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A LEMMA ON LIMITS OF
ANALYTIC SETS

Rudy Rosas’

Abstract

This paper is a small remark on the analyticity of a limit of
analytic sets in a particular case: when the sets are complex
discs.
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1 Introduction

Let D= {z€C:|z]| <1} and B = {z € C*! : ||z]| < 1}
where n > 2. Let M be a complex manifold of complex dimension n and
let D be a subset of M homeomorphic to a disc. We say that D is a
singular disc if for all z € D there exists a neighborhood D of z in D,
and an injective holomorphic function f : D — M such that f(D) = D.
If f'(0) = 0 we say that z is a singularity of D, otherwise z is a regular
point of D (this does not depend on f). The set S of singularities of D is
discrete and closed in D and we have that D\S is a complex submanifold
of M (Riemann surface).

Thus, if z is a regular point of D, there is a neighborhood U of x
in M and holomorphic coordinates (w, z), w € B, z € D on U such that
D N U is represented by (w = 0). If D does not have singularities we
say that it is a regular disc. In this case, by uniformization, there is
a holomorphic map f : E — M, where E = D or C, such that f is a
biholomorphism between E and D.

Ezample. Let F be a holomorphic foliation by curves on the complex
manifold M and let D C M be homeomorphic to a disc. If D is contained
in a leaf of F then it is a regular disc.

We now state the principal result.

Lemma 1.1. Let F : D x [0,1] - C" be a continuous map such that
for all t €]0,1}, the map F(x,t) : D — C" is a homeomorphism onto its
image. Thus, we have a continuous family of discs Dy := F(ID x {t}).
Suppose D, is a regular disc for each t > 0. Then Dy is a singular disc.

Remark. Actually, we may only assume that D, is a singular disc for
all t > 0. Lemma 1.1 is used in [6] to prove a theorem of extension of
topological equivalences of holomorphic foliations and, as a consecuence,
the invariance of the algebraic multiplicity of an isolated singularity of
a holomorphic foliation, by C' equivalences.
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2 Preliminary Lemmas

We state and prove some lemmas used in the proof of Lemma 1.1.

Lemma 2.1. Let U be a simply connected domain in the complez plane
such that 8U is a Jordan curve. Then any uniformization f : D — U
extends as a homeomorphism between D and U.

Proof. See [1] p.310. O

Lemma 2.2. For each k € N, let ¢, : S = S! be a homeomorphism.
Then {¢r} has a subsequence which converges almost everywhere with
respect to the Lebesgue measure in the circle.

Proof. We give a sketch of the proof. By taking a subsequence we may
assume that ¢ converges on a dense subset of S'. Let 7 : R = S! be
a covering. For each k, we may choose a lifting fi : R — R of ¢, by .
Since ¢y, is a homeomorphism, f; is monotone and we may assume that
fr is increasing for all k. We may also assume that fi converges on a
dense subset R of R. For all y € R, we define f(y) = lim fi(y). Observe
that f is increasing, since so is fi for all k. We extend f to R as

f(z) = limsup f(y).
yER,y<z

It is not difficult to see that f : R —» Ris increasing. Then f is continuous
on a set A of total measure. Now, it is not difficult to prove that for all
z € A, the sequence fi(z) converges to f(z) and the lemma follows. O

Lemma 2.3. Let p : S' = C be a bounded measurable function. Sup-
pose that [, 2™p(2)dz = 0 for all n € Z\{—1}. Then, with respect to
the Lebesgue measure in the circle, ¢ is almost everywhere equal to the
constant 5% [, 22dz.

z
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Proof. Let ¢ = 3 [ ﬂzﬂdz and define ¢ := ¢ — ¢. Then

2m

o(z) ., _ pz)—c [ olz), [ ¢
L /S,l—z“dz—/slez /_c, P

/-——‘p(z)dz—c/ e
st 2 s1 2

ole) (L[ 2o
/sl dz — ( /Sl dz)(2mi)

z 2m z
= 0.

On the other hand, for any n # —1 we have that

/51 2™(p(2) — c)dz = /Sl 2(2)dz — /51 Seds

O—C/ 2"dz
sl

= 0

/s1 2"d(2)dz

because z"dz is an exact form whenever n # —1. Thus, we have that

/ 2"Pp(2)dz =0 forall neZ. (1)
st
We claim that [g; f(2)$(z)dz = 0 for all continuous function f : ' — C.

