ON λ -CLOSURE SPACES

 $egin{array}{ll} \emph{Miguel Caldas}^{\, 1} & \emph{Erdal Ekici}^{\, 2} \\ \emph{Saeid Jafari}^{\, 3} & \end{array}$

Abstract

In this paper, we show that a pointwise λ -symmetric λ -isotonic λ -closure function is uniquely determined by the pairs of sets it separates. We then show that when the λ -closure function of the domain is λ -isotonic and the λ -closure function of the codomain is λ -isotonic and pointwise- λ -symmetric, functions which separate only those pairs of sets which are already separated are λ -continuous.

Key words: pointwise λ -closed sets, λ -closure function , λ -continuous functions.

Departamento de Matemática Aplicada, Universidade Federal Fluminense. Brasil

² Department of Mathematics, Canakkale Onsekiz Mart University. Turkey

³ College of Vestsjaelland South. Denmark

1 Introduction

Throughout the paper (X,τ) (or simply X) will always denote a topological space. For a subset A of X, the closure, interior and complement of A in X are denoted by Cl(A), Int(A) and $X \setminus A$, respectively. By $\lambda O(X,\tau)$ and $\lambda C(X,\tau)$ we denote the collection of all λ -open sets and the collection of all λ -closed sets of (X,τ) , respectively. Let B be a subset of a space (X,τ) . B is a λ -set [2] if $B=B^{\Lambda}$, where: $B^{\Lambda}=\bigcap\{U\mid U\supset B,\ U\in\tau\}$. A subset A of a topological space (X,τ) is called λ -closed [1] if $A=B\cap C$, where B is a λ -set and C is a closed set. A is λ -open if $X\setminus A$ is Λ -closed. The intersection of all λ -closed sets containing A is called the λ -preclosure of A and is denoted by $Cl_{\lambda}(A)$.

- **Definition 1.** (1) A generalized λ -closure space is a pair (X, Cl_{λ}) consisting of a set X and a λ -closure function Cl_{λ} , a function from the power set of X to itself.
 - (2) The λ -closure of a subset A of X, denoted Cl_{λ} , is the image of A under Cl_{λ} .
 - (3) The λ -exterior of A is $Ext_{\lambda}(A) = X \setminus Cl_{\lambda}(A)$, and the λ -Interior of A is $Int_{\lambda}(A) = X \setminus Cl_{\lambda}(X \setminus A)$.
 - (4) We say that A is λ -closed if $A = Cl_{\lambda}(A)$, A is λ -open if $A = Int_{\lambda}(A)$ and N is a λ -neighborhood of x if $x \in Int_{\lambda}(N)$.

Definition 2. We say that a λ -closure function Cl_{λ} defined on X is:

- (1) λ -grounded if $Cl_{\lambda}(\emptyset) = \emptyset$.
- (2) λ -isotonic if $Cl_{\lambda}(A) \subseteq Cl_{\lambda}(B)$ whenever $A \subseteq B$.
- (3) λ -enlarging if $A \subseteq Cl_{\lambda}(A)$ for each subset A of X.
- (4) λ -idempotent if $Cl_{\lambda}(A) = Cl_{\lambda}(Cl_{\lambda}(A))$ for each subset A of X.
- (5) λ -sub-linear if $Cl_{\lambda}(A \cup B) \subseteq Cl_{\lambda}(A) \cup Cl_{\lambda}(B)$ for all $A, B \subseteq X$.

- **Definition 3.** (1) Subsets A and B of X are said to be λ -closure-separated in a generalized λ -closure space (X, Cl_{λ}) (or simply, Cl_{λ} -separated) if $A \cap Cl_{\lambda}(B) = \emptyset$ and $Cl_{\lambda}(A) \cap B = \emptyset$, or equivalently, if $A \subseteq Ext_{\lambda}(B)$ and $B \subseteq Ext_{\lambda}(A)$.
 - (2) λ -Exterior points are said to be λ -closure-separated in a generalized λ -closure space (X, Cl_{λ}) if for each $A \subseteq X$ and for each $x \in Ext_{\lambda}(A)$, $\{x\}$ and A are Cl_{λ} -separated.

Theorem 1.1. Let (X, Cl_{λ}) be a generalized λ -closure space in which λ -Exterior points are Cl_{λ} -separated and let S be the pairs of Cl_{λ} -separated sets in X. Then, for each subset A of X, the λ -closure of A is $Cl_{\lambda}(A) = \{x \in X : \{\{x\}, A\} \notin S\}$.

Proof. In any generalized λ -closure space $Cl_{\lambda}(A)$) $\subseteq \{x \in X : \{\{x\},A\} \notin S\}$. Really suppose that $y \notin \{x \in X : \{\{x\},A\} \notin S\}$, that is, $\{\{y\},A\} \in S$. Then $\{y\} \cap Cl_{\lambda}(A) = \emptyset$, and so $y \notin Cl_{\lambda}(A)$. Suppose now that $y \notin Cl_{\lambda}(A)$. By hypothesis, $\{\{y\},A\} \in S$, and hence, $y \notin \{x \in X : \{\{x\},A\} \notin S\}$.

