ON THE KIRCHHOFF EQUATION IN NONCYLINDRICAL DOMAINS OF \mathbb{R}^n

L.A. Medeiros¹

J. Limaco²

Abstract

In this paper we investigate a model of Kirchhoff type for vibrations of elastic bodies represented by bounded open sets Ω_t of \mathbb{R}^n when the boundaries Γ_t are moving with the time t. With restrictions on the rest position and the initial velocity we prove global existence and uniqueness of solutions, in the Sobolev class, for a certain mixed problem with zero Dirichlet boundary conditions.

Key words: Kirchhoff equation; vibration, moving boundary, Sobolev spaces.

AMS Subject clasification: 35F30; 35K35.

¹ Instituto de Matemática, UFRJ, Brasil

² Instituto de Matemática, UFF, Brasil

1 Basic Notes

Let Ω be a bounded open set of \mathbb{R}^n with boundary Γ of class C^2 and K = K(t) a mapping from $[0, \infty)$ to $[0, \infty)$. We consider the family of deformations $\{\Omega_t\}_{t>0}$ of Ω defined by

$$\Omega_t = \{x \in \mathbb{R}^n; \ x = K(t)y, \text{ for all } y \in \Omega\},$$

that is, $\Omega_t = K(t)\Omega$. We set $\Omega_0 = \Omega$ and denote by V_0 the Lebesgue measure of Ω . Let u = u(x,t) be a real function defined for $x \in \Omega_t$ and all $t \geq 0$. We consider the class of partial differential equations, of the Kirchhoff type, defined by

$$\frac{\partial^2 u}{\partial t^2} - \left(a(t) + \hat{b}(t) \int_{\Omega_t} |\nabla u(x, t)|^2 dx \right) \Delta u = 0, \tag{1.1}$$

where

$$a(t) = \frac{\tau_0 - k}{m} + \frac{k}{m} K(t)^n; \quad \hat{b}(t) = \frac{k}{2mV_0 K(t)^n},$$

 τ_0 , k m positive constants and $\tau_0 > k$.

Remark 1.1. We could consider a general model of Kirchhoff type as

$$rac{\partial^2 u}{\partial t^2} - Migg(t,x,\int_{\Omega_t} |
abla u(x,t)|^2 \, dxigg)\Delta u = 0.$$

In the present investigation we are restricted to the case $M(t, \lambda) = a(t) + \hat{b}(t)\lambda$ given by (1.1).

Examples

• Suppose K(t) = 1 in (1.1) for all $t \ge 0$. We obtain

$$\frac{\partial^2 u}{\partial t^2} - \left(\frac{\tau_0}{m} + \frac{k}{2mV_0} \int_{\Omega} |\nabla u(x, t)|^2 dx\right) \Delta u = 0.$$
 (1.2)

In this case K(t) = 1 when n = 1 and $\Omega = (0, L), L > 0$, we have

$$\frac{\partial^2 u}{\partial t^2} - \left(\frac{\tau_0}{m} + \frac{k}{2mL} \int_0^L \left(\frac{\partial u}{\partial x}\right)^2 dx\right) \frac{\partial^2 u}{\partial x^2} = 0. \tag{1.3}$$

The model (1.3) was proposed by Kirchhoff [9], see also Carrier [5]. It represents the small vertical vibrations of an stretched elastic string when the tension is variable but the ends of the string are fixed at 0 and L. In (1.3) τ_0 is the initial tension, m the mass of the string and k the Young's modulus of the material of the string. For mathematical aspects of (1.3) see Bernstein [3], Dickey [6].

In the case of constant tension τ_0 , the model (1.3) reduces to

$$\frac{\partial^2 u}{\partial t^2} - \frac{\tau_0}{m} \frac{\partial^2 u}{\partial x^2} = 0,$$

obtained by d'Alembert (1714-1793) and Euler (1707-1783).

Returning to the particular case (1.2) it can be written, in general,

as

$$\frac{\partial^2 u}{\partial t^2} - M \left(\int_{\Omega} |\nabla u(x, t)|^2 dx \right) \Delta u = 0$$
 (1.4)

or

$$u''(t) + M(||u(t)||^2)Au = 0 (1.5)$$

in the operator notation. In (1.5) we consider the Hilbert spaces $V \subset H \subset V'$, where V' is the dual of V and the embeddings are continuous and dense. By $||\cdot||$ we denote the norm in V and $A\colon V \to V'$ is a bounded linear operator. For (1.4) see Pohozhaev [18] and for (1.5) see Lions [12].

