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ON THE KIRCHHOFF
EQUATION IN
NONCYLINDRICAL DOMAINS
OF R®

L.A. Medeiros! J. Limaco?

Abstract

In this paper we investigate a model of Kirchhoff type for
vibrations of elastic bodies represented by bounded open sets
Q; of R® when the boundaries 'y are moving with the time t.
With restrictions on the rest position and the initial velocity
we prove global existence and uniqueness of solutions, in the
Sobolev class, for a certain mized problem with zero Dirichlet

boundary conditions.

Key words: Kirchhoff equation; vibration, moving boundary, Sobolev spaces.

AMS Subject clasification: 35F30; 35K35.

! Instituto de Matemdtica, UFRJ, Brasil
2 Instituto de Matemdtica, UFF, Brasil



L. Medeiros and J. Limaco

1 Basic Notes

Let Q be a bounded open set of R® with boundary I of class C?
and K = K(t) a mapping from [0, 00) to [0, 00). We consider the family
of deformations {Q;},, of {2 defined by

Q= {zxeR™ z=K(t)y, for all y € 1},

that is, ; = K(t)Q. We set Qg = Q and denote by V the Lebesgue
measure of Q. Let u = u(z,t) be a real function defined for z € §2; and

all ¢ > 0. We consider the class of partial differential equations, of the
Kirchhoff type, defined by

0*u . 2
T a(t) +b(t) | Vu(z,t)|*dz ) Au =0, (1.1)
¢ Q,
where ok p
_To— n n., j —
at) = ———+ —K({#)" b(t) VoK@

70, k m positive constants and 15 > k.

Remark 1.1. We could consider a general model of Kirchhoff type as
2

Ou _ M t,a:,/ | Vu(z, t)|* dz | Au = 0.

ot2 Q,

In the present investigation we are restricted to the case
M(t, ) = a(t) + b(t)A given by (1.1).

Examples
s Suppose K(t) = 1in (1.1) for all t > 0. We obtain

0%u To k 9

52 " (T_n_ + m/ﬂ |Vu(z,t)| dz) Au=0. (1.2)
In this case K(t) =1 whenn =1 and Q= (0,L), L >0, we have

8u To k L /ou\? 0%u

e " (‘a*—sz/o ('a‘) dx)&;z‘—o- (13)
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The model (1.3) was proposed by Kirchhoff [9], see also Carrier [5]. It
represents the small vertical vibrations of an stretched elastic string when
the tension is variable but the ends of the string are fixed at 0 and L. In
(1.3) 7o is the initial tension, m the mass of the string and k the Young’s
modulus of the material of the string. For mathematical aspects of (1.3)
see Bernstein [3], Dickey [6].

In the case of constant tension g , the model (1.3) reduces to
82u T0 32u
ot?  m Oz2

obtained by d’Alembert (1714-1793) and Euler (1707-1783).

=0,

Returning to the particular case (1.2) it can be written, in general,

%-M(/Q|Vu(x,t)[2 dz)Au=0 (1.4)
or

u'(t) + M(||u(®)|]?)Au=0 (1.5)

in the operator notation. In (1.5) we consider the Hilbert spaces
V ¢ HC V', where V' is the dual of V' and the embeddings are contin-
uous and dense. By || - || we denote the normin V and A: V - V'isa
bounded linear operator. For (1.4) see Pohozhaev [18] and for (1.5) see
Lions [12].

When we suppose M(A) > mo > 0 and C'(0,00), Pohozhaev
(18] proved that the mixed problem for (1.4) has global solution in t
when the initial data u(z,0), u;(z,0) are restricted to belong to a
class of functions called Pohozhaev’s Class. This result can also be
seen in Lions [12] for the operator model (1.5). It is interesting call
the attention to the reader that Pohozaev, [17], [19] proved that if
M) = (co+ A2 ¢ >0, ¢g > 0, constants, the mixed pro-
blem for (1.4) has global solution without restrictions on the initial data.
The model (1.5) was also analysed by Arosio-Spagnolo [1} and Hazoya-
Yamada [8] when M(A) > 0. Milla Miranda and San Gil Jutuca [16]
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investigated the mixed problem (1.4) for a partition of I, boundary
of Q,in I'y and T’y. They considered Dirichlet-Newmann condition of
the type u = 0 on T'y and ou +d(z)v' =0on Ty, 6> 68 > 0. They
proved the existence of global solutions for ¢ > 0. A tentative to obtain