2 Some Fundamental Properties

Definition 4. A λ -closure function Cl_{λ} defined on a set X is said to be pointwise λ -symmetric when, for all $x, y \in X$, if $x \in Cl_{\lambda}(\{y\})$, then $y \in Cl_{\lambda}(\{x\})$.

A generalized λ -closure space (X, Cl_{λ}) is said to be λ - R_0 when, for all $x, y \in X$, if x is in each λ -neighborhood of y, then y is in each λ -neighborhood of x.

Corollary 2.1. Let (X, Cl_{λ}) a generalized λ -closure space in which λ Exterior points are Cl_{λ} -separated. Then Cl_{λ} is pointwise λ -symmetric and (X, Cl_{λ}) is λ - R_0 .

Proof. Suppose that λ -Exterior points are Cl_{λ} -separated in (X, Cl_{λ}) . If $x \in Cl_{\lambda}(\{y\})$, then $\{x\}$ and $\{y\}$ are not Cl_{λ} -separated and hence, $y \in Cl_{\lambda}(\{x\})$. Hence, Cl_{λ} is pointwise λ -symmetric.

Suppose that x belongs to every λ -neighborhood of y, that is, $x \in M$ whenever $y \in Int_{\lambda}(M)$. Letting $A = X \setminus M$ and rewriting contrapositively, $y \in Cl_{\lambda}(A)$ whenever $x \in A$.

Suppose $x \in Int_{\lambda}(N)$. $x \notin Cl_{\lambda}(X \setminus N)$, so x is Cl_{λ} -separated from $X \setminus N$. Hence $Cl_{\lambda}(\{x\}) \subseteq N$. $x \in \{x\}$, so $y \in Cl_{\lambda}(\{x\}) \subseteq N$. Hence (X, Cl_{λ}) is $\lambda - R_0$.

While these three axioms are not equivalent in general, they are equivalent when the λ -closure function is λ -isotonic:

Theorem 2.2. Let (X, Cl_{λ}) be a generalized λ -closure space with Cl_{λ} λ -isotonic. Then the following are equivalent:

- (1) λ Exterior points are Cl_{λ} -separated.
- (2) Cl_{λ} is pointwise λ -symmetric.
- (3) (X, Cl_{λ}) is λR_0 .

Proof. Suppose that (2) is true. Let $A \subseteq X$, and suppose $x \in Ext_{\lambda}(A)$. Then, as Cl_{λ} is λ -isotonic, for each $y \in A$, $x \notin Cl_{\lambda}(\{y\})$, and hence, $y \notin Cl_{\lambda}(\{x\})$. Hence $A \cap Cl_{\lambda}(\{x\}) = \emptyset$. Hence (2) implies (1), and by the previous corollary, (1) implies (2).

Suppose now that (2) is true and let $x, y \in X$ such that x is in every λ -neighborhood of y, that is, $x \in N$ whenever $y \in Int_{\lambda}(N)$. Then $y \in Cl_{\lambda}(A)$ whenever $x \in A$, and in particular, since $x \in \{x\}$, $y \in Cl_{\lambda}(\{x\})$. Hence $x \in Cl_{\lambda}(\{y\})$. Thus if $y \in B$, then $x \in Cl_{\lambda}(\{y\}) \subseteq Cl_{\lambda}(B)$, as Cl_{λ} is λ -isotonic. Hence, if $x \in Int_{\lambda}(C)$, then $y \in C$, that is, y is in every λ -neighborhood of x. Hence, (2) implies (3).

Finally, suppose that (X, Cl_{λ}) is λ - R_0 and suppose that $x \in Cl_{\lambda}(\{y\})$. Since Cl_{λ} is λ -isotonic, $x \in Cl_{\lambda}(B)$ whenever $y \in B$, or, equivalently, y is in every λ -neighborhood of x. Since (X, Cl_{λ}) is λ - R_0 , $x \in N$ whenever $y \in Int_{\lambda}(N)$. Hence, $y \in Cl_{\lambda}(A)$ whenever $x \in A$, and in particular, since $x \in \{x\}$, $y \in Cl_{\lambda}(\{x\})$. Hence (3) implies (2).

Theorem 2.3. Let S be a set of unordered pairs of subsets of a set X such that, for all $A, B, C \subseteq X$,

- (1) if $A \subseteq B$ and $\{B,C\} \in S$, then $\{A,C\} \in S$ and
- (2) if $\{\{x\}, B\} \in S$ for each $x \in A$ and $\{\{y\}, A\} \in S$ for each $y \in B$, then $\{A, B\} \in S$.

Then there exists a unique pointwise λ -symmetric λ -isotonic λ -closure function Cl_{λ} on X which λ -closure-separates the elements of S.

Proof. Define Cl_{λ} by $Cl_{\lambda}(A) = \{x \in X : \{\{x\}, A\} \notin S\}$ for every $A \subseteq X$. If $A \subseteq B \subseteq X$ and $x \in Cl_{\lambda}(A)$, then $\{\{x\}, A\} \notin S$. Hence, $\{\{x\}, B\} \notin S$, that is, $x \in Cl_{\lambda}(B)$. Hence Cl_{λ} is λ -isotonic. Also, $x \in Cl_{\lambda}(\{y\})$ if and only if $\{\{x\}, \{y\}\} \notin S$ if and only if $y \in Cl_{\lambda}(\{x\})$, and thus Cl_{λ} is pointwise λ -symmetric.