When we suppose $M(\lambda) \geq m_0 > 0$ and $C^1(0,\infty)$, Pohozhaev [18] proved that the mixed problem for (1.4) has global solution in t when the initial data u(x,0), $u_t(x,0)$ are restricted to belong to a class of functions called Pohozhaev's Class. This result can also be seen in Lions [12] for the operator model (1.5). It is interesting call the attention to the reader that Pohozaev, [17], [19] proved that if $M(\lambda) = (c_0 + c_1\lambda)^{-2}$, $c_0 > 0$, $c_1 \geq 0$, constants, the mixed problem for (1.4) has global solution without restrictions on the initial data. The model (1.5) was also analysed by Arosio-Spagnolo [1] and Hazoya-Yamada [8] when $M(\lambda) \geq 0$. Milla Miranda and San Gil Jutuca [16]

investigated the mixed problem (1.4) for a partition of Γ , boundary of Ω , in Γ_1 and Γ_2 . They considered Dirichlet-Newmann condition of the type u=0 on Γ_0 and $\frac{\partial u}{\partial v}+\delta(x)u'=0$ on Γ_1 , $\delta\geq\delta_0>0$. They proved the existence of global solutions for $t\geq0$. A tentative to obtain explicit solution for (1.3) can be seen in Ebihara-Tanaka-Nakashina [7] and blow up for a perturbation of (1.4) in Bainov-Minchev [2].

• Let us consider (1.1) when n=1. Thus $\Omega_t=(\alpha(t),\beta(t))$ are the deformations of a fixed interval $\Omega=(\alpha_0,\beta_0)$ by the function $K(t)=\frac{\gamma(t)}{\gamma_0}$, where $\gamma(t)=\beta(t)-\alpha(t)$ and $\gamma_0=\beta_0-\alpha_0$. In this case we obtain from (1.1)

$$\frac{\partial^2 u}{\partial t^2} - \left(\frac{\tau_0}{m} + \frac{k}{m} \frac{\gamma(t) - \gamma_0}{\gamma_0} + \frac{k}{2m\gamma(t)} \int_{\alpha(t)}^{\beta(t)} \left(\frac{\partial u}{\partial x}\right)^2 dx\right) \frac{\partial^2 u}{\partial x^2} = 0.$$
 (1.6)

The equation (1.6) is the model for small vertical vibrations of an stretched elastic string when the ends $\alpha_0 < \beta_0$ move to $\alpha(t) < \beta(t)$ after the time t, that is, we suppose

$$\alpha(t) \le \alpha_0 < \beta_0 \le \beta(t)$$
, for $t \ge 0$.

This model can be seen in Medeiros-Limaco-Menezes [14].

• When $\{\Omega_t\}_{t\geq 0}$ are the deformations of a circle Ω of the plane \mathbb{R}^2 the model (1.1) reduces to

$$\frac{\partial^2 u}{\partial t^2} - \left(\frac{\tau_0 - k}{m} + \frac{k}{m}K(t)^2 + \frac{k}{2mV_0K(t)^2}\int_{\Omega_t} |\nabla u(x, t)|^2 dx\right)\Delta u = 0.$$

$$(1.7)$$

The mixed problem for (1.7) was investigated by Limaco-Medeiros [10] and Medeiros-Limaco [15], applying a technique which takes in consideration the geometry of Ω .

In the present article we investigate a mixed problem for (1.1) in the general case when $\Omega_t = K(t)\Omega$ is a family of bounded open set of \mathbb{R}^n with moving boundary Γ_t . \square

2 Mathematical Analysis

2.1 Preliminaries and Main Results

Let Ω be a bounded open set of \mathbb{R}^n , with C^2 boundary, and K = K(t), a function $K: [0, \infty) \to [0, \infty)$. Represent by $\{\Omega_t\}$ the family of deformations of Ω by K = K(t) defined by:

$$\Omega_t = \{ x \in \mathbb{R}^n ; \ x = K(t)y, \ \forall y \in \Omega, \ 0 \le t < \infty \}.$$

We consider the noncylindrical domain \widehat{Q} of \mathbb{R}^{n+1} defined by

$$\widehat{Q} = \bigcup_{t > 0} \left(\Omega_t \times \{t\} \right)$$

whose lateral boundary is denoted by $\widehat{\Sigma}$ defined by

$$\widehat{\Sigma} = \bigcup_{t>0} (\Gamma_t \times \{t\}),$$

where Γ_t is the boundary of Ω_t . We suppose Γ_t and $\widehat{\Sigma}$ regulars.

