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Abstract

In this paper, we show that a pointwise A-symmetric
A-1sotonic A-closure function is uniquely determined by the
pairs of sets it separates. We then show that when the
A-closure function of the domain is A-isotonic and the
A-closure function of the codomain is A-isotonic and
pointwise-\-symmetric, functions which separate only those
pairs of sets which are already separated are \-continuous.
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1 Introduction

Throughout the paper (X, 7) (or simply X) will always denote a
topological space. For a subset A of X, the closure, interior and comple-
ment of 4 in X are denoted by CI(A), Int(A) and X\ A, respectively. By
AO(X,7) and AC(X, ) we denote the collection of all A-open sets and
the collection of all A-closed sets of (X, 7), respectively. Let B be a subset
of a space (X, 7). Bisa A-set [2] if B= B" where: BA = {U | U > B,
U e 1}. Asubset A of a topological space (X, 7) is called A-closed [1] if
A = BNC, where B is a A-set and C is a closed set. A is A-open if X\ A
is A-closed. The intersection of all A-closed sets containing A is called
the A-preclosure of A and is denoted by Cl)(A).

Definition 1. (1) A generalized M-closure space is a pair (X, Cl))
consisting of a set X and a A-closure function Cly, a function
from the power set of X to itself.

(2) The A-closure of a subset A of X, denoted Cly, is the image of A
under Cl.

(3) The A-exterior of A is Exty(A) = X\CI\(4), and the A-Interior
of A is Inty(A) = X\CUl\(X\A4).

(4) We say that A is A-closed if A = CI\(A), A is A-open if A =
Inty(A) and N is a A-neighborhood of z if z € Inty(N).

Definition 2. We say that a A-closure function Cly, defined on X is:

(1) X-grounded if C1\(0) = 0.

(2) X-isotonic if Clx(A) C Cl\(B) whenever A C B.

(8) A-enlarging if A C CIx(A) for each subset A of X.

(4) A-idempotent if Cly(A) = Cly(CIx(A)) for each subset A of X.

(5) A-sub-linear if CIx(AU B) C Clx(A)UCIN(B) for oll A,B C X.
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Definition 3. (1) Subsets A and B of X are said to be A-closure-
separated in a generalized A-closure space (X, Cly) (or simply, Cly-
separated) if ANCIN(B) = 0 and Clx(A)N B = 0, or equivalently,
if AC Ext)\(B) and B C Exty(A).

(2) A-Exterior points are said to be A-closure-separated in a gener-
alized A-closure space (X,Cly) if for each A C X and for each
x € Exty(A), {z} and A are Cly-separated.

Theorem 1.1. Let (X, Cly) be a generalized A-closure space in which A-
Exterior points are Cly-separated and let S be the pairs of Cly-separated
sets in X. Then, for each subset A of X, the A-closure of A is Cl5(A) =

{re X : {{z},A} ¢ S}.

Proof. In any generalized A-closure space Cly(A4)) C {z € X :
{{z}, A} ¢ S}. Really suppose that y ¢ {x € X : {{z}, A} ¢ S}, that
is, {{y}, A} € S. Then {y} NCIL(A) =0, and so y ¢ Ci,(4).

Suppose now that y ¢ Clx(A). By hypothesis, {{y}, A} € S, and hence,
y¢{ze X:{{z},A} ¢ S}

2 Some Fundamental Properties

Definition 4. A A-closure function Cly defined on a set X is said to
be pointwise A\-symmetric when, for ol x,y € X, if x € Cly({y}), then
yeE Cl)\({l‘})

A generalized A-closure space (X, Cly) is said to be \-Rg when, for
all z,y € X, if © is in each A-neighborhood of y, then y is in each
A-neighborhood of x.

