is called regular open (resp. regular closed) if $S = Int(Cl(S))$ $(resp. S = Cl(Int(S)).$

The subset $S \subset X$ is called preopen [9] (resp. α -open [11] if $S \subset Y$ *Int(Cl(S))* (resp. $S \subset Int(ClInt(S)))$. The complement of a preopen set is called preclosed. The intersection of all preclosed sets containing *S* is called the preclosure [4] of *S* and is denoted by *pCl(S).* The preinterior of *S* is defined by the union of all preopen sets contained in *S* and is denoted by $pInt(S)$. The family of all preopen sets of X is denoted by $PO(X).$

A point $x \in X$ is called a pre- θ -cluster [12] point of *S* if $S \cap pCl(U) \neq \emptyset$ for each preopen set U containing x. The set of all pre- θ -cluster points of *S* is called the pre- θ -closure of *S* and is denoted by $pCl_{\theta}(S)$. A subset *S* is called pre-*θ*-closed if $pCl_{\theta}(S) = S$. The complement of a pre- θ -closed set is called pre- θ -open. The family of all pre- θ -open (resp. pre- θ -closed) sets of a space *X* is denoted by $P\theta O(X)$ (resp. $P\theta C(X)$). We set $P\theta O(X, x) = \{U \mid x \in U \in P\theta O(X)\}$, similarly for $P\theta C(X, x)$.

The pre- θ -interior of *S* denoted by $pInt_{\theta}(S)$ is defined as follows:

 $pInt_{\theta}(S) = \{x \in X : \text{ for some preopen subset } U \text{ of } X, x \in U \subset pCl(U) \subset S\}$

Recall that a space X is said to be pre-regular $[12]$ if for each preclosed set *F* and each point $x \in X - F$, there exists disjoint preopen sets U and V such that $x \in U$ and $F \subset V$, equivalently for each $U \in PO(X)$ and each point $x \in U$, there exists $V \in PO(X, x)$ such that $x \in V \subset pCl(V) \subset U$.

Lemma 1.1 *Let S be a subset of X, then:*

- (1) S is a pre- θ -preopen set if and only if $S = pInt_{\theta}(S)$.
- (2) $X pInt_{\theta}(S) = pCl_{\theta}(X S)$ and $pInt_{\theta}(X S) = X pCl_{\theta}(S)$.

Recall that a rare set is a set with no interior points.

Lemma 1.2 ({13}, [3}).

- *(1)* $pCl(S) \subset pCl_{\theta}(S)$ (resp. $pInt_{\theta}(S) \subset pInt(S)$) for any subset S of X.
- (2) For a preopen (resp. preclosed) subset S of X, $pCl(S) = pCl_{\theta}(S)$ $(resp. \; pInt_{\theta}(S) = pInt(S)).$

Lemma 1.3 *[1].* A space X is pre-regular if and only if $pCl(S)$ = $pCl_{\theta}(S)$ for any subset *S* of *X*.

Lemma 1.4 *lf X is a pre-regular space, then:*

- *(1} Every preclosed subset S of X is pre-8-closed (i.e., preclosed sets and pre-8-closed sets coincide}.*
- (2) $pCl_{\theta}(S)$ (resp. $pInt_{\theta}(S)$) is a pre- θ -closed set (resp. pre- θ -open *set}.*

Definition 1 *A* function $f: X \rightarrow Y$ is called:

- *1} Weakly continuous {7} (resp. weakly pre-8-continuous [2}) if for each* $x \in X$ *and each open set G containing* $f(x)$ *, there exists* $U \in O(X, x)$ *(resp.* $U \in P\theta O(X, x)$ *) such that* $f(U) \subset Cl(G)$ *.*
- 2) Rarely continuous [15] if for each $x \in X$ and each $G \in O(Y, f(x))$, *there exists a rare set* R_G *with* $G \cap Cl(R_G) = \emptyset$ *and* $U \in O(X, x)$ *such that* $f(U) \subset G \cup R_G$.

