(α,β) -SG-COMPACIDAD Y (α,β) -SG-CONEXIDAD EN ESPACIOS TOPOLÓGICOS

 $egin{array}{ll} Jos\'e \ Sanabria^1 & Ennis \ Rosas^1 \ & Carlos \ Carpintero^1 \end{array}$

Resumen

En este artículo usamos la definición de los conjuntos (α, β) -sg-abiertos para definir la (α, β) -sg-compacidad y la (α, β) -sg-conexidad de un espacio topológico (X, τ) sobre el cual se tienen operadores α, β asociados a τ . Se estudian y se caracterizan los espacios (α, β) -sg-compactos y los espacios (α, β) -sg-conexos además buscamos condiciones bajo el cual se preserva la imágen de espacios (α, β) -sg-compactos y (α, β) -sg-conexos mediante funciones.

Palabras Clave: (α, β) -sg-abierto, (α, β) -sg-compacto, (α, β) -sg-conexo.

1. Departamento de Matemáticas, Universidad de Oriente, Venezuela.

1. Introducción

En [7] y [2] se introducen, respectivamente, en el contexto de un espacio topológico (X,τ) las nociones de conjuntos semi-abiertos y semi-cerrados. Usando tales conjuntos y de manera natural en [9] se definen y estudian nuevos axiomas de separación, denominados axiomas de semi separación. En [4] se presentan nociones tales como la de operador asociado a una topología τ sobre un conjunto X, conjunto α -semiabierto, las cuales se generalizan en [13], en donde se definen los conjuntos (α, β) -semi-abiertos y (α, β) -semi-cerrados, así como también se estudian nuevos axiomas de separación denominados axiomas de (α,β) semi separación. En este trabajo empleamos la noción de conjunto (α, β) semi-cerrado para obtener una noción mucho más amplia de conjuntos cerrados generalizados, en términos de dos operadores α, β , además introducimos y estudiamos la noción de conjunto (α, β) -sg-compacto y espacio (α, β) -sg-conexo analizando su relación con ciertas clases de funciones conocidas como funciones $((\alpha, \beta), (\sigma, \theta))$ -sg- irresolutas, las cuales permiten caracterizar estos espacios; además se puede notar que esta definición generaliza los espacios estudiados en [3].

2. Preliminares

En esta sección estudiaremos cierta terminología y algunos resultados básicos, los cuales se emplearán a lo largo de todo este trabajo.

Definición 2.1. Sea (X, τ) un espacio topológico y $\alpha,\beta:P(X) \rightarrow P(X)$ operadores asociados a τ . Un subconjunto $A \subseteq X$ se dice (α,β) -semiabierto si para cada $x \in A$, existe un conjunto β -semi-abierto V tal que $x \in V$ y $\alpha(V) \subseteq A$. El complemento de un conjunto (α,β) -semi-abierto es (α,β) -semi-cerrado.

La colección de todos los conjuntos (α,β) -semi-abiertos en X, se denotará por (α,β) -SO (X,τ) y la colección de todos los conjuntos (α,β) -

semi-cerrados en X, por (α,β) -SC (X,τ) . Observe que si β es un operador monótono (i.e. $\beta(U)\subseteq\beta(V)$ siempre que $U\subseteq V$) y $\alpha=id$, entonces la colección (α,β) -SO (X,τ) coincide con la colección de los conjuntos β -semi-abiertos, denotada por β -SO (X,τ) .

En los siguientes lemas se recogen algunas propiedades fundamentales de los conjuntos (α,β) -semi-abiertos (resp. (α,β) -semi-cerrados).

Lema 2.1. Sean (X, τ) un espacio topológico y $\alpha, \beta: P(X) \to P(X)$ operadores asociados a la topología τ sobre X. Si $\{A_i : i \in I\}$ es una colección de conjuntos (α, β) -semi-abiertos, entonces $\bigcup_{i \in I} A_i$ es (α, β) -semi-abierto.