Corollary 2.1. Let (X,Cly) a generalized A-closure space in which A-
Exterior points are Cly -separated. Then Cly is pointwise \-symmetric
and (X, Cly) is A-Rg.
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Proof. Suppose that A-Exterior points are Cly-separated in (X, Cly).
If x € Clx({y}), then {z} and {y} are not Cly-separated and hence,
y € Clx({z}). Hence, Cl, is pointwise A-symmetric.
Suppose that = belongs to every A-neighborhood of y, that is, x € M
whenever y € Inty(M). Letting A = X\M and rewriting contraposi-
tively, y € Clx(A) whenever z € A.
Suppose x € Inty(N). z ¢ Cl (X \N), so x is Cly-separated from X\N.
Hence Cly({z}) C N. z € {z}, so y € Clx({z}) C N. Hence (X, Cl,) is
A-Rg.

While these three axioms are not equivalent in general, they are
equivalent when the A-closure function is A-isotonic:

Theorem 2.2. Let (X,Cly) be a generalized A-closure space with Cly
A-isotonic. Then the following are equivalent:

(1) X Exterior points are Cly-separated.
(2) Cly is pointwise A-symmetric.
(8) (X,Cl,) is A-Ry.

Proof. Suppose that (2) is true. Let A C X, and suppose z €
Eaxty(A). Then, as Cl, is M-isotonic, for each y € A4, = ¢ Cl\({y}), and
hence, y ¢ Clx({z}). Hence AN Clx({z}) = 0. Hence (2) implies (1),
and by the previous corollary, (1) implies (2).

Suppose now that (2) is true and let z,y € X such that z is in every
A-neighborhood of y, that is, x € N whenever y € Inty(N). Then y €
Cl)\(A) whenever z € A, and in particular, since z € {z}, y € Cl,({z}).
Hence z € Ciy({y}). Thus if y € B, then z € Cly({y}) C CI\(B), as
Cly is A-isotonic. Hence, if x € Inty(C), then y € C, that is, y is in
every A-neighborhood of z. Hence, (2) implies (3).

Finally, suppose that (X, Cly) is A-Ro and suppose that z € Cl\({y}).
Since Cl is A-isotonic, z € Cly(B) whenever y € B, or, equivalently, y is
in every A-neighborhood of x. Since (X, Cly) is A-Ro, * € N whenever

122 Pro Mathematica, 20, 89-40, (2006), 119-183, ISSN 1012-3938



On A-Closure Spaces

y € Int\(N). Hence, y € Cl\(A) whenever z € A, and in particular,
since z € {z}, y € Cl\({z}). Hence (3) implies (2).

Theorem 2.3. Let S be a set of unordered pairs of subsets of a set X
such that, for all A,B,C C X,

(1) if AC B and {B,C} € S, then {A,C} € S and

(2) if {{z},B} € 8 for each z € A and {{y}, A} € S for each y € B,
then {A,B} € S.

Then there exists a unique pointwise A-symmetric A-isotonic A-closure
function Cl, on X which A-closure-separates the elements of S.

Proof. Define Cly by Cly\(A) = {z € X : {{z}, A} ¢ S} for every
ACX. If AC B C X and z € CI\(A4), then {{z}, A} ¢ S. Hence,
{{z},B} ¢ S, that is, x € CIlx\(B). Hence CI, is Aisotonic. Also,
z € Clz({y}) if and only if {{z},{y}} ¢ S if and only if y € Cl\({z}),
and thus Cl, is pointwise A-symmetric.

Suppose that {4,B} € S. Then ANCl\(B)=An{ze X : {{z},B} ¢
S} ={z e A: {{z}, A} ¢ S} = 0. Similarly, Cl»(A) N B = . Hence, if
{A,B} € S, then A and B are Cly-separated.

Now suppose that A and B are Cly-separated. Then {z € A : {{z}, B} ¢
S} =ANCIL(B) =0 and {z € B: {{z},A} ¢ S} =Cl,(A)n B = 0.
Hence, {{z}, B} € S for each z € A and {{y}, A} € S for each y € B,
and thus, {4,B} € S.

