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Abstract 
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1 Introduction 

Let (Q = C([O, T]; Rd), 'F, P) denote the canonical Wiener probability 

space whose canonical process denoted by W is a Wiener process. The fF­

field on n, 'F, is given by the smallest fF-field generated by the sets of the 

type {x E Q; x(t¡) E A¡, ... ,x(tn) E An} forn E N, t¡, ... ,tn E [O,T] and 
A 1, ••. , An are Borel sets in Rd. The measure Pis such that the canonical process 
W: Qx[O, T] ---t Rd is a measurable map from the product fF-field 'F023([0, T]) 

where 23([0, T]) denotes the Borelian fF-field on [0, T] such that W(x, t) = x(t) 
satisfies 

l. W(x, ·) : [0, T] --¡ Rd is continuous in [0, T] for P-almost all X E n. 
By an abuse of notation, we sometimes write W(t), W1 to emphasize that 
these are random variables when the time variable is fixed. 

2. Given O= to < t1 < ... < tn = T the random vector (W(tn)- WUn-J), ... , 
W(t1)- W(t0)) is Gaussian distributed with mean zero and diagonal co­

variance matrix with i-th element fn-i+l - tn-i· 

In this set-up one defined the filtration associated with W as the family of 
fF-algebras CG)tE[O,TJ· 'Fí is the smallest fF-field that makes W(s), s :::; t random 
variables with respect to this filtration. 

The goal of Malliavin Calculus is to set up conditions under which a ran­
dom variable F: Q ---t Rd, F = (F1, ... ,FJ) (d ~ 2) has a smooth density. In 
the particular case that F is the final val u e of a diffusion process, the Malliavin 
result leads to the celebrated Hormander theorem that states the existen ce of a 
fundamental solution of a parabolic partial differential equation. 

Instead of following the path of a rigorous mathematical sequence of def­
initions that can be found in [7], we will just give the heuristics behind the 
definitions. The idea is to define a differential calculus on the space Q. The 
problem is that Q = C([O, T]) is not a Hilbert space so defining a derivative is 
not an easy matter. Furthermore, most of the interesting functionals will not 
be differentiable is the derivative is defined in the Frechet sense, as is the case 
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of e.g. solutions of stochastic differential equations. In fact, the derivative is 

defincd in an a.s. sense and only with rcspect to directions givcn in 

H 1 = {x E C([O, T]); x is differcntiable for alrnost all tE [0, T] and i E L2 [0, T]}. 

In probability this is known as the Carneron-Martin space. Then once the 

derivative denoted by D is defined one proves a chain rule property stating that 

D f(F) =< "Vf(F), DF >, that this operator is closable and therefore its adjoint 
D* is well defined but it is an unbounded operator. Frorn here one obtains the 

irnportant integration by parts formula which is given in Proposition 1.1 below. 

Although the goal during the first 20 years of Malliavin Calculus was 
the theoretical study of the densities of randorn variables. lt was in an article 

authored by a group led by P.L. Lions [4] that they discovered the applications 

of this formula to estirnation of sensitivity quantities related to risk control in 

financia! institutions. This is further related to the approxirnation of densities 

in Wiener space. 

The goal ofthe present article is to estirnate through sirnulations the prob­
ability density function ofF using Malliavin Calculus and discuss sorne of its 

applications, particularly in Finance. 

This problern has attracted sorne interest due to its financia! applications 

although we frarne it here as a general density estirnation problern. 

Usually, the result applied to estirnate a density is the classical integration 

by parts formula of Malliavin Calculus that can be stated as follows. For def­
initions and results we refer the reader to Section 2 of this article or Nualart 

[7], Theorern 2.1.4 and Proposition 2.1.5 p.l 02-103 or Sanz [8], proposition 
5.4 p.67. 