2 Rare Pre-0-Continuity

Definition 2 *A* function $f: X \to Y$ is called rarely pre- θ -continuous if *for each* $x \in X$ and each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and $U \in P\theta O(X, x)$ such that $f(U) \subset G \cup R_G$.

Example 2.1 Let X and Y be the real line with indiscrete and discrete *topologies, respectively. The identity function is rarely pre-8-continuous.*

We must admit that we do not have examples to convince the reader apropos our claim, i.e., example showing that a rarely pre- θ -continuous function is independent of rarely continuous. Therefore we ask the reader to find examples to prove or disprove our claim.

Theorem 2.2 *The following statements are equivalent for a function* $f: X \rightarrow Y$:

- *(1) The function f is rarely pre-* θ *-continuous at* $x \in X$.
- (2) For each set $G \in O(Y, f(x))$, there exists $U \in P\theta O(X, x)$ such that $Int[f(U) \cap (Y \setminus G)] = \emptyset.$
- (3) For each set $G \in O(Y, f(x))$, there exists $U \in P\theta O(X, x)$ such that $Int[f(U)] \subset Cl(G)$.

Proof.

- $(1) \rightarrow (2)$: Let $G \in O(Y, f(x))$. By $f(x) \in G \subset Int(Cl(G))$ and the fact that $Int(Cl(G)) \in O(Y, f(x))$, there exists a rare set R_G with *Int(Cl(G))* \cap *Cl(R_G)* = \emptyset and a pre- θ -open set $U \subset X$ containing *x* such that $f(U) \subset Int(Cl(G)) \cup R_G$. We have $Int[f(U) \cap (Y [G] = Int[f(U)] \cap Int(Y - G) \subset Int[Cl(G) \cup R_G] \cap (Y - Cl(G)) \subset$ $(Cl(G) \cup Int(R_G)) \cap (Y - Cl(G)) = \emptyset.$
- $(2) \rightarrow (3)$: It is straightforward.
- (3) \rightarrow (1): Let *G* \in *O*(*Y*, *f*(*x*)). Then by (3), there exists *U* \in *P* θ *O*(*X*, *x*) such that $Int[f(U)] \subset Cl(G)$. We have $f(U) = [f(U)-Int(f(U))]$ $Int(f(U)) \subset [f(U) - Int(f(U))] \cup Cl(G) = [f(U) - Int(f(U))] \cup$ $G \cup (Cl(G)-G) = [(f(U)-Int(f(U))) \cap (Y-G)] \cup G \cup (Cl(G)-G).$ Set $R^* = [f(U) - Int(f(U))] \cap (Y - G)$ and $R^{**} = (Cl(G) - G)$. Then R^* and R^{**} are rare sets. Moreover $R_G = R^* \cup R^{**}$ is a rare set such that $Cl(R_G) \cap G = \emptyset$ and $f(U) \subset G \cup R_G$. This shows that f is rarely pre- θ -continuous.

Theorem 2.3 *Let X be a pre-regular space. Then the following statements are equivalent for a function* $f : X \rightarrow Y$ *:*

- *1) The function f is rarely pre-* θ *-continuous at* $x \in X$ *.*
- 2) For each $G \in O(Y, f(x))$, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ *such that* $x \in pInt_{\theta}(f^{-1}(G \cup R_G)).$
- *3) For each* $G \in O(Y, f(x))$, there exists a rare set R_G with $Cl(G) \cap R_G = \emptyset$ *such that* $x \in pInt_{\theta}(f^{-1}(Cl(G) \cup R_G)).$

4) For each $G \in RO(Y, f(x))$, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ *such that* $x \in pInt_\theta(f^{-1}(G \cup R_G)).$

Proof.