explicit solution for (1.3) can be seen in Ebihara-Tanaka-Nakashina [7]
and blow up for a perturbation of (1.4) in Bainov-Minchev [2].

e Let us consider (1.1) when n = 1. Thus Q; = (a(t), 8(t)) are
the deformations of a fixed interval @ = (ag,fo) by the function

K(t) = @, where v(t) = f(t) — a(t) and v = fo — ap. In this case
0

we obtain from (1.1)
0?%u 0  k v(t)-7 k B0 1 ou\? u
o o T L (52) %) 570 09

The equation (1.6) is the model for small vertical vibrations of an stretched
elastic string when the ends ap < fp move to a(t) < [(t) after the time
t, that is, we suppose

a(t) < ag < fo < B(t), for t > 0.

This model can be seen in Medeiros-Limaco-Menezes [14].

o When {4}, are the deformations of a circle Q of the plane R? the
model (1.1) reduces to

k
5 + = K(t)*+

ﬁ'li _ T0 — k k
m m 2mVo K(t)? Jq,

|Vu(z, t)|? dz) Au=0.
(1.7)

The mixed problem for (1.7) was investigated by Limaco-Medeiros [10]
and Medeiros-Limaco [15], applying a technique which takes in con-
sideration the geometry of ().
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In the present article we investigate a mixed problem for (1.1) in
the general case when Q; = K(¢)Q is a family of bounded open set of
R™ with moving boundary T’ . a

2 Mathematical Analysis

2.1 Preliminaries and Main Results

Let Q be a bounded open set of R", with C? boundary, and
K = K(t), a function K: [0,00) — [0,00). Represent by {f;} the
family of deformations of 2 by K = K(t) defined by:

Q={reR" z=K(t)y, Vye Q, 0 <t < oo}.
We consider the noncylindrical domain Q of R™*1 defined by

Q= U (@ x {8})

t>0

whose lateral boundary is denoted by $ defined by

i = U (Ft X {t}),

t>0

where I'; is the boundary of ;. We suppose I'; and 5 regulars.

HYPOTHESIS
e We suppose 15 > k.

o K e W¥®(0,00), K(t)>Ko>0, K'(t)>0 and
|K" (&) < GolK'(t)], |K"™(t)| < C1 K'(t).

By K’ we represent %Ii(- .

Cs , C positive constants
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e Represent by
So =123, Sup {K(£), K'(8), | K" ()], | K" (9]},

finite number by hypothesis.

Remark 2.1. We have by embedding theorems
o vl < Cildvl g for ve Hi(Q)nH(Q)
o Wllyzq) < Caldo] g
. |'U|L2(Q) < 63“"’”113(9)

The constants C, , Cy, C3 are positives and we set d = d(f) to denote
the diameter of 2.

We consider the operator

Lu(z,t) = — — (a(t) + b(t) |Vu(z, t)[? d:v) Au(z, 1), (2.1)

Q¢
defined for real functions u(z,t) for (z,t) € Q.

Let us consider the change of variables z = K(t)y, =z € Q; and
y € ) and let us define the function v = v(y,t) by

u(y,t) = u(K(t)y,t). (2.2)

We modify fu(z, t) and we obtain

M 9? 1
Eotw. ) = 5 = gz (00004 30) [ 190000 d ) Aoy, 0) -
a a'U a’U’ 31)
~ (aij(y,t) %> + bi(y, 1) e +ci(y,t) e (2.3)
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where

_ "2 "
AP S0 2T
o a(t)= T"T"k + %K(t)"

k
o b(t)= —————2m%K(t)2

For the computation see Appendix 1.