Furthermore, many properties of A-closure functions can be ex-
pressed in terms of the sets they separate:

Theorem 2.4. Let S be the pairs of Cly-separated sets of a gene-
ralized A-closure space (X, Cly) in which AExzterior points are A-closure-
separates. Then Cly is

(1) A-grounded if and only if for all z € X {{z},0} € S.
(2) A-enlarging if and only if for all {A,B} € S, A and B are disjoint.
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(8) A-sub-linear if and only if {A,BUC} € S whenever {A,B} € S
and {A,C} e S.

Moreover, if Cl) is A-enlarging and for all A,B C X, {{z},A} ¢ S
whenever {{z},B} ¢ S and {{y}, A} ¢ S for each y € B, then Cl,
is A-idempotent. Also, if Cly is A-isotonic and A-idempotent, then
{{z}, A} ¢ S whenever {{z}, B} ¢ S and {{y}, A} ¢ S for each y € B.

Proof. Recall that by Theorem 1.1, Cl(A) = {z € X : {{z}, A} ¢
S} for every A C X. Suppose that for all z € X, {{z},0} € S. Then
CL@) = {z € X : {{z},0} ¢ S} = 0. Hence Cly is A-grounded.
Conversely, if § = Cl,(0) = {z € X : {{z},0} ¢ S}, then {{z},0} € S,
for all x € X.

Suppose that for all {A,B} € S, A and B are disjoint. Since
{{a},A} ¢ Sifaec A, A C Cly(A) for each A C X. Hence, Cl, is A-
enlarging. Conversely, suppose that Cly is A-enlarging and {A, B} € S.
Then AN B C Cly(A)N B = {. Suppose that {4,BU C} € S when-
ever {A,B} € S and {A,C} € S. Let z € X and B,C C X such
that {{z},BUC} ¢ S. Then {{z},B} ¢ S or {{z},C} ¢ S. Hence
Cl(BUC) C ClA{(B)UCI,(C), and therefore, Cl, is A-sub-linear. Con-
versely, suppose that Cly is A-sub-linear and let {4, B},{4,C} € S.
Then Cly (BUC)NA C (Cly(B)UCI (C))NA = (CIx(B)NA)U(CLA(C))N
A) =0 and (BUC)NCI\(A) = (BNCL(A)U(CNCILA)) = . Sup-
pose that Cl) is A-enlarging and suppose that {{z}, A} ¢ S whenever
{{z},B} ¢ S and {{y}, A} ¢ S for each y € B. Then CI)(CI\(A)) C
Cix(A4) : If z € CI\(CIlr(A)), then {{z},Clx(A)} ¢ S. {{y}, A} ¢ S,
for each y € Cl5(A); hence {{z}, A} ¢ S. And since CI, is A-enlarging,
Cly(A) C CIA(Clr(A)). Thus Clx(CIx(A)) = CIy(A), for each A C X.
Finally, suppose that Cly is A-isotonic and A-idempotent. Let z € X and
A,B C X such that {{z}, B} ¢ S and, for each y € B, {{y}, A} ¢ S.
Then z € Cl)(B) and for each y € B, y € Cl5(A), that is, B C Cl,(A).
Hence, z € Cl\(B) C Cly{CI\(A)) = CIx(A).
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Definition 5. If (X, (Cly)x) and (Y, (Cly\)y) are generalized A-closure
spaces, then a function f: X — Y is said to be

(1) A-closure-preserving if f((Cly)x(A)) C (Cl\)y(f(A)) for each A C
X.

(2) A-continuous if (Cl\)x(f~Y(B)) C f~1((Cl\)y(B)) for each B C
Y.

In general, neither condition implies the other. However, we easily
obtain the following result:

Theorem 2.5. Let (X, (Cly)x) and (Y, (Cly)y) be generalized A-closure
spaces and let f : X — Y.

(1) If f is A-closure-preserving and (Cly)y is A-isotonic, then f is
A-continuous.

(2) If f is A-continuous and (Cl))x is A-isotonic, then f is A-closure-
preserving.