By the Stone -Weierstrass approximation theorem (see [3]), f can be
uniformly approximated by a sequence of functions P, = Ax + iBy,
k € N, where A, By, : R? — R are real polynomials. Let z = z + iy and
observe that z = 1/z if z € S!. Then

z2+z z2—-2Z
2 7 2

z2+2Z z;z)+in(

z+1/z z—l/z)
2 ' 2 7

Py(z) = Ai(z,y)+iBi(z,y) = Ax(

z2+1/z z2-1/z

= Ai( 2 5

)+ iBy(
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Hence Pi(z) = 3" a;jz? where j runs on the integers, the sum is finite and
the coeflicients a; depend only on the coefficients of Ax and Bj. Then

/ P (z)p(2)dz = / (Z a;2)p(z)dz = Zaj /SJ1 2 ¢(2)dz =

by (1). Since P, converges uniformly to f and ¢ is bounded we have
that

.ﬁmuwwaa/jmmmu
as k — oo and therefore [, f(2)¢(2)dz =

Now, we take an uniformly bounded sequence of continuous func-
tions fi : S! — C which converges a.e. to ¢. Then {fi¢} is uniformly
bounded and converges a.e. to ¢¢ = |¢|2. Thus by the dominated con-
vergence theorem we have that

/ﬁMWW*/W@Wz
s s1

as k — oo. Therefore [, |¢(2)|*dz = 0 and it follows that ¢ = 0 almost
everywhere. O

Lemma 2.4. Let D C C" be a bounded set homeomorphic to a disc.
Let p € D and suppose that D\{p} has a complex structure such that
the inclusion D\{p} — C" is holomorphic. Then there is a holomorphic
injective map g : D — C™ with g(D) = D, ¢(0) =

Proof. Let A, denote the annulus {z € C, r < |z| < 1} where r > 0.
Since D ¢ C" is bounded and D\{p} is homeomorphic to an annulus we
have (see {4]) that there exist a biholomorphism

g: AT - D\{p})

such that g(z) = pas|z| = r. Take Rwithr < R<landlet ', and T'g
be denote the circles |z| = r and |z| = R respectively. For r < |z|] < R
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we have the formula

! g(w) 1 / p
- — - d
9(2) 2mi /I‘n w - zdw 2mi Jp, w—z v

since g extends continuously to I'y as g|r, = p. But the second integral
is equal to zero because p/(w — z) is holomorphic on the disc |w| < r,
then

1
(z2) = — f—(u—}-)—dw.
2ri Jr, w— 2
Therefore g extends to the disc |2| < R. Since g is not constant and
g|r, = p we necessarily have r = 0 and the lemma follows. (]

3 Proof of Lemma 1.1

Let p = F(zo,0) be any point in Dy. Let U C D be a disc centered
at zo and such that U ¢ D. Let t; > 0 be such that ¢, — 0 as k — oo
an define Dy = F(U x{tx}). Clearly D) C Dy,. By uniformization,
D,, is equivalent to a subset of C and, since Dy, is a proper subset
of Dy, , we have (again by uniformization) that Dy is holomorphically
equivalent to the unitary disc . Then there is a holomorphic map
fr +: D — C™ which is a biholomorphism between D and D;. If we
think that D,, is a subset of C, by applying Lemma 2.1, we conclude
that f, extends as a homeomorphism f; : D — Di. We may assume
that fi(0) = F(zo,tx) for all k; otherwise we compose fi, with a suitable
Moebius transformation. Observe that fi (D) is contained in the compact
set F(U x [0,1]), hence {fi} is uniformly bounded and, by Montel’s
theorem, we can assume that fi converges uniformly on compact sets to
a holomorphic function f: D — C". Note that f(0) = p, since

f(0) = lim fi(0) = lim F(zo,tk) = F(z0,0) = p.
k—o0 k—ro0
Let S! = 0D and consider for each k the homeomorphism

Pg = flel S > ODy,.
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Define

m: F(OU x[0,1]) —» St

m(F((,1) =¢.
Clearly, * maps 0Dy = F(8U x{t;}) homeomorphically onto S'. There-
fore for each k, the map

¢r:=mopy: St = St

is a homeomorphism. By taking a subsequence, we may assume that ¢
converges a.e. to a function ¢ : S! —» S! (Lemma 2.2). Therefore @i
converges a.e. to

p:=n"log:S = 9Dy.