Demostración

Dado $x \in \bigcup_i A_i$, luego $x \in A_j$ para algún $j \in I$. Entonces, existe $V_j \in \beta$ – $SO(X,\tau)$ tal que $x \in V_j$ y $\alpha(V_j) \subseteq A_j \subseteq \bigcup_i A_i$. En consecuencia, dado $x \in \bigcup_i A_i$, existe $V_j \in \beta - SO(X,\tau)$ tal que $\alpha(V_j) \subseteq \bigcup_i A_i$. Concluyendo asi que $\bigcup_i A_i$ es (α,β) -semi-abierto.

Corolario 2.2. Sean (X,τ) un espacio topológico y $\alpha,\beta: P(X) \to P(X)$ operadores asociados a la topología τ sobre X. Si $\{A_i: i \in I\}$ es una colección de conjuntos (α,β) -semi-cerrados, entonces $\bigcap_{i\in I}A_i$ es (α,β) -semi-cerrado

Estas dos proposiciones nos permiten definir de manera natural, la (α,β) -semi-clausura y el (α,β) -seminterior de un subconjunto $A\subseteq X$ denotados por (α,β) -sCl(A) y (α,β) -sInt(A), respectivamente. De esta manera, tenemos

$$(\alpha,\beta)-sCl(A)=\{\bigcap F: A\subset F\ y\ F\ es\ (\alpha,\beta)-semi-cerrado\}$$

$$(\alpha, \beta) - sInt(A) = \{ \bigcup V : V \subset A \ y \ V \ es \ (\alpha, \beta) - semi - abierto \}$$

En un espacio topológico (X,τ) para el el cual se tengan operadores $\alpha,\beta:P(X)\to P(X)$ asociados a la topología de X, se tienen las siguientes

propiedades de la (α,β) -semi-clausura y el (α,β) -semi-interior de un subconjunto $A\subseteq X$, que engloban las usualmente conocidas como se observa en el siguiente lema.

Lema 2.3. Sean (X, τ) un espacio topológico, A, B subconjuntos de X y $\alpha, \beta: P(X) \rightarrow P(X)$ operadores asociados a la topología τ sobre X. Entonces:

- (a) $(\alpha, \beta) sInt(A) \subseteq (\alpha, \beta) sInt(B)$ si $A \subseteq B$;
- (b) $(\alpha, \beta) sCl(A) \subseteq (\alpha, \beta) sCl(B)$ si $A \subseteq B$;
- (c) A es (α, β) semi-abierto \Leftrightarrow $A = (\alpha, \beta)$ sInt(A);
- (d) B es (α, β) semi-cerrado \Leftrightarrow $B = (\alpha, \beta)$ sCl(B);
- (e) $x \in (\alpha, \beta) sInt(A)$ si y sólo si existe un subconjunto G $(\alpha, \beta) - semi-abierto tal que$ $x \in G \subseteq A$;
- (f) $x \in (\alpha, \beta) sCl(B)$ si y sólo si para todo subconjunto G $(\alpha, \beta) - abierto tal que \quad x \in G, \quad G \cap B \neq \emptyset;$
- (g) $X \setminus ((\alpha, \beta) sCl(A)) = (\alpha, \beta) sInt(X \setminus A)$ y $X \setminus ((\alpha, \beta) - sInt(A)) = (\alpha, \beta) - sCl(X \setminus A).$

Definición 2.2. Sea (X, τ) un espacio topológico y α, β dos operadores asociados a τ . Un subconjunto $A \subseteq X$ se dice (α, β) -sg-cerrado si (α, β) -s $Cl(A) \subseteq U$ para todo $U \in (\alpha, \beta)$ -SO (X, τ) tal que $A \subseteq U$. El complemento de un conjunto (α, β) -sg-cerrado es un conjunto (α, β) -sg-abierto.