HYPOTHESIS

- We suppose $\tau_0 > k$.
- $K \in W^{3,\infty}(0,\infty)$, $K(t) \ge K_0 > 0$, $K'(t) \ge 0$ and $|K''(t)| \le C_0 |K'(t)|$, $|K'''(t)| \le C_1 |K'(t)|$.

By K' we represent $\frac{dK}{dt}$.

 C_0 , C_1 positive constants

• Represent by

$$S_0 = \underset{t>0}{\to} \sup \{ K(t), K'(t), |K''(t)|, |K'''(t)| \},$$

finite number by hypothesis.

Remark 2.1. We have by embedding theorems

- $||v||_{H^{1}(\Omega)} \leq \tilde{C}_{1} |\Delta v|_{L^{2}(\Omega)}$ for $v \in H^{1}_{0}(\Omega) \cap H^{2}(\Omega)$
- $||v||_{H^2(\Omega)} \le \tilde{C}_2 |\Delta v|_{L^2(\Omega)}$
- $\bullet \quad |v|_{L^2(\Omega)} \le \tilde{C}_3||v||_{H^1_0(\Omega)}$

The constants \tilde{C}_1 , \tilde{C}_2 , \tilde{C}_3 are positives and we set $d=d(\Omega)$ to denote the diameter of Ω .

We consider the operator

$$\widehat{L}u(x,t) = \frac{\partial^2 u}{\partial t^2} - \left(a(t) + \widehat{b}(t) \int_{\Omega_t} |\nabla u(x,t)|^2 dx\right) \Delta u(x,t), \qquad (2.1)$$

defined for real functions u(x,t) for $(x,t) \in \widehat{Q}$.

Let us consider the change of variables $x=K(t)y,\ x\in\Omega_t$ and $y\in\Omega$ and let us define the function v=v(y,t) by

$$v(y,t) = u(K(t)y,t). \tag{2.2}$$

We modify $\widehat{L}u(x,t)$ and we obtain

$$\overset{\vee}{L}v(y,t) = \frac{\partial^2 v}{\partial t^2} - \frac{1}{K(t)^2} \left(a(t) + b(t) \int_{\Omega} |\nabla v(y,t)|^2 dy \right) \Delta v(y,t) - \frac{\partial}{\partial y_i} \left(a_{ij}(y,t) \frac{\partial v}{\partial y_j} \right) + b_i(y,t) \frac{\partial v'}{\partial y_i} + c_i(y,t) \frac{\partial v}{\partial y_i}, \tag{2.3}$$

where

•
$$a_{ij}(y,t) = -\left(\frac{K'}{K}\right)^2 y_i y_j$$

• $b_i(y,t) = -2\left(\frac{K'}{K}\right) y_i$
• $\check{c}_i(y,t) = -\left[\frac{(n-1)(K')^2 + KK''}{K^2}\right] y_i$
• $a(t) = \frac{\tau_0 - k}{m} + \frac{k}{m} K(t)^n$
• $b(t) = \frac{k}{2mV_0 K(t)^2}$

For the computation see Appendix 1.

VISCOSITY

Our method consists in add a viscosity of the type $\delta u'(x,t)$, $\delta > 0$, to the operator Lu(x,t) and restrict the initial data of the mixed problem to be proposed to $\hat{L}u(x,y)$ in \hat{Q} .

In fact, we consider in \hat{Q} the operator, for $\delta > 0$,

$$\widehat{L}u(x,t) + \delta u'(x,t), \quad \text{for} \quad \delta > 0,$$
 (2.4)

where u'(x,t) is the derivative with respect to t.