Proof. Suppose that f is A-closure-preserving and (Cly)y is A-
isotonic. Let B C Y. f(CL)x(f~H(B))) C (CL)y(f(f~'(B))) <
(Cly)y(B) and hence,

(CL)x(fH(B)) S fFHUCLh)x(f7H(B)))) € FH(CL)y(B)).
Suppose that f is A-continuous and (Cl,\) x 1s /\ isotonic. Let A C

X. (Clh)x(4) € (Clx) (f7Hf(4))) € F71((Cl)y(f(A))) and hence
F(CL)x(A) C F(FH(CL)y (F(A)))) € (Cla)y (F(A)).

Definition 6. Let (X, (Cly)x) and (Y, (Cly)y) be genemh’zed}\ closure
spaces and let f < X — Y be a function. If for all A,B C X, f(A)
and f(B) are not (Cly)y -separated whenever A and B are not (Cl,\)X—
separated, then we say that f is non-A-separating.

Note that f is non-A-separating if and only if A and B are (Cl))x-
separated whenever f(A) and f(B) are (Cly)y-separated.
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Theorem 2.6. Let (X, (Cly)x) and (Y, (Cly)y) be generalized A-closure
spaces and let f: X - Y.

(1) If (Cl))y is A-isotonic and f is mon-A-separating, then f~1(C)
and f~Y(D) are (Cl))x-separated whenever C and D are (Cly)y-
separated.

(2) If (Cl\)x is A-isotonic and f~1(C) and f~1(D) are (Cly)x -separated
whenever C and D are (Cl))y -separated, then f is non-A-separating.

Proof. Let C and D be (Cl))y-separated subsets, where (Cly )y is A-

isotonic. Let A = f~1(C) and let B = f~1(D). f(A) C C and f(B) C D
and since (Cly)y is A-isotonic, f(A) and f(B) are also (Cly)y-separated.
Hence, A and B are (Cly) x-separated in X.
Suppose that (Cly)x is A-isotonic and let A, B C X such that C' = f(A)
and D = f(B) are (Cl))x-separated. Then f~!(C) and f~1(D) are
(Cl\)x-separated and since (Cly)x is M-isotonic, A C f~1(f(A)) =
f~YC) and B C f~Y(f(B)) = f~1(D) are (Cly)x-separated as well.

Theorem 2.7. Let (X, (Cly)x) and (Y, (Cly)y) be generalized A-closure
spaces and let f : X — Y be a function. If f is A-closure-preserving,
then f is non-A-separating.

Proof. Suppose that f is A-closure-preserving and A, B C X are
not {Cly)x-separated. Suppose that {Cly)x(A) N B # 0. Then 0 #
f((Cl)x(A) N B) © f((CL)x(A)) N f(B) C (Cl)y(f(A)) N f(B).
Similarly, if AN (Cly)x(B) # 0, then f(A) N (ClL)y (f(B)) # 0. Hence
f(A) and f(B) are not (Cl))y-separated.

Corollary 2.8. Let (X, (Cly)x) and (Y, (Cly)y) be generalized A-closure
spaces with (Cly)x A-isotonic and let f: X - Y. If f is A-continuous,
then f is non-A-separating.

Proof. If f is A-continuous and (Cly)x A-isotonic, then by Theorem
2.5 (2) f is A-closure-preserving. Hence by Theorem 2.7, f is non-A-
separating.
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Theorem 2.9. Let (X, (Cly)x) and (Y, (Cl\)y) be generalized A-closure
spaces which A-Exterior points (Cly)y -separated inY andlet f : X - Y
be a function. Then f is A-closure-preserving if and only if f non-A-
separating.

Proof. By Theorem 2.7, if f is A-closure-preserving, then f is non-

A-separating. Suppose that f is non-A-separating and let A C X. If
(Cla)x =0, then f((Cl\)x(A)) =0 C (Cly)y(f(4)).
Suppose (Cly)x(A) # 0. Let Sy and Sy denote the pairs of (Cly)x-
separated subsets of X and the pairs of (Cl))y-separated subsets of Y,
respectively. Let y € f((Cl\)x(A)) and let z € (Cl\)x(4) N F~1({y}).
Since z € (Cly)x(A4), {{z},A} ¢ Sx and since f non-A-separating,
{{y}, f(A)} ¢ Sy. Since A-Exterior points are (Cly)y-separated, y €
(Cly)y (f(A)). Thus f((Cla\)x(A)) C (Cl))y (f(A)) for each A C X.