- **1)** \rightarrow **2):** Suppose that *G* \in *O*(*Y*, *f*(*x*)). Then there exists a rare set *R_G* with $G \cap Cl(R_G) = \emptyset$ and $U \in P\theta O(X, x)$ such that $f(U) \subset$ $G \cup R_G$. It follows that $x \in U \subset f^{-1}(G \cup R_G)$. This implies that $x \in pInt_{\theta}(f^{-1}(G \cup R_G)).$
- **2**) \rightarrow **3**): Suppose that *G* \in *O*(*Y*, *f*(*x*)). Then there exists a rare set *R_G* with $G \cap Cl(R_G) = \emptyset$ such that $x \in pInt_{\theta}(f^{-1}(G \cup R_G))$. Since $G \cap$ $Cl(R_G) = \emptyset$, $R_G \subset Y - G$, where $Y - G = (Y - Cl(G)) \cup (Cl(G) - G)$. Now, we have $R_G \subset (R_G \cup (Y-Cl(G)) \cup (Cl(G)-G))$. Set $R^* =$ $R_G \cap (Y - Cl(G))$. It follows that R^* is a rare set with $Cl(G) \cap R^* =$ 0. Therefore $x \in PInt_{\theta}[f^{-1}(G \cup R_G)] \subset pInt_{\theta}[f^{-1}(Cl(G) \cup R^*)].$
- **3)** \rightarrow **4):** Assume that $G \in RO(Y, f(x))$. Then there exists a rare set *R_G* with $Cl(G) \cap R_G = \emptyset$ such that $x \in pInt_{\emptyset}[f^{-1}(Cl(G) \cup R_G)].$ Set $R^* = R_G \cup (Cl(G) - G)$. It follows that R^* is a rare set and $G \cap Cl(R^*) = \emptyset$. Hence $x \in pInt_{\theta}[f^{-1}(Cl(G) \cup R_G)] = pInt_{\theta}[f^{-1}(G \cup (Cl(G)-G) \cup R_G)] =$ $pInt_{\theta}[f^{-1}(G \cup R^*)].$
- **4)** \rightarrow **1):** Let $G \in O(Y, f(x))$. By $f(x) \in G \subset Int(Cl(G))$ and the fact that $Int(Cl(G)) \in RO(Y)$, there exists a rare set R_G and $Int(Cl(G)) \cap Cl(R_G) = \emptyset$ such that $x \in PInt_\theta[f^{-1}(Int(Cl(G))) \cup$ R_G). Let $U = pInt_\theta[f^{-1}(Int(Cl(G)) \cup R_G]$. Since X is a preregular space, $U \in P\theta O(X, x)$ (Lemma 1.4) and, therefore $f(U) \subset$ $Int(Cl(G)) \cup R_G$. Hence, we have $Int[f(U) \cap (Y - G)] = \emptyset$, and by Theorem 2.2, f is rarely pre- θ -continuous.

Remark 2.4 *Note that in Theorem 2.3, the fact that X is a pre-regular space was only used in 4)* \rightarrow *1). Therefore the following implications are always true:* $1) \rightarrow 2 \rightarrow 3) \rightarrow 4$.

Recall that a function $f: X \to Y$ is strongly θ -precontinuous [12] if for each set $G \in O(Y, f(x))$, there exists $U \in PO(X, x)$ such that $f(pCl(U)) \subset G$ equivalently [3] if for each set $G \in O(Y, f(x))$, there exists $U \in P\theta O(X, x)$ such that $f(U) \subset G$.

With this characterization in mind, we define the following notion which is a new generalization of strongly θ -precontinuous.

Definition 3 *A* function $f: X \rightarrow Y$ is *I.pre 0-continuous at* $x \in X$ *if for each set* $G \in O(Y, f(x))$, there exists $U \in P\theta O(X, x)$ such that $Int[f(U)] \subset G$.

If f has this property at each point $x \in X$ *, then we say that f is l.pre-0-continuous on X.*

Example 2.5 *Let* $X = \{a, b\}$ *have the Sierpinski topology* $\tau = \{X, \emptyset, \{a\}\}.$ *Then a function* $f: X \to X$ defined by $f(a) = b$ and $f(b) = a$ is *l.pre-* θ -continuous at $a \in X$ but it is not strongly θ -precontinuous.