VIScosITY

Our method consists in add a viscosity of the type du'(z,t), § > 0,
to the operator Lu(z, t) and restrict the initial data of the mixed problem
to be proposed to Lu(z,y) in Q.

In fact, we consider in Q the operator, for § > 0,
Lu(z,t) + 6u'(z,t), for &>0, (2.4)
where u'(z,t) is the derivative with respect to ¢.

The change of variables gives

!
(e ) = (=05 Jus g+ 0001,

and we modify the coeflicient ¢&;(y,t) obtaining

st = 6(0nt) = 6 5

or

i) = -

(n—-1)(K')? + KK" + §KK'
K2 Yi.
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Thus the change of variables and the viscosity du'(z,t) modify the o-
\
perator Lu(y,t) and we obtain

Lu(y,t) = & L a(t) + b(t)/ |Vu(y, t)]? d )Av( t)— (2.5)
y’ - at2 K(t)2 0 y7 y y’ M

0 ov ov' ov

- a i 7t a i\Y> Q. ) at a..
o (50,0 5 ) bl t) 5o 4 ) 5

i

Consequently we have the following equivalent mixed problem (2.6)
noncylindrical and (2.7) cylindrical

Lu(z,t) +6u'(z,t) =0 in Q, §>0
u(z,t)=0 on % (2.6)
u(z,0) = up(z), u'(z,0) =wu () in

Lou(y,t) + 6v'(y,t) =0 in Q= x (0,00)
v(y,t)=0 on X =T x(0,00), I the boundary of {2 (2.7)
v(y,0) = vo(y), v'(y,0) =vi(y) in Q

We investigate (2.7) by Galerkin method. First we fixe some nota-
tion.

In fact, we will find later, calculus of the Estimate IV, the function
G(t) = G(v(t)), where v = v(t) is the Galerkin approximation v, (t) for
the solution of (2.7). This function is given by:

|U”|2 2 g "o
O R 28)
o — HU'H2 g : & (mo—k\,
- ) wr Vs VLVt e (T I
E g VI ( b(t) 2
o 2 g BT 20 2 i, 0,0) + HCO),
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where H(t) = H(v(t)) is given by

HE) = P+ S ol® + A o +a(t,v,).

We will prove in Appendix 2 that G(t) > Go(t) where

~ _ ") 3_62 . 8 8 1-k 9
Golh) = ==+ {5g * 11"+ (5 288msz 2msz ) M7+

koo b(t b(t)
3 kv ol + 5 ol 11+ 2 ol

KZ

[ RN

Thus
Go(t) < G(t) < Go(t) (2.9)

where Gy(t) = Go(u(t)) is given by
626—‘2 é =92 To — k

_9 "2 3
Go) ="'+ 35 6%+ &z

+

s s , 5 & [k
Tt tn -5 +C3)””” (144sg+14453 m )T

(Co+1)S5 5 a_(Q S8 2 10(t), 4
o [

+ 2 o

(2.10)
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The inequality (2.9) is fundamental for the conclusions contained
in this work. In fact, when we obtain the estimate G(t) < cst for all
t > 0 then (2.9) implies C~¥0(t) < cst for all ¢ > 0 what implies uniform
estimates for |v”(¢)|, |[v'(¢)|| and ||v(t)|]. The left hand side of (2.9)
helps to obtain the exponential decay, cf. Section 3.