Suppose that $\{A, B\} \in S$. Then $A \cap Cl_{\lambda}(B) = A \cap \{x \in X : \{\{x\}, B\} \notin S\} = \{x \in A : \{\{x\}, A\} \notin S\} = \emptyset$. Similarly, $Cl_{\lambda}(A) \cap B = \emptyset$. Hence, if $\{A, B\} \in S$, then A and B are Cl_{λ} -separated.

Now suppose that A and B are Cl_{λ} -separated. Then $\{x \in A : \{\{x\}, B\} \notin S\} = A \cap Cl_{\lambda}(B) = \emptyset$ and $\{x \in B : \{\{x\}, A\} \notin S\} = Cl_{\lambda}(A) \cap B = \emptyset$. Hence, $\{\{x\}, B\} \in S$ for each $x \in A$ and $\{\{y\}, A\} \in S$ for each $y \in B$, and thus, $\{A, B\} \in S$.

Furthermore, many properties of λ -closure functions can be expressed in terms of the sets they separate:

Theorem 2.4. Let S be the pairs of Cl_{λ} -separated sets of a generalized λ -closure space (X, Cl_{λ}) in which $\lambda Exterior$ points are λ -closure-separates. Then Cl_{λ} is

- (1) λ -grounded if and only if for all $x \in X \{\{x\}, \emptyset\} \in S$.
- (2) λ -enlarging if and only if for all $\{A, B\} \in S$, A and B are disjoint.

(3) λ -sub-linear if and only if $\{A, B \cup C\} \in S$ whenever $\{A, B\} \in S$ and $\{A, C\} \in S$.

Moreover, if Cl_{λ} is λ -enlarging and for all $A, B \subseteq X$, $\{\{x\}, A\} \notin S$ whenever $\{\{x\}, B\} \notin S$ and $\{\{y\}, A\} \notin S$ for each $y \in B$, then Cl_{λ} is λ -idempotent. Also, if Cl_{λ} is λ -isotonic and λ -idempotent, then $\{\{x\}, A\} \notin S$ whenever $\{\{x\}, B\} \notin S$ and $\{\{y\}, A\} \notin S$ for each $y \in B$.

Proof. Recall that by Theorem 1.1, $Cl_{\lambda}(A) = \{x \in X : \{\{x\}, A\} \notin S\}$ for every $A \subseteq X$. Suppose that for all $x \in X$, $\{\{x\}, \emptyset\} \in S$. Then $Cl_{\lambda}(\emptyset) = \{x \in X : \{\{x\}, \emptyset\} \notin S\} = \emptyset$. Hence Cl_{λ} is λ -grounded. Conversely, if $\emptyset = Cl_{\lambda}(\emptyset) = \{x \in X : \{\{x\}, \emptyset\} \notin S\}$, then $\{\{x\}, \emptyset\} \in S$, for all $x \in X$.

Suppose that for all $\{A, B\} \in S$, A and B are disjoint. Since $\{\{a\},A\} \notin S \text{ if } a \in A, A \subseteq Cl_{\lambda}(A) \text{ for each } A \subseteq X. \text{ Hence, } Cl_{\lambda} \text{ is } \lambda$ enlarging. Conversely, suppose that Cl_{λ} is λ -enlarging and $\{A, B\} \in S$. Then $A \cap B \subseteq Cl_{\lambda}(A) \cap B = \emptyset$. Suppose that $\{A, B \cup C\} \in S$ whenever $\{A,B\} \in S$ and $\{A,C\} \in S$. Let $x \in X$ and $B,C \subseteq X$ such that $\{\{x\}, B \cup C\} \notin S$. Then $\{\{x\}, B\} \notin S$ or $\{\{x\}, C\} \notin S$. Hence $Cl_{\lambda}(B \cup C) \subseteq Cl_{\lambda}(B) \cup Cl_{\lambda}(C)$, and therefore, Cl_{λ} is λ -sub-linear. Conversely, suppose that Cl_{λ} is λ -sub-linear and let $\{A, B\}, \{A, C\} \in S$. Then $Cl_{\lambda}(B \cup C) \cap A \subseteq (Cl_{\lambda}(B) \cup Cl_{\lambda}(C)) \cap A = (Cl_{\lambda}(B) \cap A) \cup (Cl_{\lambda}(C)) \cap A$ $A) = \emptyset$ and $(B \cup C) \cap Cl_{\lambda}(A) = (B \cap Cl_{\lambda}(A)) \cup (C \cap Cl_{\lambda}(A)) = \emptyset$. Suppose that Cl_{λ} is λ -enlarging and suppose that $\{\{x\},A\} \notin S$ whenever $\{\{x\}, B\} \notin S \text{ and } \{\{y\}, A\} \notin S \text{ for each } y \in B. \text{ Then } Cl_{\lambda}(Cl_{\lambda}(A)) \subseteq$ $Cl_{\lambda}(A)$: If $x \in Cl_{\lambda}(Cl_{\lambda}(A))$, then $\{\{x\}, Cl_{\lambda}(A)\} \notin S$. $\{\{y\}, A\} \notin S$, for each $y \in Cl_{\lambda}(A)$; hence $\{\{x\}, A\} \notin S$. And since Cl_{λ} is λ -enlarging, $Cl_{\lambda}(A) \subseteq Cl_{\lambda}(Cl_{\lambda}(A))$. Thus $Cl_{\lambda}(Cl_{\lambda}(A)) = Cl_{\lambda}(A)$, for each $A \subseteq X$. Finally, suppose that Cl_{λ} is λ -isotonic and λ -idempotent. Let $x \in X$ and $A, B \subseteq X$ such that $\{\{x\}, B\} \notin S$ and, for each $y \in B$, $\{\{y\}, A\} \notin S$. Then $x \in Cl_{\lambda}(B)$ and for each $y \in B$, $y \in Cl_{\lambda}(A)$, that is, $B \subseteq Cl_{\lambda}(A)$. Hence, $x \in Cl_{\lambda}(B) \subseteq Cl_{\lambda}(Cl_{\lambda}(A)) = Cl_{\lambda}(A)$.