The change of variables gives

$$\delta u'(x,t) = \left(-\delta \frac{K'}{K}\right) y_i \frac{\partial v}{\partial y_i} + \delta v'(y,t),$$

and we modify the coefficient $\check{c}_i(y,t)$ obtaining

$$c_i(y,t) = \check{c}_i(y,t) - \delta\left(\frac{K'}{K}\right)y_i$$

or

$$c_i(y,t) = -\left[\frac{(n-1)(K')^2 + KK'' + \delta KK'}{K^2}\right] y_i.$$

Thus the change of variables and the viscosity $\delta u'(x,t)$ modify the operator $\overset{\vee}{L}v(y,t)$ and we obtain

$$Lv(y,t) = \frac{\partial^2 v}{\partial t^2} - \frac{1}{K(t)^2} \left(a(t) + b(t) \int_{\Omega} |\nabla v(y,t)|^2 dy \right) \Delta v(y,t) - (2.5)$$
$$- \frac{\partial}{\partial y_i} \left(a_{ij}(y,t) \frac{\partial v}{\partial y_j} \right) + b_i(y,t) \frac{\partial v'}{\partial y_i} + c_i(y,t) \frac{\partial v}{\partial y_i}.$$

Consequently we have the following equivalent mixed problem (2.6) noncylindrical and (2.7) cylindrical

$$\begin{vmatrix}
\widehat{L}u(x,t) + \delta u'(x,t) = 0 & \text{in } \widehat{Q}, & \delta > 0 \\
u(x,t) = 0 & \text{on } \widehat{\Sigma} \\
u(x,0) = u_0(x), & u'(x,0) = u_1(x) & \text{in } \Omega
\end{vmatrix}$$
(2.6)

We investigate (2.7) by Galerkin method. First we fixe some notation.

In fact, we will find later, calculus of the Estimate IV, the function G(t) = G(v(t)), where v = v(t) is the Galerkin approximation $v_{\nu}(t)$ for the solution of (2.7). This function is given by:

$$G(t) = \frac{|v''|^2}{2} + \frac{\delta^2}{16} |v'|^2 + \frac{\delta}{8} (v'', v') +$$

$$+ \left(\frac{\tau_0 - k}{m}\right) \frac{||v'||^2}{K^2} + \frac{\delta}{72 S_0^2} (\nabla v', \nabla v) + \frac{\delta^2}{144 S_0^2} \left(\frac{\tau_0 - k}{m}\right) ||v||^2 +$$

$$+ \frac{k}{m} K^n \frac{||v'||^2}{K^2} + \frac{b(t)}{K^2} ||v||^2 ||v'||^2 + a'(t, v, v) + H(t),$$
(2.8)

where H(t) = H(v(t)) is given by

$$H(t) = |v'|^2 + \frac{a(t)}{K^2} ||v||^2 + \frac{b(t)}{2K^2} ||v||^4 + a(t, v, v).$$

We will prove in Appendix 2 that $G(t) \geq \widetilde{G}_0(t)$ where

$$\begin{split} \widetilde{G}_0(t) &= \frac{|v''|^2}{4} + \left(\frac{3\delta^2}{64} + 1\right)|v'|^2 + \left(\frac{8}{9} \frac{\delta^2}{288m S_0^2} \frac{\tau_0 - k}{2m S_0^2}\right)||v||^2 + \\ &+ \frac{1}{2} \frac{k}{m} K^{n-2} ||v||^2 + \frac{b(t)}{K^2} ||v||^2 ||v'||^2 + \frac{b(t)}{K^2} ||v||^2. \end{split}$$

Thus

$$\widetilde{G}_0(t) \le G(t) \le G_0(t) \tag{2.9}$$

where $G_0(t) = G_0(v(t))$ is given by

$$G_{0}(t) = \frac{9}{16} |v''|^{2} + \left(\frac{\delta^{2} \tilde{C}_{3}^{2}}{16} + \frac{\delta}{16} \tilde{C}_{3}^{2} + \frac{\tau_{0} - k}{K_{0}^{2}} + \frac{\delta}{144 S_{0}^{2}} + 1 + \frac{k}{m} S_{0}^{n-2} + \tilde{C}_{3}^{2}\right) ||v'||^{2} + \left(\frac{\delta}{144 S_{0}^{2}} + \frac{\delta^{2}}{144 S_{0}^{2}} \left(\frac{\tau_{0} - k}{m}\right) + \left(\frac{(C_{0} + 1)S_{0}^{3}}{K_{0}^{2}} d^{3}\right)^{2} + \frac{a(t)}{K^{2}} + \frac{S_{0}^{2}}{K_{0}^{2}} d^{2}\right) ||v||^{2} + \frac{1}{2} \frac{b(t)}{K^{2}} ||v||^{4} + \frac{b(t)}{K^{2}} ||v||^{2} ||v'||^{2}$$

$$(2.10)$$

The inequality (2.9) is fundamental for the conclusions contained in this work. In fact, when we obtain the estimate $G(t) \leq \text{cst}$ for all $t \geq 0$ then (2.9) implies $\widetilde{G}_0(t) \leq \text{cst}$ for all $t \geq 0$ what implies uniform estimates for |v''(t)|, ||v'(t)|| and ||v(t)||. The left hand side of (2.9) helps to obtain the exponential decay, cf. Section 3.