Proposition 1.1 Let G E ][])"', F = (F1, ••• , Fd) E (IDl"')d be a nondegenerate 

random vector. Then 

PF(x) =E [ ú l¡o,oo)(F;- x;)H(1,2, ,d)(F; G) l, (I.I) 
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where 

Ho¡(F;G) 

H(l, ... ,i)(F; G) 

d 

_¿ D*((yf-1
)

11 DFiG), 
J=l 

d 

_¿ D*(H(I .... i-I)(F; G)(yf-1 yJ DFi). (i = 2, ... , d) 
J=l 

Here D* denotes the adjoint operator of the Malliavin derivative operator D 
and y~=< DF;, DFi > is the so called Malliavin covariance matrix. 

The Malliavin covariance rnatrix is a rnatrix with randorn elernents that 
replaces the concept of covariance rnatrix in Gaussian settings. We do not give 
the exact definition of a nondegenerate randorn vector but it cornprises the fact 
that the randorn vector F has to be differentiable and that the Malliavin covari­
ance rnatrix is invertible and its inverse has all rnornents and is differentiable 
too. 

Expression (l. 1) has lead to various results conceming theoretical esti­
rnates of the density, its support etc. Nevertheless this expression is not a 
tractable expression for cornputer sirnulation as it rnay seern at first. 

One can prove that D* is sorne sort of integral which extends the Ito 
stochastic integral. Therefore, H(l, ... ,d)(F; G) is expressed using a d-iterated 
Skorohod integral. 

The Skorohod integral being a non-adapted integral is not easy to sirnu­
late in iterative form and therefore the above expression takes a relatively large 
arnount oftirne to be sirnulated when d is big unless an explicit expression for 
H(l, ... ,d)(F; G) is obtained. Besides this problern, one often finds al so problerns 
ofhigh variance and therefore variance reduction rnethods have to be incorpo­
rated rnaking the problern even less tractable frorn an applied point ofview. 

We try to explain this with sorne experirnent. First, we consider as the 
density to sirnulate the two dirnensionallognormal distribution whose graph is 
given by 
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Lognormal density (deterministic; h=0.01,N=10,000,n=10) 

deterministic --

density 

0.0005 

0.0004 

0.0003 

0.0002 

0.0001 

o 
-0.0001 

-0.0002 

Figure 1: 2-dim. Lognormal Density 

That is, the above is the density of (X/, Xi) so1ution of 

x¡ = lOO+ 0.01 1
1 

X1ds + 0.21
1 

XldWl + 0.31
1 

X~dw;, 

x¡ = 100 + o.o21
1 

X~ds + 0.21
1 

x;dw,' + 0.11
1 

x_~dW~. (1.2) 

Here (W1, W2
) is a 2-dimensiona1 Wiener process. The above equation being 

linear has an explicit solution given by 

1 ( 0.22 + 0.32 1 2) X 1 = IOOexp (0.01-
2 

)t+0.2W, +0.3W1 

2 ( 0.22+0.12 1 2) X¡=100exp(0.02+ 
2 

)t+0.2W1 +0.1W1 • 

Therefore the exact density can be computed which is given in the figure above. 
The parameters h, N and n are the simu1ation parameters that will be used in 
all the examples so that they are easy to compare but in this case they do not 
play any role. 
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Now we use Proposition 1.1 in order to approximate the same density. 
Guided by the law of large numbers we know that 

The index j in the abo ve formula indicates independent copies of the re­
spective random variables. 

Once this simulation is done for (1.3) one obtains 1 

density 

0.0005 

0.0004 

0.0003 

0.0002 

0.0001 

o 
-0.0001 

-0.0002 

Lognormal density (classical; h=0.01,N=10,000,n=10) 

classical --

Figure 2: Classical integration by parts formula ofMalliavin Calculus 

1 In general, one can not expect to sol ve a general non-linear stochastic ditferential equation as 

we did in (1.3). Therefore, one usually uses the Euler-Maruyama approximation of (1.3). That is, 

for n E N, define t; = ~. Then %6 = 100, x5 = 1 00 and 

- 1 - -,¡ ( 1 1 2 2 ) X1 1 
-A1. 1 +0.01(1;+1-1;)+0.2(W1 1

- W1.)+0.3(W1 - W1 ), 
1+ 1 1+ 1 t+l 1 

-,2 -2 ( 1 1 2 2 ) A1. 
1 

= X1 1 + 0.02(t;+l- t;) + 0.2(W1 1 
- W1 ) + 0.1(W1 1 

- W1 ) . 
t+ J 1+ 1 1+ 1 

(1.3) 

