A LEMMA ON LIMITS OF ANALYTIC SETS

Rudy Rosas¹

Abstract

This paper is a small remark on the analyticity of a limit of analytic sets in a particular case: when the sets are complex discs.

Key words: Analytic sets, limits of sets, complex discs.

1. Sección Matemática, Departamento de Ciencias, PUCP.

1 Introduction

Let $\mathbb{D} = \{z \in \mathbb{C} : ||z|| < 1\}$ and $\mathbb{B} = \{z \in \mathbb{C}^{n-1} : ||z|| < 1\}$ where $n \ge 2$. Let M be a complex manifold of complex dimension n and let D be a subset of M homeomorphic to a disc. We say that D is a singular disc if for all $x \in D$ there exists a neighborhood \mathcal{D} of x in D, and an injective holomorphic function $f : \mathbb{D} \to M$ such that $f(\mathbb{D}) = \mathcal{D}$. If f'(0) = 0 we say that x is a singularity of D, otherwise x is a regular point of D (this does not depend on f). The set S of singularities of D is discrete and closed in D and we have that $D \setminus S$ is a complex submanifold of M (Riemann surface).

Thus, if x is a regular point of D, there is a neighborhood U of x in M and holomorphic coordinates $(w, z), w \in \mathbb{B}, z \in \mathbb{D}$ on U such that $D \cap U$ is represented by (w = 0). If D does not have singularities we say that it is a *regular disc*. In this case, by uniformization, there is a holomorphic map $f : E \to M$, where $E = \mathbb{D}$ or \mathbb{C} , such that f is a biholomorphism between E and D.

Example. Let \mathcal{F} be a holomorphic foliation by curves on the complex manifold M and let $D \subset M$ be homeomorphic to a disc. If D is contained in a leaf of \mathcal{F} then it is a regular disc.

We now state the principal result.

Lemma 1.1. Let $F : \mathbb{D} \times [0,1] \to \mathbb{C}^n$ be a continuous map such that for all $t \in [0,1]$, the map $F(*,t) : \mathbb{D} \to \mathbb{C}^n$ is a homeomorphism onto its image. Thus, we have a continuous family of discs $D_t := F(\mathbb{D} \times \{t\})$. Suppose D_t is a regular disc for each t > 0. Then D_0 is a singular disc.

Remark. Actually, we may only assume that \mathcal{D}_t is a singular disc for all t > 0. Lemma 1.1 is used in [6] to prove a theorem of extension of topological equivalences of holomorphic foliations and, as a consecuence, the invariance of the algebraic multiplicity of an isolated singularity of a holomorphic foliation, by C^1 equivalences.

2 Preliminary Lemmas

We state and prove some lemmas used in the proof of Lemma 1.1.

Lemma 2.1. Let U be a simply connected domain in the complex plane such that ∂U is a Jordan curve. Then any uniformization $f : \mathbb{D} \to U$ extends as a homeomorphism between $\overline{\mathbb{D}}$ and \overline{U} .

Proof. See [1] p.310.

Lemma 2.2. For each $k \in \mathbb{N}$, let $\phi_k : \mathbb{S}^1 \to \mathbb{S}^1$ be a homeomorphism. Then $\{\phi_k\}$ has a subsequence which converges almost everywhere with respect to the Lebesgue measure in the circle.

Proof. We give a sketch of the proof. By taking a subsequence we may assume that ϕ_k converges on a dense subset of \mathbb{S}^1 . Let $\pi : \mathbb{R} \to \mathbb{S}^1$ be a covering. For each k, we may choose a lifting $f_k : \mathbb{R} \to \mathbb{R}$ of ϕ_k by π . Since ϕ_k is a homeomorphism, f_k is monotone and we may assume that f_k is increasing for all k. We may also assume that f_k converges on a dense subset R of \mathbb{R} . For all $y \in R$, we define $f(y) = \lim f_k(y)$. Observe that f is increasing, since so is f_k for all k. We extend f to \mathbb{R} as

$$f(x) = \limsup_{y \in R, y < x} f(y).$$

It is not difficult to see that $f : \mathbb{R} \to \mathbb{R}$ is increasing. Then f is continuous on a set A of total measure. Now, it is not difficult to prove that for all $x \in A$, the sequence $f_k(x)$ converges to f(x) and the lemma follows. \Box

Lemma 2.3. Let $\varphi : \mathbb{S}^1 \to \mathbb{C}$ be a bounded measurable function. Suppose that $\int_{\mathbb{S}^1} z^n \varphi(z) dz = 0$ for all $n \in \mathbb{Z} \setminus \{-1\}$. Then, with respect to the Lebesgue measure in the circle, φ is almost everywhere equal to the constant $\frac{1}{2\pi i} \int_{\mathbb{S}^1} \frac{\varphi(z)}{z} dz$.