We need evaluate Go(t) at t = 0. It follows that we need evaluate
[v"(0)]? with »"(0) = v%(0) in the approximate equation (2.26). We
obtain from the approximate equation (2.26)

[v" () < 7(12 (a(0) + (0)]lvol|*)| Avo| [v"(0)] + la(0)vo, v" (0))] +

a'Uo

+ B0 52| WO+ [a(0) 52| 1O

By the inequality 2a8 < a? + 32, for positive numbers, we obtain:

W OF < {[}f (@@ +b0)l?)] + [VB(@E3)] Jiawr+

2
+ [(x/ﬁ(n+ 1)d)” + (—}{% (n-1 +6)53] Ilvolf? + (‘/g,id) n(vln?)
2.11

For this method see Lions [12]. Then we have by (2.9) and (2.11)
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On the Kirchhoff Equation in Noncylindrical Domains of R
the inequality

0260 < 5 { [ e +s010l)] +

+ (\/ET(d?C'Q)z)?}|Avo|2 + %{\/E(n +1+d))°+

(- 1+08) Yot + 2 (V)

0

82C2 6 ., To—k J n—2 2
+ (e + 150 g g YL S G Il

) § (m0—-k (Co+1)S3d3\?  a(0)
+[144sg+144sg( m )*( K3 +K2+

52 b(0) 3 b(0)
+ 35 ool + 5 el ol + 3 5 ol =
b(0 3b
= AolAuof? + Bollwol* + Collnl* + 5 sl un] + 5 53 .
(2.12)

By the change of variables z = K (t)y from ) to §;, we obtain

b(0
Aol + Bollool? + Collurl + 2 ool [un 2+

3b()
2K2

+ Do [uol)? |lurl|* + Eo|luo||*

+ = —F |lvol|* < Ao|Aug|? + Bo|luo||* + Collwi]|? + (2.13)

with Ag, By, Co, /Tg, §0, 50, 130, Eo constants.
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We have the results

Theorem 2.1. Given uy € H} () N H2(Qp) and u; € H () such
that

(Aol Auo|? + Bolluol[? + Collua|l? + Dolluol|? |Ju1l|® + Eolluoll?)® <

1 il
= (7SR [(14dva) + (*Vhye] 2B & (0 — k)",

(2.14)
there exists a unique numerical function u: @ — R satisfying, for all
T>0:

u € L=(0,T; H(Q)) N L2(0, T; H* (%)) (2.15)
u' € L=(0,T; H3 () (2.16)
u' e L®(0,T; L*()), (2.17)

which is solution of (2.7).

Theorem 2.2. Given vo € Hj () N H2(Q) and v1 € H} () such that

b(0 3 50
(Aoluof? + Bolunl+ Collul + 2 ol 11+ 5 53 Ionll)” <
1 1
< 8% (10 — k)4,
= (nS2)2[(144v/a)? + (62v/b)?] 288m? (0 — k)
(2.18)
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there exists a unique real function v: Q — R such that, for all T > 0

v € L®(0,T; H () n L*(0,T; H*(Q)) (2.19)
v' € L=(0,T; H} (Q)) (2.20)
v" € L®(0,T; L*(Q)), (2.21)

which is solution of (2.7).

2.2 Proof of the Theorems

We prove the Theorem 2.2, which is the cylindrical case. We
employ Galerkin’s method making use of a Hilbertian basis, cf. Brezis [4],
of the spectral objects of the problem ((w;,w)) = A;(w;, w), i =1,2,...,
for all w € H}(Q). By ((, )) we represent the scalar product in HE ()
and (, ) the scalar product in L?(Q2). The correspondents norms are,
respectively || - || and | - |. We know that w; € Hj(Q) N H2() for all
1 =1,2,... We represent by V, the v dimensional subspace generated
by the first v vectors w; .

The details will appear in another paper.

3 Asymptotic Behavior

We prove that
Go(t) < G(0) e, forall t>0

and ¢ positive constant.
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Resumen

En este trabajo nosotros investigaremos un modelo del tipo Kirchhoff
para vibraciones de un cuerpo elastico representado por un conjunto
abierto acotado de R™ representado por 1; con la frontera I'; que se
mueve con el tiempo t. Con restricciones sobre la posicién en reposo
y la velocidad inicial probaremos existencia global y unicidad de las
soluciones en una clase de espacios de Sobolev, para un problema mixto
con condiciones nulas de Dirichlet en la frontera.

Palabras Clave: Ecuacién de Kirchhoff, Vibraciones, frontera mévil, espacios
de Sobolev.
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