Observe que si en la definición anterior tomamos $\alpha=\beta=i_d$, obtenemos la noción de conjunto cerrado generalizado (=g-cerrado) dada en [8] por Levine. Mientras que al tomar $\alpha=i_d$ y $\beta=Cl_X$, el operador clausura, obtenemos la definición de conjunto semi cerrado generalizado dada en [1]. También podemos notar que si en la definición anterior se cambia α por el operador identidad i_d y el operador β se sustituye por cualquier operador que sea monótono entonces obtenemos los conjuntos α -sg-cerrados descritos en [12]. Fácilmente se puede mostrar que todo conjunto (α,β) -semi-cerrado es un conjunto (α,β) -sg-cerrado.

Proposición 2.1. Todo (α, β) -semi-abierto es (α, β) -sg-abierto.

Demostración

Sea $A \subseteq X$ un conjunto (α,β) -semi-abierto, entonces $X \setminus A$ es un conjunto (α,β) -semi-cerrado. Puesto que todo conjunto (α,β) -semi-cerrado es un conjunto (α,β) -sg-cerrado, tenemos que $X \setminus A$ es un conjunto (α,β) -sg-cerrado y en consecuencia A es un conjunto (α,β) -sg-abierto.

El siguiente ejemplo muestra que el recíproco de la proposición anterior no es cierto.

Ejemplo 2.1. Sea $X = \{a, b, c\}, \ \tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\}\}$. Definamos los operadores:

$$\alpha(A) = Cl(A)$$

$$\beta(A) = \begin{cases} Cl(A) &, si \ b \in A \\ A &, si \ b \notin A \end{cases}$$

Entonces, tenemos que:

$$\beta - SO(X, \tau) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}\},\$$
$$(\alpha, \beta) - SO(X, \tau) = \{\emptyset, X, \{b\}, \{a, c\}\}\$$

Mientras que la colección de los conjuntos (α, β) -sg-abiertos es

$$\{\emptyset, X, \{b, c\}, \{a, c\}, \{a, b\}, \{c\}, \{b\}\}.$$

Observe que el conjunto unitario $\{c\}$ es (α, β) -sg-abierto y no es (α, β) -semi-abierto.

El siguiente teorema nos dice que en los espacios (α, β) -semi- T_1 (véase [13]) los conjuntos (α, β) -semi-abiertos coinciden.

Teorema 2.4. Sea (X, τ) un espacio (α, β) -semi- T_1 y A un subconjunto de X. Entonces A es (α, β) -semi-abierto si y sólo si A es un conjunto (α, β) -sg-abierto.

Demostración

(Suficiencia) Ver Proposición 3.1.

(Necesidad) Supongamos que A no es un conjunto (α,β) -semi-abierto. Entonces $X \backslash A$ no es (α,β) -semi-cerrado y así existe un punto x en $(\alpha,\beta)-sCl(X\backslash A)\backslash (X\backslash A)$. Luego $X\backslash A\subset X\backslash \{x\}$. Como (X,τ) es un espacio (α,β) -semi- T_1 , $\{x\}$ es un conjunto (α,β) -semi-cerrado y por lo tanto $X\backslash \{x\}$ es (α,β) -semi-abierto. Pero la $(\alpha,\beta)-sCl(X\backslash A)$ no está contenida en $X\backslash \{x\}$ porque $\{x\}\in (\alpha,\beta)-sCl(X\backslash A)$. En consecuencia, $X\backslash A$ no es (α,β) -seg-cerrado y por lo tanto A no es (α,β) -seg-abierto. Luego todo conjunto (α,β) -seg-abierto es (α,β) -semi-abierto. \square

3. Espacios (α, β) -sg-compactos

En esta sección emplearemos la noción de conjuntos (α, β) -sgabiertos, para obtener nuevas formas de compacidad como la que describimos a continuación.

Definición 3.1. Sea (X, τ) un espacio topológico y α, β operadores asociados a τ . Un subconjunto $B \subseteq X$ se dice (α, β) -sg-compacto en X si, para toda colección $\{A_{\lambda} : \lambda \in \nabla\}$ de subconjuntos (α, β) -sg-abiertos de X tal que $B \subset \bigcup \{A_{\lambda} : \lambda \in \nabla\}$ existe un subconjunto finito ∇_o de ∇ tal que $B \subset \bigcup \{A_{\lambda} : \lambda \in \nabla_o\}$.