We need evaluate $G_0(t)$ at t=0. It follows that we need evaluate $|v''(0)|^2$ with $v''(0) = v_{\nu}''(0)$ in the approximate equation (2.26). We obtain from the approximate equation (2.26)

$$|v''(0)|^{2} \leq \frac{1}{K_{0}^{2}} \left(a(0) + b(0) ||v_{0}||^{2} \right) |\Delta v_{0}| |v''(0)| + |a(0)v_{0}, v''(0))| +$$

$$+ \left| b_{i}(0) \frac{\partial v_{1}}{\partial y_{i}} \right| |v''(0)| + \left| c_{i}(0) \frac{\partial v_{0}}{\partial y_{i}} \right| |v''(0)|.$$

By the inequality $2\alpha\beta \le \alpha^2 + \beta^2$, for positive numbers, we obtain:

$$|v''(0)|^{2} \leq \left\{ \left[\frac{\sqrt{5}}{K_{0}^{2}} \left(a(0) + b(0) ||v_{0}||^{2} \right) \right]^{2} + \left[\sqrt{5} \left(d^{2} \tilde{C}_{3}^{2} \right)^{2} \right]^{2} \right\} |\Delta v_{0}|^{2} + \left[\left(\sqrt{5} (n+1)d \right)^{2} + \left(\frac{\sqrt{5}}{K_{0}^{2}} (n-1+\delta) S_{0}^{2} \right] ||v_{0}||^{2} + \left(\frac{\sqrt{5}}{K_{0}} \frac{S_{0} d}{K_{0}} \right)^{2} ||v_{1}||^{2} \right]$$

$$(2.11)$$

For this method see Lions [12]. Then we have by (2.9) and (2.11)

the inequality

$$0 \leq G(0) \leq \frac{9}{16} \left\{ \left[\frac{\sqrt{5}}{K_0^2} (a(0) + b(0)||v_0||^2) \right]^2 + \frac{9}{16} \left\{ \sqrt{5} (a^2 \tilde{C}_2)^2 \right\} |\Delta v_0|^2 + \frac{9}{16} \left\{ \sqrt{5} (n+1+d) \right\}^2 + \frac{\sqrt{5}}{K_0^2} (n-1+d) S_0^2 \right\} ||v_0||^2 + \frac{9}{16} \left(\frac{\sqrt{5}}{K_0} S_0 d \right)^2 ||v_1||^2 + \frac{\sqrt{5}}{K_0^2} \left(\frac{\sqrt{5}}{K_0^2} S_0 d \right)^2 ||v_1||^2 + \frac{\sqrt{5}}{K_0^2} \left(\frac{\sqrt{5}}{K_0^2} S_0 d \right)^2 ||v_1||^2 + \frac{\sqrt{5}}{K_0^2} \left(\frac{\sqrt{5}}{K_0^2} S_0 d \right)^2 + \frac{\sqrt{5}}{K_0^2} \left(\frac{\sqrt{5}}{K_0^2} S_0 d \right)^2 ||v_0||^2 + \frac{\sqrt{5}}{K_0^2} \left(\frac{\sqrt{5}}{K_0^2} S_0 d \right)^2 + \frac{\sqrt{5}}{K_0^2} \left(\frac{\sqrt{5}$$

By the change of variables x = K(t)y from Ω to Ω_t , we obtain

$$A_{0}|\Delta v_{0}|^{2} + B_{0}||v_{0}||^{2} + C_{0}||v_{1}||^{2} + \frac{b(0)}{2}||v_{0}||^{2}||v_{1}||^{2} + \frac{3}{2}\frac{b(0)}{K_{0}^{2}}||v_{0}||^{4} \leq \widehat{A}_{0}|\Delta u_{0}|^{2} + \widehat{B}_{0}||u_{0}||^{2} + \widehat{C}_{0}||u_{1}||^{2} + \widehat{D}_{0}||u_{0}||^{2}||u_{1}||^{2} + \widehat{E}_{0}||u_{0}||^{4}$$

$$(2.13)$$

with A_0 , B_0 , C_0 , \widehat{A}_0 , \widehat{B}_0 , \widehat{C}_0 , \widehat{D}_0 , \widehat{E}_0 constants.