Corollary 2.10. Let (X,(Cly)x) and (Y,(Cl))y) be generalized A-
closure spaces with A-isotonic closure functions and with (Cly)y -
pointwise- A-symmetric and let f : X — Y. Then f is A-continuous if
and only if f non-A-separating.

Proof. Since (Cly)y is A-isotonic and pointwise-A-symmetric, A-
Exterior points are A-closure separated in (Y, (Cly)y) (Theorem 2.2 (1)).
Since both A-closure functions are A-isotonic, f is A-closure-preserving
(Theorem 2.5) if and only if f is A-continuous. Hence, we can apply the
Theorem 2.9.

3 A-Connected Generalized A-Closure Spaces

Definition 7. Let (X,Cly) be a generalized A-closure space. X is said
to be A-connected if X is not a union of disjoint nontrivial A-closure-
separated pair of sets.
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Theorem 3.1. Let (X,Cly) be a generalized -closure space with -
grounded A-isotonic A-enlarging Cly. Then, the following are equivalent:

(1) (X,Cly) is A-connected,
(2) X can not be a union of nonempty disjoint A-open sets.

Proof. (1)=>(2): Let X be a union of nonempty disjoint A-open sets
A and B. Then, X = AU B and this implies that B = X\A and A is
a A-open set. Thus, B is A-closed and hence ANCIy(B) = ANB =
. By using similar way, we obtain Cly(A) N B'= @. Hence, A and
B are A-closure-separated and hence X is not A-connected. This is a
contradiction.

(2)=(1): Suppose that X is not A-connected. Then X = AU
B, where A, B are disjoint A-closure-separated sets, i.e AN Cly(B) =
Clx(A)N B = @. We have Cly(B) € X\A C B. Since Cly is A-
enlarging, we obtain Cly(B) = B and hence, B is A-closed. By using
Cl\(A) N B = @ and similar way, it is obvious that A is A-closed. This
is a contradiction.

Definition 8. Let (X,Cly) be a generalized A-closure space with A-
grounded A-isotonic Cly. Then, (X,Cly) is called a Ty-\-grounded A-
isotonic space if Clx({z}) C {z} for allz € X.

Theorem 3.2. Let (X,Cly) be a generalized A-closure space with A-
grounded A-isotonic Cly. Then, the following are equivalent:

(1) (X,Cly) is A-connected,

(2) Any A-continuous function f : X — Y is constant for all Ty-)-
grounded \-isotonic spaces Y = {0,1}.

Proof. (1)=>(2): Let X be A-connected. Suppose that f: X — Y is
A-continuous and it is not constant. Then there exists a set U C X such
that U = f~1({0}) and X\U = f~1({1}). Since f is A-continuous and Y
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is T} -A-grounded \-isotonic space, then we have Cl(U) = Clx(f~1({0}))
c o} c f~1{0}) = U and hence CI(U) N (X\U) = @. By
using similar way we have U N Cl,(X\U) = @. This is a contradiction.
Thus, f is constant.