Un espacio X se dice (α, β) -sg-compacto si X es (α, β) -sg-compacto en el sentido de la Definición 3.1.

Observe que si tomamos $\alpha = i_d$ y $\beta = Cl_X$, la definición anterior es justamente la definición de espacio sg-compacto introducida independientemente por Caldas [3] y por Devi, Balanchandran y Maki [5].

Teorema 3.1. Sea (X, τ) un espacio topológico $y \alpha, \beta:P(X) \longrightarrow P(X)$ operadores asociados a una topología τ sobre X. Si X (α, β) -sg-compacto, entonces todo subconjunto (α, β) -sg-cerrado de X es (α, β) -sg-compacto en X.

Demostración

Sea A un subconjunto (α, β) -sg-cerrado de X. Entonces $X \setminus A$ es (α, β) -sg-abierto. Sea $\mathcal{U} = \{U_{\lambda} : \lambda \in \nabla\}$ un cubrimiento de A por conjuntos (α, β) -sg-abiertos en X. Entonces $\mathcal{U}' = \mathcal{U} \bigcup (X \setminus A)$ es un cubrimiento de X por conjuntos (α, β) -sg-abiertos. Es decir, $X = (\bigcup \{U_{\lambda} : \lambda \in \nabla\}) \bigcup (X \setminus A)$. Como X es (α, β) -sg-compacto entonces \mathcal{U}' tiene un subcubrimiento finito de X, digamos $X = (\bigcup_{i=1}^k U_{\lambda_i}) \bigcup (X \setminus A)$, $U_{\lambda_i} \in \mathcal{U}$. Pero A y $(X \setminus A)$ son disjuntos; por lo tanto $A \subset \bigcup_{i=1}^k U_{\lambda_i}$, $U_{\lambda_i} \in \mathcal{U}$. Asi, A es (α, β) -sg-compacto en X.

Seguidamente introduciremos ciertas clases de funciones que tienen importantes conexiónes con la noción de (α, β) -sg-compacidad descrita anteriormente.

De aquí en adelante, denotaremos por (X, τ, α, β) como un espacio dotado de dos operadores α, β asociados a la topología τ .

Definición 3.2. Sean (X, τ, α, β) , $(Y, \psi, \sigma, \theta)$ dos espacios con operadores asociados.

- 1. Una función $f:(X,\tau)\to (Y,\psi)$ se dice $((\alpha,\beta),(\sigma,\theta))$ -sg-irresoluta si $f^{-1}(V)$ es (α,β) -sg-cerrado en (X,τ) para cada subconjunto V (σ,θ) -sg-cerrado en (Y,ψ) .
- 2. Una función $f:(X,\tau)\to (Y,\psi)$ se dice $((\alpha,\beta),(\sigma,\theta))$ -pre-sg-continua si $f^{-1}(V)$ es (α,β) -sg-cerrado en (X,τ) para cada subconjunto V (σ,θ) -semi-cerrado en (Y,ψ) .

Observe que si en la definición anterior $\alpha = \sigma = i_d$ y $\beta = \theta = Cl$ entonces, obtenemos las definiciones de función sg-irresoluta y función pre-sg-continua [3] y [6].

Teorema 3.2. Sean (X, τ, α, β) , $(Y, \psi, \sigma, \theta)$ dos espacios con operadores asociados. Una función $f:X \to Y$ es $((\alpha, \beta), (\sigma, \theta))$ -sg-irresoluta si y sólo si, para cada (σ, θ) -sg-abierto A de Y, $f^{-1}(A)$ es (α, β) -sg-abierto en X.