Fix £ € D. Since {¢x} is uniformly bounded, by the dominated
convergence theorem we have that

L/ deﬁ_}_’/ W) 4 )
21 Jor w — =z 2mi Jgo w —x
as k — oo. By the Cauchy’s integral formula, the left part of (2) is equal
to fx(x) and, since fr(z) = f(z), we conclude that

f(z) = = /s o) 4, 3)

T omi g w—x
Assertion 1. f: D — C" is not constant.

Proof. Assume by contradiction that f is a constant function. Then
f™(0) = 0 for all n € N, where (") is the nth derivative of f. From
(3), by induction on n, it is not difficult to prove that

F™(0) = i/ ) 4y = 0
S

2mi 1 wntl
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for all n > 1. Hence

/ who(w)dw =0 forall n< -2 (4)
si

On the other hand, for each k¥ and any n > 0 we have that
Js1 w™or(w)dw = 0 because w™w,(w) extends holomorphically to D as
w"” fr.(w). Then, by the dominated convergence theorem we have that

/ w™p(w)dw = lim / wprp(w)dw =0 forall n>0. (5)
s1 k—oo fa1
Thus, from (4) and (5):
/ wp(w)dw =0 for all n e Z\{~-1}.
Sl

Applying Lemma 2.3 to each coordinate of ¢ we deduce that ¢y =p a.e.,
which is a contradiction because ¢(S') C D¢ and p ¢ 8Ds.

Assertion 2. f(D) C Dy.

Proof. Let z € C™ be such that z = f(z). Then z = lim f¢(z). Since
fi(z) is contained in Dy = F(U x{tx}), we have that fi(z) = F(zg,tr)

with z;, € U. By taking a subsequence, we may assume that zx, = Z € U.
Then

z= lim fy(z) = lim F(zg,t;) = F(lim zx,0) = F(F,0) € Dy.
k—o0 . k—oo k—00
Therefore f(D) C Dy.

It follows from Assertion 1 that f’ does not vanish. Then, we know
that the zero set of f' is discrete and closed in 0. Hence, there exists
a disc 2 C D centered at 0 such that f' # 0 on Q\{0}. Since f is not
constant, 0 is an isolated point in f~1(p). Thus, we assume Q2 to be
small enough such that QN f~!(p) = {0}. In particular, f(6Q) does not
pass through p.
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Assertion 8. There is a disc D C Dy withp € D and such that D C f(Q).

Proof. Let z € Q\{0}. Then f'(z) # 0 and there exists a disc A C
with z € A and such that f|x: A — C" is injective, hence a homeomor-
phism onto its image, since A is compact. Then f(A) is homeomorphic
to a disc and, since f{A) C Dg, we have that f(A) is open in Dy. Then
f(z) is an interior point of f(§2) as a subset of Dy. It follows that every
point z € f(Q\{0}) is an interior point of f(?) C Dy. Thus if z is a
point in the boundary of (1), since z is not an interior point, we have
that z ¢ f(OQ U {0}) = f(09Q) U {p}. Therefore:

9f () C F(69) U {p}.

Since f(99) does not pass through p, we may take a disc D C Dy
containing p and such that D is disjoint of f(8Q). Finally, we claim that
D C f(Q). Let z € D and suppose that z ¢ f(). Since D contains p, we
may take z # 0, close enough to 0, such that 2z’ := f(z) € D. We have
z' # p because z # 0, hence we may take a path v in D\{p} connecting
z and 2. Since z ¢ f(Q) and 2’ € f(), there exists 2’ € v such that
2" € 3f(Q)). Then, since 8f(Q) C f(ON)U{p}, we have 2" € f{OQ)U{p}.
But this is a contradiction because z" € v is contained in D\{p}, which
is disjoint of f(092) U {p}.

Let z € D\{p}. By Assertion 3, z = f(z) with z € Q. Since z # p
we have £ # 0, hence f'(z) # 0. Then, from the proof of Assertion 3,
there exists a disc A C Q, z € A, such that f|a : A = C” is injective
and f(A) is a neighborhood of z in D\{p}. Since f is holomorphic it
follows that D\{p} is a Riemann surface and the inclusion D\{p} = C*
is a holomorphic map. Then, by Lemma 2.4, there is a holomorphic
injective map g : D — C” with g(D) = D C Dy. Since p was arbitrary,
it follows that Dy is a singular disc, which finishes the proof of Lemma
1.1. 0O
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Resumen

Este articulo es una pequefia observacién sobre la analiticidad de un
limite de conjuntos analiticos, en un caso muy particular: cuando los
conjuntos son discos complejos.

Palabras Clave: Conjuntos analiticos, limites de conjuntos, discos complejos.
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