We have the results

Theorem 2.1. Given $u_0 \in H_0^1(\Omega_0) \cap H^2(\Omega_0)$ and $u_1 \in H_0^1(\Omega_0)$ such that

$$\left(\widehat{A}_{0}|\Delta u_{0}|^{2} + \widehat{B}_{0}||u_{0}||^{2} + \widehat{C}_{0}||u_{1}||^{2} + \widehat{D}_{0}||u_{0}||^{2}||u_{1}||^{2} + \widehat{E}_{0}||u_{0}||^{2}\right)^{2} \leq
\leq \frac{1}{(nS_{0}^{2})^{2}\left[(144\sqrt{a})^{2} + (\delta^{2}\sqrt{b})^{2}\right]} \cdot \frac{1}{288 \, m^{2}} \, \delta^{5}(\tau_{0} - k)^{4}, \tag{2.14}$$

there exists a unique numerical function $u \colon \widehat{Q} \to \mathbb{R}$ satisfying, for all T > 0:

$$u \in L^{\infty}(0, T; H_0^1(\Omega_t)) \cap L^2(0, T; H^2(\Omega_t))$$
 (2.15)

$$u' \in L^{\infty}(0, T; H_0^1(\Omega_t))$$
 (2.16)

$$u'' \in L^{\infty}(0, T; L^2(\Omega_t)), \tag{2.17}$$

which is solution of (2.7).

Theorem 2.2. Given $v_0 \in H_0^1(\Omega) \cap H^2(\Omega)$ and $v_1 \in H_0^1(\Omega)$ such that

$$\left(A_0|\Delta v_0|^2+B_0||v_0||^2+C_0||v_1||^2+\frac{b(0)}{2}\,||v_0||^2\,||v_1^2||+\frac{3}{2}\,\frac{b(0)}{K_0^2}\,||v_0||^4\right)^2\,\leq\,$$

$$\leq \frac{1}{(nS_0^2)^2[(144\sqrt{a})^2 + (\delta^2\sqrt{b})^2]} \frac{1}{288 m^2} \delta^5(\tau_0 - k)^4, \tag{2.18}$$

there exists a unique real function $v: Q \to \mathbb{R}$ such that, for all T > 0

$$v \in L^{\infty}(0, T; H_0^1(\Omega)) \cap L^2(0, T; H^2(\Omega))$$
 (2.19)

$$v' \in L^{\infty}(0, T; H_0^1(\Omega))$$
 (2.20)

$$v'' \in L^{\infty}(0, T; L^2(\Omega)), \tag{2.21}$$

which is solution of (2.7).

2.2 Proof of the Theorems

We prove the Theorem 2.2, which is the cylindrical case. We employ Galerkin's method making use of a Hilbertian basis, cf. Brezis [4], of the spectral objects of the problem $((w_i,w))=\lambda_i(w_i,w),\ i=1,2,\ldots,$ for all $w\in H^1_0(\Omega)$. By $((\,,\,))$ we represent the scalar product in $H^1_0(\Omega)$ and $(\,,\,)$ the scalar product in $L^2(\Omega)$. The correspondents norms are, respectively $||\cdot||$ and $|\cdot|$. We know that $w_i\in H^1_0(\Omega)\cap H^2(\Omega)$ for all $i=1,2,\ldots$ We represent by V_ν the ν dimensional subspace generated by the first ν vectors w_i .

The details will appear in another paper.

3 Asymptotic Behavior

We prove that

$$\widetilde{G}_0(t) \le G(0) e^{-ct}$$
, for all $t \ge 0$

and c positive constant.