Teorema 3.3. Sean (X, τ, α, β) , $(Y, \psi, \sigma, \theta)$ dos espacios con operadores asociados. Una función $f: X \to Y$ es $((\alpha, \beta), (\sigma, \theta))$ -pre-sg-continua si y sólo si, para cada (σ, θ) -semi-abierto A de Y, $f^{-1}(A)$ es (α, β) -sg-abierto en X.

Teorema 3.4. Sean (X, τ, α, β) , $(Y, \psi, \sigma, \theta)$ dos espacios con operadores asociados. Si $f: X \to Y$ una función $((\alpha, \beta), (id, id))$ -pre-sg-continua, sobreyectiva $y \ X$ es un espacio (α, β) -sg-compacto, entonces Y es compacto.

Demostración

Sea $f: X \to Y$ $((\alpha, \beta), (id, id))$ -pre-sg-continua sobreyectiva. Sea X (α, β) -sg-compacto. Sea $\{G_{\lambda} : \lambda \in \nabla\}$ un cubrimiento abierto de Y. Entonces $\{f^{-1}(G_{\lambda}) : \lambda \in \nabla\}$ es un cubrimiento (α, β) -sg-abierto de X, puesto que X es (α, β) -sg-compacto, existe un subcubrimiento finito, digamos $\{f^{-1}(G_1), \ldots, f^{-1}(G_n)\}$. Como f es sobreyectiva entonces $\{G_1, \ldots, G_n\}$ es un cubrimiento de Y, por lo tanto Y es compacto.

Teorema 3.5. Sea $f: X \to Y$ una función $((\alpha, \beta), (\sigma, \theta))$ -sg-irresoluta y B un subconjunto de X que es (α, β) -sg-compacto en X, entonces f(B) es (σ, θ) -sg-compacto en Y.

Demostración

Sea $\{G_{\lambda}: \lambda \in \nabla\}$ cualquier colección de subconjuntos (α,β) -sg-abiertos en Y tal que $f(B) \subset \bigcup \{G_{\lambda}: \lambda \in \nabla\}$. Entonces, $B \subset \{f^{-1}(G_{\lambda}): \lambda \in \nabla\}$. Luego, existe un subconjunto finito ∇_0 de ∇ tal que $B \subset \{f^{-1}(G_{\lambda}): \lambda \in \nabla_0\}$. Por lo tanto, $f(B) \subset f(\bigcup \{f^{-1}(G_{\lambda}): \lambda \in \nabla\}) \Rightarrow f(B) \subset \bigcup \{G_{\lambda}: \lambda \in \nabla_0\}$. Así f(B) es (σ,θ) -sg-compacto en Y.

4. Espacios (α, β) -sg-conexos

En esta sección se extiende la noción de conexidad de un espacio, en el caso que se tengan operadores α , β asociados a la topología τ sobre X, y encontramos que esta noción generalizada tiene un comportamiento análogo a la noción clásica con respecto a las funciones descritas en la Definición 3.2.

Definición 4.1. Un espacio topológico X se dice que es (α, β) -semiconexo si X no puede ser escrito como una unión disjunta de dos conjuntos (α, β) -semi-abiertos no vacíos.

Definición 4.2. Un espacio topológico X se dice que es (α, β) -sg-conexo si X no puede ser escrito como una unión disjunta de dos conjuntos (α, β) -sg-abiertos no vacíos.

Observe que todo espacio (α, β) -semiconexo es un espacio (α, β) -semiconexo.

Teorema 4.1. Sean (X, τ) , (Y, ψ) dos espacios topológicos y α y β operadores asociados a τ . Entonces las siguientes proposiciones son equivalentes.

- (i) X es (α, β) -sg-conexo.
- (ii) $X \ y \ \emptyset$ son los únicos subconjuntos de X que son, a la vez, (α, β) sg-abiertos $y \ (\alpha, \beta)$ -sg-cerrados.
- (iii) Cada función $((\alpha, \beta), (id, id))$ -pre-sg-continua de X en un espacio discreto Y con al menos dos puntos es una función constante.