Remark 2.6 *It should be noted that l.pre-0-continuity is weaker than strongly 0-precontinuous and stronger than rare pre-0-continuity.*

Question 2.7 Are there examples showing that a function is rarely pre-*0-continuous but not l.pre-0-continuous?*

Theorem 2.8 Let Y be a regular space. Then the function $f: X \rightarrow Y$ *is I.pre-0-continuous on X if and only if f is rarely pre-0-continuous on* X .

Proof. We prove only the sufficient condition since the necessity condition is evident (Remark 2.6).

Let f be rarely pre- θ -continuous on X and $x \in X$. Suppose that $f(x) \in G$, where *G* is an open set in *Y*. By the regularity of *Y*, there exists an open set $G_1 \in O(Y, f(x))$ such that $Cl(G_1) \subset G$. Since f is rarely pre- θ -continuous, then there exists $U \in P\theta O(X, x)$ such that *Int[f(U)]* $\subset Cl(G_1)$ (Theorem 2.2). This implies that $Int[f(U)] \subset G$ and therefore f is $I.\text{pre-}\theta$ -continuous on X.

We say that a function $f: X \to Y$ is almost pre- θ -open, if the image of a pre- θ -open set is open.

Theorem 2.9 *If f* : $X \rightarrow Y$ *is an almost pre-0-open rarely pre-0continuous function, then f is weakly pre-0-continuous.*

Proof. Suppose that $x \in X$ and $G \in O(Y, f(x))$. Since f is rarely pre- θ -continuous, there exists a rare set R_G with $Cl(R_G) \cap U = \emptyset$ and $U \in P\theta O(X, x)$ such that $f(U) \subset G \cup R_G$. This means that $(f(U) \cap$ $(Y \setminus Cl(G)) \subset R_G$. Since the function f is almost pre- θ -open, then $f(U) \cap (Y \setminus Cl(G))$ is open. But the rare set R_G has no interior points. Then $f(U) \cap (Y \setminus Cl(G)) = \emptyset$. This implies that $f(U) \subset Cl(G)$ and thus f is weakly pre- θ -continuous.

Definition 4 Let $A = \{G_i\}$ be a class of subsets of X. By rarely union *sets [5] of A we mean* $\{G_i \cup R_{G_i}\}$, where each R_{G_i} is a rare set such *that each of* $\{G_i \cap Cl(R_{G_i})\}$ *is empty.*

Recall that, a subset B of X is said to be rarely almost compact relative to X [5] if for every open cover of E by open sets of X, there exists a finite subfamily whose rarely union sets cover *B.*

A topological space X is said to be rarely almost compact [5] if the set X is rarely almost compact relative to X .

A subset K of a space X is said to be $P\theta O$ -compact relative to X if for every cover of K by pre- θ -open sets in X has a finite subcover. A space *X* is said to be P θ O-compact if the set *X* is P θ O-compact relative to X.

Theorem 2.10 Let $f : X \rightarrow Y$ be rarely pre- θ -continuous and K be *a P* θ *O-compact set relative to X. Then* $f(K)$ *is rarely almost compact subset relative to Y.*

Proof. Suppose that Ω is a open cover of $f(K)$. Let *B* be the set of all *V* in Ω such that $V \cap f(K) \neq \emptyset$. Then *B* is a open cover of $f(K)$. Hence for each $k \in K$, there is some $V_k \in B$ such that $f(k) \in V_k$. Since f is rarely pre- θ -continuous there exists a rare set R_{V_k} with $V_k \cap Cl(R_{V_k}) = \emptyset$ and a pre- θ -open set U_k containing k such that $f(U_k) \subset V_k \cup R_{V_k}$. Hence there is a finite subfamily ${U_k}_{k \in \Delta}$ which covers *K*, where Δ is a finite subset of K. The subfamily ${V_k \cup R_{V_k}}_{k \in \Delta}$ also covers $f(K)$.