Definition 5. If $(X, (Cl_{\lambda})_X)$ and $(Y, (Cl_{\lambda})_Y)$ are generalized λ -closure spaces, then a function $f: X \to Y$ is said to be

- (1) λ -closure-preserving if $f((Cl_{\lambda})_X(A)) \subseteq (Cl_{\lambda})_Y(f(A))$ for each $A \subseteq X$.
- (2) λ -continuous if $(Cl_{\lambda})_X(f^{-1}(B)) \subseteq f^{-1}((Cl_{\lambda})_Y(B))$ for each $B \subseteq Y$.

In general, neither condition implies the other. However, we easily obtain the following result:

Theorem 2.5. Let $(X, (Cl_{\lambda})_X)$ and $(Y, (Cl_{\lambda})_Y)$ be generalized λ -closure spaces and let $f: X \to Y$.

- (1) If f is λ -closure-preserving and $(Cl_{\lambda})_Y$ is λ -isotonic, then f is λ -continuous.
- (2) If f is λ -continuous and $(Cl_{\lambda})_X$ is λ -isotonic, then f is λ -closure-preserving.

Proof. Suppose that f is λ -closure-preserving and $(Cl_{\lambda})_Y$ is λ -isotonic. Let $B \subseteq Y$. $f(Cl_{\lambda})_X(f^{-1}(B)) \subseteq (Cl_{\lambda})_Y(f(f^{-1}(B))) \subseteq (Cl_{\lambda})_Y(B)$ and hence, $(Cl_{\lambda})_X(f^{-1}(B)) \subseteq f^{-1}(f(Cl_{\lambda})_X(f^{-1}(B))) \subseteq f^{-1}((Cl_{\lambda})_Y(B))$. Suppose that f is λ -continuous and $(Cl_{\lambda})_X$ is λ -isotonic. Let $A \subseteq A$

Suppose that f is λ -continuous and $(Cl_{\lambda})_X$ is λ -isotonic. Let $A \subseteq X$. $(Cl_{\lambda})_X(A) \subseteq (Cl_{\lambda})_X(f^{-1}(f(A))) \subseteq f^{-1}((Cl_{\lambda})_Y(f(A)))$ and hence $f((Cl_{\lambda})_X(A)) \subseteq f(f^{-1}((Cl_{\lambda})_Y(f(A)))) \subseteq (Cl_{\lambda})_Y(f(A))$.

Definition 6. Let $(X,(Cl_{\lambda})_X)$ and $(Y,(Cl_{\lambda})_Y)$ be generalized λ -closure spaces and let $f: X \to Y$ be a function. If for all $A, B \subseteq X$, f(A) and f(B) are not $(Cl_{\lambda})_Y$ -separated whenever A and B are not $(Cl_{\lambda})_X$ -separated, then we say that f is non- λ -separating.

Note that f is non- λ -separating if and only if A and B are $(Cl_{\lambda})_{X}$ -separated whenever f(A) and f(B) are $(Cl_{\lambda})_{Y}$ -separated.

Theorem 2.6. Let $(X, (Cl_{\lambda})_X)$ and $(Y, (Cl_{\lambda})_Y)$ be generalized λ -closure spaces and let $f: X \to Y$.

- (1) If $(Cl_{\lambda})_{Y}$ is λ -isotonic and f is non- λ -separating, then $f^{-1}(C)$ and $f^{-1}(D)$ are $(Cl_{\lambda})_{X}$ -separated whenever C and D are $(Cl_{\lambda})_{Y}$ -separated.
- (2) If $(Cl_{\lambda})_X$ is λ -isotonic and $f^{-1}(C)$ and $f^{-1}(D)$ are $(Cl_{\lambda})_X$ -separated whenever C and D are $(Cl_{\lambda})_Y$ -separated, then f is non- λ -separating.