Demostración

 $(i)\Rightarrow (ii)$ Sea U un subconjunto (α,β) -sg-abierto y (α,β) -sg-cerrado. Entonces $(X\backslash U)$ es (α,β) -sg-abierto y (α,β) -sg-cerrado. Luego, $X=U\bigcup (X\backslash U)$. Es decir X es la unión de dos conjuntos disjuntos (α,β) -sg-abiertos y como X es (α,β) -sg-conexo uno de estos conjuntos tiene

que ser vacío. Así $U = \emptyset$ ó U = X.

- $(ii)\Rightarrow (i)$ Supongamos que X no es (α,β) -sg-conexo. Sea $X=U\bigcup V$, donde U y V son subconjuntos no vacíos (α,β) -sg-abiertos disjuntos en X. Entonces $U=X\backslash U$ es (α,β) -sg-abierto y (α,β) -sg-cerrado. Por hipótesis, tenemos que $U=\emptyset$ ó U=X. Por lo tanto, X es (α,β) -sg-conexo.
- $(ii) \Rightarrow (iii)$ Consideremos $f: X \to Y$ una función $((\alpha, \beta), (id, id))$ -presg-continua donde Y es un espacio topológico con la topología discreta y contiene al menos dos puntos. Entonces X puede ser cubierto por una colección de conjuntos (α, β) -sg-abiertos y (α, β) -sg-cerrados de la forma $\{f^{-1}(y): y \in Y\}$, de esto, concluimos que existe un $y_0 \in Y$ tal que $f^{-1}(y_0) = X$ y así demostramos que f es una función constante.
- $(iii) \Rightarrow (ii)$ Sea W un subconjunto de X que es (α, β) -sg-abierto y (α, β) -sg-cerrado. Supongamos que $W \neq \emptyset$ y sea $f: X \to Y$ una función $((\alpha, \beta), (id, id))$ -pre-sg-continua definida por $f(W) = \{y_1\}$ y $f(X \setminus W) = \{y_2\}$ para $y_1 \neq y_2, y_1, y_2 \in Y$. Puesto que f es una función constante, tenemos que X = W.

Teorema 4.2. Sea (X, τ, α, β) y $(Y\psi, \sigma, \theta)$ espacios topológicos con operadores asociados y $f: X \to Y$ una función $((\alpha, \beta), (\sigma, \theta))$ -pre-sg-continua, sobreyectiva y X es un espacio (α, β) -sg-conexo, entonces Y es (σ, θ) -semiconexo.

Demostración

Supongamos que Y no es (σ, θ) -semiconexo. Sea $Y = A \cup B$ donde A y B son conjuntos (σ, θ) -semi-abiertos no vacíos disjuntos en Y. Sea f una función sobreyectiva $((\alpha, \beta), (\sigma, \theta))$ -pre-sg-continua, entonces $X = f^{-1}(A) \cup f^{-1}(B)$, donde $f^{-1}(A)$ y $f^{-1}(B)$ son conjuntos no vacíos disjuntos (α, β) -sg-abiertos en X. Esto contradice el hecho de que X es (α, β) -sg-conexo. Por lo tanto, Y es (σ, θ) -semiconexo. \square

Corolario 4.3. Sea (X, τ) y $(Y\psi)$ espacios topológicos, α , β operadores asociados a τ y $f: X \to Y$ una función $((\alpha, \beta), (id, id))$ -pre-sg-continua, sobreyectiva y X es un espacio (α, β) -sg-conexo, entonces Y es conexo.

Teorema 4.4. Sea (X, τ, α, β) y $(Y\psi, \sigma, \theta)$ espacios topológicos con operadores asociados y $f: X \to Y$ una función $((\alpha, \beta), (\sigma, \theta))$ -sg-irresoluta, sobreyectiva y X es un espacio (α, β) -sg-conexo, entonces Y es (σ, θ) -sg-conexo.