Proof. Let $c = \frac{1}{2\pi i} \int_{\mathbf{S}^1} \frac{\varphi(z)}{z} dz$ and define $\phi := \varphi - c$. Then

$$\int_{\mathbf{S}^{1}} \frac{\phi(z)}{z} dz = \int_{\mathbf{S}^{1}} \frac{\varphi(z) - c}{z} dz = \int_{\mathbf{S}^{1}} \frac{\varphi(z)}{z} dz - \int_{\mathbf{S}^{1}} \frac{c}{z} dz$$
$$= \int_{\mathbf{S}^{1}} \frac{\varphi(z)}{z} dz - c \int_{\mathbf{S}^{1}} \frac{dz}{z}$$
$$= \int_{\mathbf{S}^{1}} \frac{\varphi(z)}{z} dz - (\frac{1}{2\pi i} \int_{\mathbf{S}^{1}} \frac{\varphi(z)}{z} dz)(2\pi i)$$
$$= 0.$$

On the other hand, for any $n \neq -1$ we have that

$$\int_{\mathbf{S}^1} z^n \phi(z) dz = \int_{\mathbf{S}^1} z^n (\varphi(z) - c) dz = \int_{\mathbf{S}^1} z^n \varphi(z) dz - \int_{\mathbf{S}^1} z^n c dz$$
$$= 0 - c \int_{\mathbf{S}^1} z^n dz$$
$$= 0$$

because $z^n dz$ is an exact form whenever $n \neq -1$. Thus, we have that

$$\int_{\mathbb{S}^1} z^n \phi(z) dz = 0 \quad \text{for all} \quad n \in \mathbb{Z}.$$
 (1)

We claim that $\int_{\mathbb{S}^1} f(z)\phi(z)dz = 0$ for all continuous function $f: \mathbb{S}^1 \to \mathbb{C}$.

By the Stone -Weierstrass approximation theorem (see [3]), f can be uniformly approximated by a sequence of functions $P_k = A_k + iB_k$, $k \in \mathbb{N}$, where $A_k, B_k : \mathbb{R}^2 \to \mathbb{R}$ are real polynomials. Let z = x + iy and observe that $\bar{z} = 1/z$ if $z \in \mathbb{S}^1$. Then

$$P_{k}(z) = A_{k}(x,y) + iB_{k}(x,y) = A_{k}(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2}) + iB_{k}(\frac{z+\bar{z}}{2}, \frac{z-\bar{z}}{2})$$
$$= A_{k}(\frac{z+1/z}{2}, \frac{z-1/z}{2}) + iB_{k}(\frac{z+1/z}{2}, \frac{z-1/z}{2}).$$

110

Hence $P_k(z) = \sum a_j z^j$ where j runs on the integers, the sum is finite and the coefficients a_j depend only on the coefficients of A_k and B_k . Then

$$\int_{\mathbb{S}^1} P_k(z)\phi(z)dz = \int_{\mathbb{S}^1} (\sum_j a_j z^j)\phi(z)dz = \sum_j a_j \int_{\mathbb{S}^1} z^j \phi(z)dz = 0,$$

by (1). Since P_k converges uniformly to f and ϕ is bounded we have that

$$\int_{\mathbb{S}^1} P_k(z)\phi(z)dz \to \int_{\mathbb{S}^1} f(z)\phi(z)dz$$

as $k \to \infty$ and therefore $\int_{\mathbb{S}^1} f(z)\phi(z)dz = 0$.

Now, we take an uniformly bounded sequence of continuous functions $f_k : \mathbb{S}^1 \to \mathbb{C}$ which converges a.e. to $\bar{\phi}$. Then $\{f_k\phi\}$ is uniformly bounded and converges a.e. to $\bar{\phi}\phi = |\phi|^2$. Thus by the dominated convergence theorem we have that

$$\int_{\mathbb{S}^1} f_k(z)\phi(z)dz \to \int_{\mathbb{S}^1} |\phi(z)|^2 dz$$

as $k \to \infty$. Therefore $\int_{\mathbb{S}^1} |\phi(z)|^2 dz = 0$ and it follows that $\phi = 0$ almost everywhere.