Proof. Let C and D be $(Cl_{\lambda})_{Y}$ -separated subsets, where $(Cl_{\lambda})_{Y}$ is λ isotonic. Let $A = f^{-1}(C)$ and let $B = f^{-1}(D)$. $f(A) \subseteq C$ and $f(B) \subseteq D$ and since $(Cl_{\lambda})_{Y}$ is λ -isotonic, f(A) and f(B) are also $(Cl_{\lambda})_{Y}$ -separated.
Hence, A and B are $(Cl_{\lambda})_{X}$ -separated in X.
Suppose that $(Cl_{\lambda})_{X}$ is λ isotonic and let A $B \subseteq X$ such that C = f(A)

Suppose that $(Cl_{\lambda})_X$ is λ -isotonic and let $A, B \subseteq X$ such that C = f(A) and D = f(B) are $(Cl_{\lambda})_X$ -separated. Then $f^{-1}(C)$ and $f^{-1}(D)$ are $(Cl_{\lambda})_X$ -separated and since $(Cl_{\lambda})_X$ is λ -isotonic, $A \subseteq f^{-1}(f(A)) = f^{-1}(C)$ and $B \subseteq f^{-1}(f(B)) = f^{-1}(D)$ are $(Cl_{\lambda})_X$ -separated as well.

Theorem 2.7. Let $(X, (Cl_{\lambda})_X)$ and $(Y, (Cl_{\lambda})_Y)$ be generalized λ -closure spaces and let $f: X \to Y$ be a function. If f is λ -closure-preserving, then f is non- λ -separating.

Proof. Suppose that f is λ -closure-preserving and $A, B \subseteq X$ are not $(Cl_{\lambda})_X$ -separated. Suppose that $(Cl_{\lambda})_X(A) \cap B \neq \emptyset$. Then $\emptyset \neq f((Cl_{\lambda})_X(A) \cap B) \subseteq f((Cl_{\lambda})_X(A)) \cap f(B) \subseteq (Cl_{\lambda})_Y(f(A)) \cap f(B)$. Similarly, if $A \cap (Cl_{\lambda})_X(B) \neq \emptyset$, then $f(A) \cap (Cl_{\lambda})_Y(f(B)) \neq \emptyset$. Hence f(A) and f(B) are not $(Cl_{\lambda})_Y$ -separated.

Corollary 2.8. Let $(X, (Cl_{\lambda})_X)$ and $(Y, (Cl_{\lambda})_Y)$ be generalized λ -closure spaces with $(Cl_{\lambda})_X$ λ -isotonic and let $f: X \to Y$. If f is λ -continuous, then f is non- λ -separating.

Proof. If f is λ -continuous and $(Cl_{\lambda})_X$ λ -isotonic, then by Theorem 2.5 (2) f is λ -closure-preserving. Hence by Theorem 2.7, f is non- λ -separating.

Theorem 2.9. Let $(X,(Cl_{\lambda})_X)$ and $(Y,(Cl_{\lambda})_Y)$ be generalized λ -closure spaces which λ -Exterior points $(Cl_{\lambda})_Y$ -separated in Y and let $f:X\to Y$ be a function. Then f is λ -closure-preserving if and only if f non- λ -separating.

Proof. By Theorem 2.7, if f is λ -closure-preserving, then f is non- λ -separating. Suppose that f is non- λ -separating and let $A \subseteq X$. If $(Cl_{\lambda})_X = \emptyset$, then $f((Cl_{\lambda})_X(A)) = \emptyset \subseteq (Cl_{\lambda})_Y(f(A))$. Suppose $(Cl_{\lambda})_X(A) \neq \emptyset$. Let S_X and S_Y denote the pairs of $(Cl_{\lambda})_X$ -separated subsets of X and the pairs of $(Cl_{\lambda})_Y$ -separated subsets of Y, respectively. Let $y \in f((Cl_{\lambda})_X(A))$ and let $x \in (Cl_{\lambda})_X(A) \cap f^{-1}(\{y\})$. Since $x \in (Cl_{\lambda})_X(A)$, $\{\{x\},A\} \notin S_X$ and since f non- λ -separating, $\{\{y\},f(A)\} \notin S_Y$. Since λ -Exterior points are $(Cl_{\lambda})_Y$ -separated, $y \in (Cl_{\lambda})_Y(f(A))$. Thus $f((Cl_{\lambda})_X(A)) \subseteq (Cl_{\lambda})_Y(f(A))$ for each $A \subseteq X$.

Corollary 2.10. Let $(X,(Cl_{\lambda})_X)$ and $(Y,(Cl_{\lambda})_Y)$ be generalized λ -closure spaces with λ -isotonic closure functions and with $(Cl_{\lambda})_Y$ -pointwise- λ -symmetric and let $f: X \to Y$. Then f is λ -continuous if and only if f non- λ -separating.

Proof. Since $(Cl_{\lambda})_Y$ is λ -isotonic and pointwise- λ -symmetric, λ -Exterior points are λ -closure separated in $(Y, (Cl_{\lambda})_Y)$ (Theorem 2.2 (1)). Since both λ -closure functions are λ -isotonic, f is λ -closure-preserving (Theorem 2.5) if and only if f is λ -continuous. Hence, we can apply the Theorem 2.9.

3 λ -Connected Generalized λ -Closure Spaces

Definition 7. Let (X, Cl_{λ}) be a generalized λ -closure space. X is said to be λ -connected if X is not a union of disjoint nontrivial λ -closure-separated pair of sets.