Theorem 2.11 Let $f: X \to Y$ be rarely continuous and X be a pre*regular space. Then f is rarely pre-8-continuous.*

Proof. It follows of **([1],** Lemma 4.1) or Lemma 1.3.

Lemma 2.12 *(Long and Herrington [8]).* If $g: Y \rightarrow Z$ is continuous *and one-to-one, then g preserves rare sets.*

Theorem 2.13 *If* $f : X \rightarrow Y$ *is rarely pre-* θ *-continuous and g : Y* \rightarrow *Z* is continuous and one-to-one, the $g \circ f : X \to Z$ is rarely pre- θ *continuous.*

Proof. Suppose that $x \in X$ and $(g \circ f)(x) \in V$, where V is an open set in Z. By hypothesis, *g* is continuous, therefore there exists an open set $G \subset Y$ containing $f(x)$ such that $g(G) \subset V$. Since f is rarely pre- θ -continuous, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and a pre- θ -open set U containing x such that $f(U) \subset G \cup R_G$. It follows from Lemma 2.14 that $g(R_G)$ is a rare set in Z. Since R_G is a subset of $Y\setminus G$ and g is injective, we have $Cl(g(R_G))\cap V=\emptyset$. This implies that $(g \circ f)(U) \subset V \cup g(R_G)$. Hence the result.

Recall that, a function $f: X \to Y$ is called pre- θ -open if $f(U)$ is pre- θ -open in Y for every pre- θ -open set U of X.

Theorem 2.14 Let $f: X \to Y$ be pre-8-open and $g: Y \to Z$ a function *such that g o f :* $X \rightarrow Z$ *is rarely pre-* θ *-continuous. Then g is rarely pre-8-continuous.*

Proof. Let $y \in Y$ and $x \in X$ such that $f(x) = y$. Let $G \in O(Z, (q \circ f)(x))$. Since $q \circ f$ is rarely pre- θ -continuous, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and $U \in P\theta O(X, x)$ such that $(g \circ f)(U) \subset G \cup R_G$. But $f(U)$ (say V) is a pre- θ -open set containing $f(x)$. Therefore, there exists a rare set R_G with $G \cap Cl(R_G) = \emptyset$ and $V \in P\theta O(Y, y)$ such that $g(V) \subset G \cup R_G$, i.e., *g* is rarely pre- θ -continuous.

Definition 5 A *space X is called r-separate* {6] *if for every pair of distinct points x and y in X, there exists rare sets* R_{U_x} , R_{U_y} *and open sets* U_x and U_y with $U_x \cap Cl(R_{U_x}) = \emptyset$ and $U_y \cap Cl(R_{U_y}) = \emptyset$ such that $(U_x \cup R_{U_x}) \cap (U_y \cup R_{U_y}) = \emptyset.$

In (15], Popa obtained the following result.

Theorem 2.15 *The function* $f: X \to Y$ *is rarely continuous if and only if for each open set* $G \subset Y$, *there exists a rare set* R_G with $G \cap Cl(R_G) = \emptyset$ *such that* $f^{-1}(G) \subset Int[f^{-1}(G \cup R_G)].$

Theorem 2.16 *Let* Y *is r-separate and every preopen subset of* X *is* α -open. If $f : X \rightarrow Y$ is rarely pre- θ -continuous injection, then X is *Hausdorff.*