Lemma 2.4. Let $\mathcal{D} \subset \mathbb{C}^n$ be a bounded set homeomorphic to a disc. Let $p \in \mathcal{D}$ and suppose that $\mathcal{D} \setminus \{p\}$ has a complex structure such that the inclusion $\mathcal{D} \setminus \{p\} \to \mathbb{C}^n$ is holomorphic. Then there is a holomorphic injective map $g : \mathbb{D} \to \mathbb{C}^n$ with $g(\mathbb{D}) = \mathcal{D}$, g(0) = p.

Proof. Let A_r denote the annulus $\{z \in \mathbb{C}, r < |z| < 1\}$ where $r \ge 0$. Since $\mathcal{D} \subset \mathbb{C}^n$ is bounded and $\mathcal{D} \setminus \{p\}$ is homeomorphic to an annulus we have (see [4]) that there exist a biholomorphism

$$g: A_r \to \mathcal{D} \backslash \{p\},$$

such that $g(z) \to p$ as $|z| \to r$. Take R with r < R < 1 and let Γ_r and Γ_R be denote the circles |z| = r and |z| = R respectively. For r < |z| < R

we have the formula

$$g(z) = \frac{1}{2\pi i} \int_{\Gamma_R} \frac{g(w)}{w-z} dw - \frac{1}{2\pi i} \int_{\Gamma_r} \frac{p}{w-z} dw,$$

since g extends continuously to Γ_r as $g|_{\Gamma_r} = p$. But the second integral is equal to zero because p/(w-z) is holomorphic on the disc |w| < r, then

$$g(z) = \frac{1}{2\pi i} \int_{\Gamma_R} \frac{f(w)}{w - z} dw.$$

Therefore g extends to the disc |z| < R. Since g is not constant and $g|_{\Gamma_r} = p$ we necessarily have r = 0 and the lemma follows.

3 Proof of Lemma 1.1

Let $p = F(x_0, 0)$ be any point in D_0 . Let $U \subset \mathbb{D}$ be a disc centered at x_0 and such that $\overline{U} \subset \mathbb{D}$. Let $t_k > 0$ be such that $t_k \to 0$ as $k \to \infty$ an define $\mathcal{D}_k = F(U \times \{t_k\})$. Clearly $\overline{\mathcal{D}}_k \subset \overline{\mathcal{D}}_{t_k}$. By uniformization, \mathcal{D}_{t_k} is equivalent to a subset of \mathbb{C} and, since \mathcal{D}_k is a proper subset of \mathcal{D}_{t_k} , we have (again by uniformization) that \mathcal{D}_k is holomorphically equivalent to the unitary disc \mathbb{D} . Then there is a holomorphic map $f_k : \mathbb{D} \to \mathbb{C}^n$ which is a biholomorphism between \mathbb{D} and \mathcal{D}_k . If we think that \mathcal{D}_{t_k} is a subset of \mathbb{C} , by applying Lemma 2.1, we conclude that f_k extends as a homeomorphism $f_k : \overline{\mathbb{D}} \to \overline{\mathcal{D}}_k$. We may assume that $f_k(0) = F(x_0, t_k)$ for all k; otherwise we compose f_k with a suitable Moebius transformation. Observe that $f_k(\mathbb{D})$ is contained in the compact set $F(\overline{U} \times [0, 1])$, hence $\{f_k\}$ is uniformly bounded and, by Montel's theorem, we can assume that f_k converges uniformly on compact sets to a holomorphic function $f : \mathbb{D} \to \mathbb{C}^n$. Note that f(0) = p, since

$$f(0) = \lim_{k \to \infty} f_k(0) = \lim_{k \to \infty} F(x_0, t_k) = F(x_0, 0) = p.$$