Theorem 3.1. Let (X, Cl_{λ}) be a generalized λ -closure space with λ grounded λ -isotonic λ -enlarging Cl_{λ} . Then, the following are equivalent:

- (1) (X, Cl_{λ}) is λ -connected,
- (2) X can not be a union of nonempty disjoint λ -open sets.

Proof. (1) \Rightarrow (2): Let X be a union of nonempty disjoint λ -open sets A and B. Then, $X = A \cup B$ and this implies that $B = X \setminus A$ and A is a λ -open set. Thus, B is λ -closed and hence $A \cap Cl_{\lambda}(B) = A \cap B =$ \varnothing . By using similar way, we obtain $Cl_{\lambda}(A) \cap B = \varnothing$. Hence, A and B are λ -closure-separated and hence X is not λ -connected. This is a contradiction.

(2) \Rightarrow (1): Suppose that X is not λ -connected. Then $X = A \cup$ B, where A, B are disjoint λ -closure-separated sets, i.e $A \cap Cl_{\lambda}(B) =$ $Cl_{\lambda}(A) \cap B = \emptyset$. We have $Cl_{\lambda}(B) \subset X \setminus A \subset B$. Since Cl_{λ} is λ enlarging, we obtain $Cl_{\lambda}(B) = B$ and hence, B is λ -closed. By using $Cl_{\lambda}(A) \cap B = \emptyset$ and similar way, it is obvious that A is λ -closed. This is a contradiction.

Definition 8. Let (X, Cl_{λ}) be a generalized λ -closure space with λ grounded λ -isotonic Cl_{λ} . Then, (X,Cl_{λ}) is called a T_1 - λ -grounded λ isotonic space if $Cl_{\lambda}(\{x\}) \subset \{x\}$ for all $x \in X$.

Theorem 3.2. Let (X, Cl_{λ}) be a generalized λ -closure space with λ grounded λ -isotonic Cl_{λ} . Then, the following are equivalent:

- (1) (X, Cl_{λ}) is λ -connected,
- (2) Any λ -continuous function $f: X \to Y$ is constant for all T_1 - λ grounded λ -isotonic spaces $Y = \{0, 1\}$.

Proof. (1) \Rightarrow (2): Let X be λ -connected. Suppose that $f: X \to Y$ is λ -continuous and it is not constant. Then there exists a set $U \subset X$ such that $U = f^{-1}(\{0\})$ and $X \setminus U = f^{-1}(\{1\})$. Since f is λ -continuous and Y is T_1 - λ -grounded λ -isotonic space, then we have $Cl_{\lambda}(U) = Cl_{\lambda}(f^{-1}(\{0\}))$ $\subset f^{-1}(Cl_{\lambda}\{0\}) \subset f^{-1}(\{0\}) = U$ and hence $Cl_{\lambda}(U) \cap (X \setminus U) = \emptyset$. By using similar way we have $U \cap Cl_{\lambda}(X \setminus U) = \emptyset$. This is a contradiction. Thus, f is constant.

(2) \Rightarrow (1): Suppose that X is not λ -connected. Then there exist λ -closure-separated sets U and V such that $U \cup V = X$. We have $Cl_{\lambda}(U) \subset U$ and $Cl_{\lambda}(V) \subset V$ and $X \setminus U \subset V$. Since Cl_{λ} is λ -isotonic and U and V are λ -closure-separated, then $Cl_{\lambda}(X \setminus U) \subset Cl_{\lambda}(V) \subset X \setminus U$. If we consider the space (Y, Cl_{λ}) by $Y = \{0, 1\}$, $Cl_{\lambda}(\emptyset) = \emptyset$, $Cl_{\lambda}(\{0\}) = \{0\}$, $Cl_{\lambda}(\{1\}) = \{1\}$ and $Cl_{\lambda}(Y) = Y$, then the space (Y, Cl_{λ}) is a T_1 - λ -grounded λ -isotonic space. We define the function $f: X \to Y$ as $f(U) = \{0\}$ and $f(X \setminus U) = \{1\}$. Let $A \neq \emptyset$ and $A \subset Y$. If A = Y, then $f^{-1}(A) = X$ and hence $Cl_{\lambda}(X) = Cl_{\lambda}(f^{-1}(A)) \subset X = f^{-1}(A) = f^{-1}(Cl_{\lambda}(A))$. If $A = \{0\}$, then $f^{-1}(A) = U$ and hence $Cl_{\lambda}(U) = Cl_{\lambda}(f^{-1}(A)) \subset U = f^{-1}(A) = f^{-1}(Cl_{\lambda}(A))$. If $A = \{1\}$, then $f^{-1}(A) = X \setminus U$ and hence $Cl_{\lambda}(X \setminus U) = Cl_{\lambda}(f^{-1}(A)) \subset X \setminus U = f^{-1}(A) = f^{-1}(Cl_{\lambda}(A))$. Hence, f is λ -continuous. Since f is not constant, this is a contradiction.

Theorem 3.3. Let $f:(X,Cl_{\lambda}) \to (Y,Cl_{\lambda})$ and $g:(Y,Cl_{\lambda}) \to (Z,Cl_{\lambda})$ be λ -continuous functions. Then, $gof:X \to Z$ is λ -continuous.