Proof. Since f is injective, then $f(x) \neq f(y)$ for any distinct points x and *y* in X. Since Y is r-separate, there exists open sets G_1 and G_2 in Y containing $f(x)$ and $f(y)$, respectively, and rare sets R_G , and R_G , with $G_1 \cap \text{Cl}(R_G) = \emptyset$ and $G_2 \cap \text{Cl}(R_G) = \emptyset$ such that $(G_1 \cup R_G) \cap (G_2)$ $U R_{G_2}$ = \emptyset . Therefore $Int[f^{-1}(G_1 \cup R_{G_1})] \cap Int[f^{-1}(G_2 \cup R_{G_2})] = \emptyset$. Since every preopen subset of *X* is α -open, and using ([1], Lemma 4.3) we obtain of that a rarely pre- θ -continuous is rarely continuous and by Theorem 2.15, we have $x \in f^{-1}(G_1) \subset Int[f^{-1}(G_1 \cup R_{G_1})]$ and $y \in f^{-1}(G_2) \subset Int[f^{-1}(G_2 \cup R_{G_2})]$. This shows that X is Hausdorff.

References

[1] C. W. BAKER: *Weakly 8-precontinuous functions.* Acta Math. Hung. 100 (2003) 343-351.

- [2) M. CALDAS, S. JAFARI and T. NOIRI: *Properties of weakly pre-Bcontinuous functions.* (under preparation).
- [3) S. H. CHO: *A note on strongly B-precontinuous functions.* Acta Math. Hung. 101 (2003) 173-178.
- [4] J. N. EL-DEEB, I. A. HASANEIN, A. S. MASHHOUR and T. NOIRI: *On p-regular spaces.* Bull. Math. Soc. Sci. Math. R. S. Roum. 27 (1983) 311-315.
- [5] S. JAFARI: *A note on rarely continuous functions*. Univ. Bacâu. Stud. Cerc. St. Ser. Mat. 5 (1995) 29-34.
- [6) S. JAFARI: *On some properties of rarely continuous functions.* Univ. Bacau. Stud. Cerc. St. Ser. Mat. 7 (1997) 65-73.
- [7) N. LEVINE: *A decomposition of continuity in topological spaces.* Amer. Math. Monthly 60 (1961) 44-46.
- [8) P. E. LONG and L. L. HERRINGTON: *Properties of rarely continuous functions.* Glasnik Mat. 17 (37) (1982) 229-236.
- [9] A. S. MASHHOUR, M. E. ABD EL-MONSEF and S. N. EL-DEEB: *Precontinuous and weak precontinuous mappings.* Proc. Math. Phys. Soc. Egypt. 53 (1982) 47-53.
- [10] A. S. MASHHOUR, I. A. HASANEIN and S. N. EL-DEEB: α *continuous and* α *-open mappings.* Acta Math. Hung. 41 (1983) 213-218.
- [11] O. NJÅSTAD: On some classes of nearly open sets. Pacific J. Math. 15 (1965) 961-970.
- [12) T. NOIRI, STRONGLY: *B-precontinuous functions.* Acta Math. Hung. 90 (2001) 307-316.
- [13) T. NOIRI: *On B-preirresolute functions:* Acta Math. Hung. 95 (2002) 287-298.
- [14) M. C. PAL AND P. BHATTACHARYYA: *Feeble and strong forms of preirresolute functions.* Bull. Malaysian Math. Soc. 19 (1996) 63-75.

[15] V. POPA: *Sur certain decomposition de la continuité dans les espaces topologiques,* Glasnik Mat. Setr III. 14 (34) (1979) 359-362.

Resumen

Popa [15] introdujo la noción de continuidad rara como una generalización de continuidad débil [7]. En este trabajo, introducimos una nueva clase de funciones llamadas funciones raramente pre-0- continuas como una nueva generalización de la clase de funciones fuertemente θ precontinuas e investigamos algunas de sus propiedades fundamentales.

Palabras Clave: Conjunto raro, pre- θ -abierto, raramente continuas, raramente casi compacto.

Miguel Caldas Departamento de Matemática Aplicada Universidade Federal Fluminense Rua Mário Santos Braga s/n, CEP: 24020-140, Niterói RJ Brasil gmamccs@vm.uff.br

Saeid **Jafari** Department of Mathematics and Physics Roskilde University Postbox 260 4000 Roskilde Denmark sjafari@ruc.dk