Let $\mathbb{S}^1=\partial \mathbb{D}$ and consider for each k the homeomorphism

$$\varphi_k := f_k|_{\mathbb{S}^1} : \mathbb{S}^1 \to \partial \mathcal{D}_k.$$

Define

$$\pi: F(\partial \mathrm{U} \times [0,1]) \to \mathbb{S}^1$$

 $\pi(F(\zeta,t))=\zeta.$

Clearly, π maps $\partial \mathcal{D}_k = F(\partial \mathbf{U} \times \{t_k\})$ homeomorphically onto \mathbb{S}^1 . Therefore for each k, the map

$$\phi_k := \pi \circ \varphi_k : \mathbb{S}^1 \to \mathbb{S}^1$$

is a homeomorphism. By taking a subsequence, we may assume that ϕ_k converges a.e. to a function $\phi : \mathbb{S}^1 \to \mathbb{S}^1$ (Lemma 2.2). Therefore φ_k converges a.e. to

$$\varphi := \pi^{-1} \circ \phi : \mathbb{S}^1 \to \partial \mathcal{D}_0.$$

Fix $x \in \mathbb{D}$. Since $\{\varphi_k\}$ is uniformly bounded, by the dominated convergence theorem we have that

$$\frac{1}{2\pi i} \int_{\mathbf{S}^1} \frac{\varphi_k(w)}{w - x} dw \to \frac{1}{2\pi i} \int_{\mathbf{S}^1} \frac{\varphi(w)}{w - x} dw \tag{2}$$

as $k \to \infty$. By the Cauchy's integral formula, the left part of (2) is equal to $f_k(x)$ and, since $f_k(x) \to f(x)$, we conclude that

$$f(x) = \frac{1}{2\pi i} \int_{\mathbb{S}^1} \frac{\varphi(w)}{w - x} dw.$$
(3)

Assertion 1. $f : \mathbb{D} \to \mathbb{C}^n$ is not constant.

Proof. Assume by contradiction that f is a constant function. Then $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$, where $f^{(n)}$ is the *nth* derivative of f. From (3), by induction on n, it is not difficult to prove that

$$f^{(n)}(0) = \frac{1}{2\pi i} \int_{\mathbf{S}^1} \frac{\varphi(w)}{w^{n+1}} dw = 0$$

Rudy Rosas

for all $n \geq 1$. Hence

$$\int_{\mathbb{S}^1} w^n \varphi(w) dw = 0 \quad \text{for all} \quad n \le -2.$$
 (4)

On the other hand, for each k and any $n \ge 0$ we have that $\int_{\mathbb{S}^1} w^n \varphi_k(w) dw = 0$ because $w^n \varphi_k(w)$ extends holomorphically to \mathbb{D} as $w^n f_k(w)$. Then, by the dominated convergence theorem we have that

$$\int_{\mathbb{S}^1} w^n \varphi(w) dw = \lim_{k \to \infty} \int_{\mathbb{S}^1} w^n \varphi_k(w) dw = 0 \quad \text{for all} \quad n \ge 0.$$
 (5)

Thus, from (4) and (5):

$$\int_{\mathbb{S}^1} w^n \varphi(w) dw = 0 \quad \text{for all} \quad n \in \mathbb{Z} \setminus \{-1\}.$$

Applying Lemma 2.3 to each coordinate of φ we deduce that $\varphi = p$ a.e., which is a contradiction because $\varphi(\mathbb{S}^1) \subset \partial \mathcal{D}_0$ and $p \notin \partial \mathcal{D}_0$.

Assertion 2. $f(\mathbb{D}) \subset D_0$.

Proof. Let $z \in \mathbb{C}^n$ be such that z = f(x). Then $z = \lim f_k(x)$. Since $f_k(x)$ is contained in $\mathcal{D}_k = F(\mathbb{U} \times \{t_k\})$, we have that $f_k(x) = F(x_k, t_k)$ with $x_k \in \mathbb{U}$. By taking a subsequence, we may assume that $x_k \to \overline{x} \in \overline{\mathbb{U}}$. Then

$$z = \lim_{k \to \infty} f_k(x) = \lim_{k \to \infty} F(x_k, t_k) = F(\lim_{k \to \infty} x_k, 0) = F(\bar{x}, 0) \in D_0.$$

Therefore $f(\mathbb{D}) \subset D_0$.

It follows from Assertion 1 that f' does not vanish. Then, we know that the zero set of f' is discrete and closed in \mathbb{D} . Hence, there exists a disc $\Omega \subset \mathbb{D}$ centered at 0 such that $f' \neq 0$ on $\Omega \setminus \{0\}$. Since f is not constant, 0 is an isolated point in $f^{-1}(p)$. Thus, we assume Ω to be small enough such that $\overline{\Omega} \cap f^{-1}(p) = \{0\}$. In particular, $f(\partial \Omega)$ does not pass through p. Assertion 3. There is a disc $\mathcal{D} \subset D_0$ with $p \in \mathcal{D}$ and such that $\mathcal{D} \subset f(\Omega)$.