(2)=>(1): Suppose that X is not A-connected. Then there exist
A-closure-separated sets U and V such that U UV = X. We have
Cly(Uy c U and Cl(V) € V and X\U C V. Since Cl, is A-isotonic
and U and V are A-closure-separated, then Cl)\(X\U) C Cl\(V) C
X\U. If we consider the space (Y,Cl)) by ¥ = {0,1}, Ci\(9) = 2,
Clx({0}) = {0}, Cix({1}) = {1} and Cl,(Y) = Y, then the space
(Y, Cl,) is a Ty-A-grounded M-isotonic space. We define the function
f: X —-Yas f(U)={0}and f(X\U)={1}. Let A Fand ACY.
If A=Y, then f7'(A) = X and hence CI\(X) = ClL\(f1(A)) C
X = fYA) = f~YCI\(4)). If A = {0}, then f~1(A4) = U and hence
ClA(U) = ClA(F1(4)) € U = f~1(4) = F1(CLA(4)). Tf 4 = {1},
then f~1(A) = X\U and hence CI,(X\U) = Clx(f~}(4)) c X\U =
f~Y(A) = f~1(CI\(A)). Hence, f is A-continuous. Since f is not con-
stant, this is a contradiction.

Theorem 3.3. Let f: (X,Cly) — (Y,Cly) and g : (Y,Cly) — (Z,Cl))
be A-continuous functions. Then, gof : X — Z is A-continuous.

Proof. Suppose that f and g are A-continuous. For all A € Z
we have Cla(gof)1(4) = CLA(f~1 (g™ (4))) € = (Clalg~ (4))) C
FU g HCU(A)) = (90f)~H(CIA(A)). Hence, gof : X — Z is A
continuous.

Theorem 3.4. Let (X, Cly) and (Y, Cly) be generalized A-closure spaces
with A-grounded A-isotonic Cly and f : (X,Cly) — (Y,Cly) be a A-
continuous function onto Y. If X is A-connected, then'Y is A-connected.

Proof. Suppose that {0,1} is a generalized A-closure spaces with
A-grounded A-isotonic Cly and g : ¥ — {0,1} is a A-continuous func-
tion. Since f is A-continuous, by Theorem 3.3, gof : X — {0,1} is
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A-continuous. Since X is A-connected, gof is constant and hence g is
constant. By Theorem 3.2, Y is A-connected.

Definition 9. Let (Y,Cly) be a generalized A-closure space with A-
grounded M-isotonic Cly and more than one element. A generalized
A-closure space (X, Cly) with A-grounded A-isotonic Cly is called Y -A-
connected if any A-continuous function f: X — Y is constant.

Theorem 3.5. Let (Y,Cl)) be a generalized A-closure space with A-
grounded A-isotonic A-enlarging Cly and more than one element. Then
every Y -)A-connected  generalized A-closure space with A-grounded -
isotonic 1s A-connected.

Proof. Let (X, Cly) be a Y-A-connected generalized A-closure space
with A-grounded M-isotonic Cl,. Suppose that f : X — {0,1} is a A-
continuous function, where {0,1} is a T1-A-grounded A-isotonic space.
Since Y is a generalized A-closure space with A-grounded M-isotonic
M-enlarging Cl, and more than one element, then there exists a A-
continuous injection g : {0,1} — Y. By Theorem 3.3, gof : X — Y
is A-continuous. Since X is Y-A-connected, then gof is constant. Thus,
f is constant and hence, by Theorem 3.2, X is A-connected.

Theorem 3.6. Let (X, Cl)) and (Y, Cly) be generalized A-closure spaces
with A-grounded A-isotonic Cly and f : (X,Cly) — (Y,Cly) be a A-
continuous function onto Y. If X is Z-A-connected, then Y is Z-A-
connected.

Proof. Suppose that g : Y — Z is a A-continuous function. Then
gof : X — Z is A-continuous. Since X is Z-A-connected, then gof is
constant. This implies that g is constant. Thus, YV is Z-A-connected.

Definition 10. A generalized A-closure space (X,Cly) is strongly A-
connected if there is no countable collection of pairwise A-closure-separated
sets {An} such that X = UA,,.
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Theorem 3.7. Every strongly A-connected generalized A-closure space
with A-grounded A-isotonic Cly is A-connected.

Theorem 3.8. Let (X, Cly) and (Y, Cly) be generalized A-closure spaces
with A-grounded A-isotonic Cly and f : (X,Cly) — (Y,Cly\) be a A-
continuous function onto Y. If X is strongly A-connected, then Y is
strongly A-connected.