Demostración

Supongamos que Y no es (σ, θ) -sg-conexo. Sea $Y = A \cup B$ donde A y B son conjuntos (σ, θ) -sg-abiertos no vacíos disjuntos en Y. Sea f una función sobreyectiva $((\alpha, \beta), (\sigma, \theta))$ -sg-irresoluta, entonces $X = f^{-1}(A) \cup f^{-1}(B)$, donde $f^{-1}(A)$ y $f^{-1}(B)$ son conjuntos no vacíos disjuntos (α, β) -sg-abiertos en X. Esto contradice el hecho que X es (α, β) -sg-conexo. Por lo tanto, Y es (σ, θ) -sg-conexo.

Referencias

- [1] P. Bhattacharya and B.K. Lahiri, Semigeneralized closed sets in topology. Indian J. Math., 29(3)(1987), 375-382.
- [2] N. Biswas, On characterizations of semicontinuos functions. Atti. Accad. Naz. Lincei. Rend. CL. Sci. Fis. Mat. Natur. (8) 48 (1970), 399-402.
- [3] M. Caldas, Semi-generalized continuous maps in topological spaces. Portug. Math.,52(4)(1995), 399-407.
- [4] C. Carpintero, E. Rosas y J. Vielma, Operadores asociados a una topología Γ sobre un conjunto X y nociones conexas. Divulgaciones matemáticas Vol 6, N^0 2 (1998), 139-148.
- [5] R. Devi, K.Balandean and H. Maki, Semi-generalized homeomorphisms and generalized semi-homeomorphisms in topological spaces. Indian J. Pure Appl. Math., 26(3)(1995), 271-284.

- [6] J. Dontchev and M. Ganster, More on sg-compact spaces. Portug. Math., 55(4)(1998), 457-464.
- [7] N. LEVINE: Semiopen sets and semicontinuity in topological spaces. Amer. Math. Monthly Vol. 70 (1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology. Rend. Circ. Mat. Palermo Vol.19 (2) (1970), 89-96.
- [9] S. N. Maheshwari and R. Prasad, Some new separations axioms. Ann. Soc. Sci. Bruxelles, Ser. I., 89(1975), 395-402.
- [10] G.B. Navagali, Semi generalized separation axioms in topology. Preprint (2001).
- [11] E. Rosas, J. Vielma, C. Carpintero, α -semi connected and locally α -semi connected properties topological spaces. Scientiae Mathematicae Japonicae Online, Vol 6, (2002). 465-472.
- [12] Rosas Ennis, Carpintero Carlos y Vielma Jorge, Espacios α -sg- T_i , para i=0,1,2,3. Divulgaciones matemáticas Vol. 11, No. 2 (2003). 137-147.
- [13] E. Rosas, C. Carpintero y J. Sanabria, (α, β) -semi open sets and some new Generalized Separation Axioms, Scientiae Mathematicae Japonicae Vol. 62, No. 2 (2005).
- [14] E. Rosas, C. Carpintero y M. Salas, Espacios (α, β) -sg- T_i para i = 0, 1, 2, 3, 4. SABER, Vol. 17, N^0 1 (2005).

Abstract

In this paper we used the definition of (α, β) -sg-open sets in order to define the (α, β) -sg-compact sets and (α, β) -sg-connected sets in a topological space (X, τ) . Also we study some properties of the (α, β) -sg-compact spaces and the (α, β) -sg-connected spaces. Also we looking for conditions under what the image of (α, β) -sg-compact sets and (α, β) -sg-connected sets are preserved under functions.

Key words: (α, β) -sg-open, (α, β) -sg-compact, (α, β) -sg-connected

José Sanabria Departamento de Matemáticas Universidad de Oriente, Venezuela jsanabri@sucre.udo.edu.ve

Ennis Rosas
Departamento de Matemáticas
Universidad de Oriente, Venezuela
erosas@sucre.udo.edu.ve

Carlos Carpintero
Departamento de Matemáticas
Universidad de Oriente, Venezuela
ccarpi@sucre.udo.edu.ve

AMS 2000 Mathematics Subject Classification. 54A05, 54A10, 54D10. Research Partially Supported by Consejo de Investigación UDO