Proof. Suppose that f and g are λ -continuous. For all $A \subset Z$ we have $Cl_{\lambda}(gof)^{-1}(A) = Cl_{\lambda}(f^{-1}(g^{-1}(A))) \subset f^{-1}(Cl_{\lambda}(g^{-1}(A))) \subset f^{-1}(g^{-1}(Cl_{\lambda}(A))) = (gof)^{-1}(Cl_{\lambda}(A))$. Hence, $gof: X \to Z$ is λ -continuous.

Theorem 3.4. Let (X, Cl_{λ}) and (Y, Cl_{λ}) be generalized λ -closure spaces with λ -grounded λ -isotonic Cl_{λ} and $f:(X, Cl_{\lambda}) \to (Y, Cl_{\lambda})$ be a λ -continuous function onto Y. If X is λ -connected, then Y is λ -connected.

Proof. Suppose that $\{0,1\}$ is a generalized λ -closure spaces with λ -grounded λ -isotonic Cl_{λ} and $g:Y\to\{0,1\}$ is a λ -continuous function. Since f is λ -continuous, by Theorem 3.3, $gof:X\to\{0,1\}$ is

129

 λ -continuous. Since X is λ -connected, gof is constant and hence g is constant. By Theorem 3.2, Y is λ -connected.

Definition 9. Let (Y,Cl_{λ}) be a generalized λ -closure space with λ -grounded λ -isotonic Cl_{λ} and more than one element. A generalized λ -closure space (X,Cl_{λ}) with λ -grounded λ -isotonic Cl_{λ} is called Y- λ -connected if any λ -continuous function $f:X\to Y$ is constant.

Theorem 3.5. Let (Y, Cl_{λ}) be a generalized λ -closure space with λ -grounded λ -isotonic λ -enlarging Cl_{λ} and more than one element. Then every Y- λ -connected generalized λ -closure space with λ -grounded λ -isotonic is λ -connected.

Proof. Let (X,Cl_{λ}) be a Y- λ -connected generalized λ -closure space with λ -grounded λ -isotonic Cl_{λ} . Suppose that $f:X\to\{0,1\}$ is a λ -continuous function, where $\{0,1\}$ is a T_1 - λ -grounded λ -isotonic space. Since Y is a generalized λ -closure space with λ -grounded λ -isotonic λ -enlarging Cl_{λ} and more than one element, then there exists a λ -continuous injection $g:\{0,1\}\to Y$. By Theorem 3.3, $gof:X\to Y$ is λ -continuous. Since X is Y- λ -connected, then gof is constant. Thus, f is constant and hence, by Theorem 3.2, X is λ -connected.

Theorem 3.6. Let (X, Cl_{λ}) and (Y, Cl_{λ}) be generalized λ -closure spaces with λ -grounded λ -isotonic Cl_{λ} and $f:(X, Cl_{\lambda}) \to (Y, Cl_{\lambda})$ be a λ -continuous function onto Y. If X is Z- λ -connected, then Y is Z- λ -connected.

Proof. Suppose that $g:Y\to Z$ is a λ -continuous function. Then $gof:X\to Z$ is λ -continuous. Since X is Z- λ -connected, then gof is constant. This implies that g is constant. Thus, Y is Z- λ -connected.

Definition 10. A generalized λ -closure space (X, Cl_{λ}) is strongly λ -connected if there is no countable collection of pairwise λ -closure-separated sets $\{A_n\}$ such that $X = \bigcup A_n$.

Theorem 3.7. Every strongly λ -connected generalized λ -closure space with λ -grounded λ -isotonic Cl_{λ} is λ -connected.

Theorem 3.8. Let (X, Cl_{λ}) and (Y, Cl_{λ}) be generalized λ -closure spaces with λ -grounded λ -isotonic Cl_{λ} and $f:(X, Cl_{\lambda}) \to (Y, Cl_{\lambda})$ be a λ -continuous function onto Y. If X is strongly λ -connected, then Y is strongly λ -connected.

Proof. Suppose that Y is not strongly λ -connected. Then, there exists a countable collection of pairwise λ -closure-separated sets $\{A_n\}$ such that $Y = \cup A_n$. Since $f^{-1}(A_n) \cap Cl_{\lambda}(f^{-1}(A_m)) \subset f^{-1}(A_n) \cap f^{-1}(Cl_{\lambda}(A_m)) = \emptyset$ for all $n \neq m$, then the collection $\{f^{-1}(A_n)\}$ is pairwise λ -closure-separated. This is a contradiction. Hence, Y is strongly λ -connected.

Theorem 3.9. Let $(X,(Cl_{\lambda})_X)$ and $(Y,(Cl_{\lambda})_Y)$ are generalized λ -closure spaces. Then the following are equivalent for a function $f:X\to Y$:

- (1) f is λ -continuous,
- (2) $f^{-1}(Int_{\lambda}(B)) \subseteq Int_{\lambda}(f^{-1}(B))$ for each $B \subseteq Y$.

Theorem 3.10. Let (X, Cl_{λ}) be a generalized λ -closure space with λ -grounded λ -isotonic Cl_{λ} . Then (X, Cl_{λ}) is strongly λ -connected if and only if (X, Cl_{λ}) is Y- λ -connected for any countable T_1 - λ -grounded λ -isotonic space (Y, Cl_{λ}) .