Proof. Let $x \in \Omega \setminus \{0\}$. Then $f'(x) \neq 0$ and there exists a disc $\Delta \subset \Omega$ with $x \in \Delta$ and such that $f|_{\overline{\Delta}} : \overline{\Delta} \to \mathbb{C}^n$ is injective, hence a homeomorphism onto its image, since $\overline{\Delta}$ is compact. Then $f(\Delta)$ is homeomorphic to a disc and, since $f(\Delta) \subset D_0$, we have that $f(\Delta)$ is open in D_0 . Then f(x) is an interior point of $f(\Omega)$ as a subset of D_0 . It follows that every point $z \in f(\Omega \setminus \{0\})$ is an interior point of $f(\Omega) \subset D_0$. Thus if z is a point in the boundary of $f(\Omega)$, since z is not an interior point, we have that $z \notin f(\partial \Omega \cup \{0\}) = f(\partial \Omega) \cup \{p\}$. Therefore:

$$\partial f(\Omega) \subset f(\partial \Omega) \cup \{p\}.$$

Since $f(\partial\Omega)$ does not pass through p, we may take a disc $\mathcal{D} \subset D_0$ containing p and such that \mathcal{D} is disjoint of $f(\partial\Omega)$. Finally, we claim that $\mathcal{D} \subset f(\Omega)$. Let $z \in \mathcal{D}$ and suppose that $z \notin f(\Omega)$. Since \mathcal{D} contains p, we may take $x \neq 0$, close enough to 0, such that $z' := f(x) \in \mathcal{D}$. We have $z' \neq p$ because $x \neq 0$, hence we may take a path γ in $\mathcal{D} \setminus \{p\}$ connecting z and z'. Since $z \notin f(\Omega)$ and $z' \in f(\Omega)$, there exists $z'' \in \gamma$ such that $z'' \in \partial f(\Omega)$. Then, since $\partial f(\Omega) \subset f(\partial\Omega) \cup \{p\}$, we have $z'' \in f(\partial\Omega) \cup \{p\}$. But this is a contradiction because $z'' \in \gamma$ is contained in $\mathcal{D} \setminus \{p\}$, which is disjoint of $f(\partial\Omega) \cup \{p\}$.

Let $z \in \mathcal{D} \setminus \{p\}$. By Assertion 3, z = f(x) with $x \in \Omega$. Since $z \neq p$ we have $x \neq 0$, hence $f'(x) \neq 0$. Then, from the proof of Assertion 3, there exists a disc $\Delta \subset \Omega$, $x \in \Delta$, such that $f|_{\Delta} : \Delta \to \mathbb{C}^n$ is injective and $f(\Delta)$ is a neighborhood of z in $\mathcal{D} \setminus \{p\}$. Since f is holomorphic it follows that $\mathcal{D} \setminus \{p\}$ is a Riemann surface and the inclusion $\mathcal{D} \setminus \{p\} \to \mathbb{C}^n$ is a holomorphic map. Then, by Lemma 2.4, there is a holomorphic injective map $g : \mathbb{D} \to \mathbb{C}^n$ with $g(\mathbb{D}) = \mathcal{D} \subset D_0$. Since p was arbitrary, it follows that D_0 is a singular disc, which finishes the proof of Lemma 1.1.

References

- W. RUDIN: Real and complex analysis. 3 ed., McGraw-Hill, New York, (1987)
- [2] MICHAEL E. TAYLOR: Partial differential equations I. Applied Math. Sciences, 115, Springer-Verlag, New York, (1996).
- [3] J. DIEUDONNÉ: Foundations of modern analysis. Volume 1, Academic Press, New York (1960).
- [4] BERS: Riemann Surfaces. New York University, (1957).
- [5] CH. POMERENKE: Boundary Behaviour of conformal maps. Springer-Verlag, New York, (1992).
- [6] RUDY ROSAS: On the topological invariance of the algebraic multiplicity of a holomorphic vector field. Preprint IMPA (tese de doutorado).

Resumen

Este artículo es una pequeña observación sobre la analiticidad de un límite de conjuntos analíticos, en un caso muy particular: cuando los conjuntos son discos complejos.

Palabras Clave: Conjuntos analíticos, límites de conjuntos, discos complejos.

Rudy Rosas Sección Matemática Departamento de Ciencias, Pontificia Universidad Católica del Perú rudy.rosas@pucp.edu.pe