References

- [1] A. Arosio and S. Spagnolo: Global solutions to the Cauchy problem for a nonlinear hyperbolic equations. Nonlinear Partial Differential Equations and their Applications. Collège de France Seminar, Vol. 6, edited by H. Brezis and J.L. Lions, Pitman, London, 1984.
- [2] D. BAINOV and E. MINCHEV: Above estimates of the interval of existence of solutions of the nonlinear Kirchhoff equation. Comptes Rendus de l'Academi Bulgare des Sciences, Tome 48, nº 5 (1995) 13-14.
- [3] S. Bernstein: Sur une classe d'équations fonctionelles aux derivées partielles. Isv. SSSR Math. 4 (1940) 17-20.
- [4] H. Brezis: Analyse Fonctionelle (Théorie et Applications). Masson, Paris, 1983.
- [5] C.E. CARRIER: On the vibrations problem of elastic strings. Q.J. Appl. Math. (1953) 151-165.
- [6] R.W. DICKEY: Infinity system of semilinear oscillations equations related to the string. Proc. of the A.M.S. Vol. 23 (1969) 459-468.
- [7] Y. EBIHARA, Y. TANAKA and Y. NAKASHINA: On exact solutions of Kirchhoff quasilinear hyperbolic equations with absorving term. Fukuoka University Science Repports. Vol. 22, No 2 (1992) 97-106.
- [8] M. HAZOYA and Y. YAMADA: On some nonlinear wave equations II
 Global existence and energy decay of solutions. J. Fac. Sci. (Univ. Tokyo), Vol. 38, Nº 2 (1991) 230-250.
- [9] G. KIRCHHOFF: Vorlesungen der Mechanik. Tauber Leipzig, 7 (1883) 444.
- [10] J. LIMACO and L.A. MEDEIROS: Vibrations of elastic membranes with moving boundaries. (To appear in Nonlinear Analysis TMA).

- [11] J. LIMACO and L.A. MEDEIROS: Kirchhoff Carrier elastic strings in noncylindrical domains. Portugaliae Mathematica, Vol. 56, Fasc. 4 (1999) 495-499.
- [12] J.L. LIONS: On some question in boundary value problems of mathematical physics. Contemporary Development in Continuum Mechanics and Partial Differential Equations Edit by G.M. de La Penha and L.A. Medeiros, North-Holland, Amsterdam, (1978) 285-346.
- [13] J.L. LIONS: Quelques méthodes de résolution des problèmes aux limites non-linéaires. Dunod, Paris, 1969.
- [14] L.A. MEDEIROS: J. LIMACO and S.B. MENEZES: Vibrations of elastic strings (Mathematical Aspects) Part One and Part Two. (To appear in Journal of Computational Analysis and Applications).
- [15] L.A. MEDEIROS and J. LIMACO: On a model for vibrations of elastic membranes. International Journal of Differential Equations and Applications, Vol. 2, Nº 2 (2001) 209-236.
- [16] M. MILLA MIRANDA and L.P. SAN GIL JUTUCA: Existence and boundary stabilization of solutions for Kirchhoff equation. Comm. Partial Differential Equations, 24 (9 & 10) (1999) 1750-1800.
- [17] S.I. POHOZHAEV: Quasilinear hyperbolic equation of Kirchhoff type and conservation law. Tr. Mosk. Energ. Inst. Moscow, No 201 (1974) 118-126.
- [18] S.I. POHOZHAEV: On a class of quasilinear hyperbolic equations. Math. SSSR Sbornik, 25 (1975) 145-158.
- [19] S.I. Pohozhaev: The Kirchhoff quasilinear hyperbolic equation. Differential Equations, Vol. 21, No 1 (1985) 101-108 (in Russian).

Resumen

En este trabajo nosotros investigaremos un modelo del tipo Kirchhoff para vibraciones de un cuerpo elástico representado por un conjunto abierto acotado de \mathbb{R}^n representado por Ω_t con la frontera Γ_t que se mueve con el tiempo t. Con restricciones sobre la posición en reposo y la velocidad inicial probaremos existencia global y unicidad de las soluciones en una clase de espacios de Sobolev, para un problema mixto con condiciones nulas de Dirichlet en la frontera.

Palabras Clave: Ecuación de Kirchhoff, Vibraciones, frontera móvil, espacios de Sobolev.

* Partially supported by PCI-LNCC-MCT, 2001, Brasil.

L.A. Medeiros Instituto de Matemática, UFRJ Caixa Postal 68530 21945-970 Rio de Janeiro, RJ Brasil Imedeiros@abc.org.br

J. Limaco
Instituto de Matemática, UFF
Rua São Pedro s/n
24210-110 Niterói, RJ
Brasil
jlimaco@vm.uff.br