Proof. Suppose that Y is not strongly A-connected. Then, there
exists a countable collection of pairwise A-closure-separated sets {An}
such that Y = UA,. Since f~1(A4,) N ClL(f Y (An)) C f1{4,) N
fHCl\(An)) = @ for all n # m, then the collection {f~1(A,)} is pair-
wise A-closure-separated. This is a contradiction. Hence, Y is strongly
A-connected.

Theorem 3.9. Let (X, (Cly)x) and (Y, (Cly)y) are generalized A-closure
spaces. Then the following are equivalent for a function f: X - Y:

(1) f is A-continuous,

(2) f~1Intr(B)) C Intr(f~1(B)) for each BCY.

Theorem 3.10. Let (X,Cl)) be a generalized A-closure space with A-
grounded A-isotonic Cly. Then (X, Cly) is strongly A-connected if and
only if (X,Cly) is Y-A-connected for any countable Ty-A-grounded A-
isotonic space (Y, Cly).

Proof. (=): Let (X, Cly) be strongly A-connected. Suppose that
(X,Cl,) is not Y-A-connected for some countable Tj-A-grounded A-
isotonic space (Y, Cly). There exists a A-continuous function f: X — Y
which is not constant and hence K = f(X) is a countable set with more
than one element. For each y, € K, there exists U,, C X such that
U, = f7'({yn}) and hence Y = UU,,. Since f is A-continuous and Y
is A-grounded, then for each n # m, U, N Clx(Un) = f1{y.}) N
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C(f*{ym}) C F7 {pnh) N FHCU{m})) € fH{wnd) N f7
({ym}) = @. This contradict with the strong A-connectedness of X.
Thus, X is Y-A-connected.

(<): Let X be Y-A-connected for any countable Tj-A-grounded A-
isotonic space (Y,Cly). Suppose that X is not strongly A-connected.
There exists a countable collection of pairwise A-closure-separated sets
{U,} such that X = UU,,. We take the space (Z, Cl), where Z is the set
of integers and Cly : P(Z) — P(Z) is defined by Cl)(K) = K for each
K C Z. Clearly (Z,Cl)) is a countable T;-A-grounded A-isotonic space.
Put Uy € {Un}. We define a function f: X — Z by f(Uy) = {z} and
F(X\Ux) = {y} where z, y € Z and z # y. Since Cl,(Ux) N U, = @ for
all n # k, then Cly (U )NUpx4x U, = @ and hence Cly(Uy) C Uy. Let @ #
KcCZ Ifz,y€ K then f71(K) = X and Cl)(f}(K)) = Clx(X) C
X =fYK) = f"YCI(K)). Ifx ¢ K and y ¢ K, then f~}(K) =
Up and ClL\(f"YK)) = CLx(Ux) C Ux = f-UK) = f7YCI\(K)). If
y € K and z ¢ K then f~1(K) = X\U. Since Cl\(K) = K for
each K C Z, then Inty(K) = K for each K C Z. Also, X\U, C
Un;ékUn C X\Cl,\(Uk) = Int)\(X\Uk). Therefore, f‘l(Int)\(K)) =
X\Ur = f"HK) C Intx(X\Ug) = Intr\(f~Y(K)). Hence we obtain
that f is A-continuous. Since f is not constant, this is a contradiction
with the Z-A-connectedness of X. Hence, X is strongly A-connected.
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On A-Closure Spaces

Resumen

En este articulo, demostramos que una funcién puntualmente A simétrica,
A-isoténica, A-clausurada es determinada Unicamente por los pares de
conjuntos que ella separa. Luego probamos que, cuando la funcién
A-clausurada del dominio es A-isoténica y la funcién A-clausurada del
codominio es A-isoténica y puntualmente A-simétrica, las funciones que
separan solamente aquellos pares de conjuntos que estdn ya separados
son A-continuas.

Palabras Clave: conjuntos puntualmente A-clausurados, funcién A-clausurada,

funciones A-continuas.
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