Proof. (\Rightarrow) : Let (X, Cl_{λ}) be strongly λ -connected. Suppose that (X, Cl_{λ}) is not Y- λ -connected for some countable T_1 - λ -grounded λ -isotonic space (Y, Cl_{λ}) . There exists a λ -continuous function $f: X \to Y$ which is not constant and hence K = f(X) is a countable set with more than one element. For each $y_n \in K$, there exists $U_n \subset X$ such that $U_n = f^{-1}(\{y_n\})$ and hence $Y = \cup U_n$. Since f is λ -continuous and Y is λ -grounded, then for each $n \neq m$, $U_n \cap Cl_{\lambda}(U_m) = f^{-1}(\{y_n\}) \cap U$

 $Cl_{\lambda}(f^{-1}(\{y_m\})) \subset f^{-1}(\{y_n\}) \cap f^{-1}(Cl_{\lambda}(\{y_m\})) \subset f^{-1}(\{y_n\}) \cap f^{-1}(\{y_m\}) = \varnothing$. This contradict with the strong λ -connectedness of X. Thus, X is Y- λ -connected.

 (\Leftarrow) : Let X be Y- λ -connected for any countable T_1 - λ -grounded λ isotonic space (Y, Cl_{λ}) . Suppose that X is not strongly λ -connected. There exists a countable collection of pairwise λ -closure-separated sets $\{U_n\}$ such that $X=\cup U_n$. We take the space (Z,Cl_λ) , where Z is the set of integers and $Cl_{\lambda}: P(Z) \to P(Z)$ is defined by $Cl_{\lambda}(K) = K$ for each $K \subset Z$. Clearly (Z, Cl_{λ}) is a countable T_1 - λ -grounded λ -isotonic space. Put $U_k \in \{U_n\}$. We define a function $f: X \to Z$ by $f(U_k) = \{x\}$ and $f(X \setminus U_k) = \{y\}$ where $x, y \in Z$ and $x \neq y$. Since $Cl_{\lambda}(U_k) \cap U_n = \emptyset$ for all $n \neq k$, then $Cl_{\lambda}(U_k) \cap \bigcup_{n \neq k} U_n = \emptyset$ and hence $Cl_{\lambda}(U_k) \subset U_k$. Let $\emptyset \neq$ $K \subset Z$. If $x, y \in K$ then $f^{-1}(K) = X$ and $Cl_{\lambda}(f^{-1}(K)) = Cl_{\lambda}(X) \subset$ $X = f^{-1}(K) = f^{-1}(Cl_{\lambda}(K))$. If $x \in K$ and $y \notin K$, then $f^{-1}(K) = K$ U_k and $Cl_{\lambda}(f^{-1}(K)) = Cl_{\lambda}(U_k) \subset U_k = f^{-1}(K) = f^{-1}(Cl_{\lambda}(K))$. If $y \in K$ and $x \notin K$ then $f^{-1}(K) = X \setminus U_k$. Since $Cl_{\lambda}(K) = K$ for each $K \subset Z$, then $Int_{\lambda}(K) = K$ for each $K \subset Z$. Also, $X \setminus U_k \subset X$ $\bigcup_{n\neq k}U_n\subset X\backslash Cl_\lambda(U_k)=Int_\lambda(X\backslash U_k).$ Therefore, $f^{-1}(Int_\lambda(K))=Int_\lambda(X\backslash U_k)$ $X \setminus U_k = f^{-1}(K) \subset Int_{\lambda}(X \setminus U_k) = Int_{\lambda}(f^{-1}(K))$. Hence we obtain that f is λ -continuous. Since f is not constant, this is a contradiction with the Z- λ -connectedness of X. Hence, X is strongly λ -connected.

References

- [1] F. G. Arenas, J. Dontchev and M. Ganster, On λ -sets and dual of generalized continuity. Questions Answers Gen. Topology, 15 (1997) 3-13.
- [2] H. Maki, Generalized Λ -sets and the associated closure operator. The Special Issue in Commemoration of Prof. Kazusada IKEDA' Retirement, 1. Oct. 1986, 139-146.

Resumen

En este artículo, demostramos que una función puntualmente λ simétrica, λ -isotónica, λ -clausurada es determinada únicamente por los pares de conjuntos que ella separa. Luego probamos que, cuando la función λ -clausurada del dominio es λ -isotónica y la función λ -clausurada del codominio es λ -isotónica y puntualmente λ -simétrica, las funciones que separan solamente aquellos pares de conjuntos que están ya separados son λ -continuas.

Palabras Clave: conjuntos puntualmente λ -clausurados, función λ -clausurada, funciones λ -continuas.

Miguel Caldas Departamento de Matemática Aplicada, Universidade Federal Fluminense, Rua Mario Santos Braga, s/n 24020-140, Niteroi, RJ Brasil. gmamccs@vm.uff.br

Erdal Ekici Department of Mathematics, Canakkale Onsekiz Mart University, Terzioglu Campus, 17020 Canakkale-Turkey. eekici@comu.edu.tr

Saeid Jafari College of Vestsjaelland South, Herrestraede 11, 4200. Slagelse, Denmark. jafari@stofanet.dk