So to carry out this simulation, we need to simulate the increments of the Wiener process (which 

ha ve Gaussian laws) and carry out an iterative procedure as the above formula shows. 
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In this case the parameters needed to carry out this simulation are N and 
n. h does not play any role in this approximation. These two values have been 

chosen after general theoretical results that assure that the Monte Cario effects 

are minimized in the above formula. So what we see in the above picture is 

due to the cffect on n the number of intervals taken in the discretization of the 

multiple Skorohod integrals defined in H. Then the expression within H is 

computed explicite! y in al! detail which after simulation gives the above graph. 
The conclusion is clear: The approximation is not very good for values e lose to 
zero. Nevertheless the approximation toward higher values is not sobad. This 

effect is dueto the use ofthe function l¡o,oo)J· Using -1(-oo,o]leads to the reverse 

result. Using 0.5 (t¡o,cx•Jl- 1(-oo,OJ) Jeads to uniform results on the whole space 
but the errors are still big. 

In fact, this result has been known for sorne time and this has purported 

the use of variance reduction methods. Still the amount of calculations seem 

to be too high to think that a variance reduction method is the final solution to 

the problem. 

Recently, Malliavin and Thalmaier [6] (Section 4.5.) gave a new inte­
gration by parts formula that seems to alleviate the computational burden for 

simulation of densities in high dimension. In fact, Malliavin and Thalmaier 
express the multi-dimensional delta function as 

(1.4) 

where f..= I,f= 1 ;:, is the Laplace operator and Qd is the fundamental solution 

of Poisson equati~'n. That is, 

1 -1 1 
Q2(x) = a2 In lxl and QJ(x) = -ad lxl"_2 (d 2: 3). 

Here ad is the arca ofthe unit sphere in R". 

Then they obtain the following representation for the density ofF 

(1.5) 
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Therefore one needs to simulate H(i)(F; G) which involves only one Skorohod 

integral instead ofthe previous d Skorohod integrals. 

In fact, ifwe partition the time interval in N intervals in order to carry out 

simulations ofthe increments ofthe Wienerprocess, then the itcrated Skorohod 

integrals appearing in (1.1) will require the calculation over Nd cross-intervals. 

lnstead formula ( 1.5) only requires N d. Graphically the situation is as follows: 

stock price 

160 

140 

120 

100 

80 

60 

40 

20 

o 

stock 1 

Number al grids 

stock 1 
stock 2 

d assical way O 
stock 2 new way (Malliavin, Thalmaier) 

Figure 3: Number of simulation grids 

That is, in the procedure indicated by formula ( 1.1) we need to simula te 

increments in every blue diamond point indicated in the picture. In comparison 

the Malliavin-Thalmaier formula suggests that only with the simulation in the 

points marked with red diamonds (in both time axis) is enough to carry out the 

simulation. This introduces a reduction from n2 to 2n in the two dimensional 

case. 

In principie, one expects then that the calculation time will be highly re­

duced. Nevertheless, the high variance problem in formula (1.1) is taken to 
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an extreme as thc variance of the estimator in (1.5) is infinite. This problem 

appears because the limit of a~, Qd(x) at x = O is oo. 

In fact, the dcrivatives ofthe Poisson kernel are 

(1.6) 

where i = 1, ... ,d, A2 := a;- 1 and ford;::: 3, Ad := a;"_/(d- 2). 

If one carries the simulation ofthe Malliavin-Thalmaier formula through 
the calculation of 

one obtains the following rcsult 

Lognormal density (Malliavin·Thalmaier formula; h;Q.01 ,N;1Q,OOO,n;1 O) 

M-Tformula --

density 

0.0005 

0.0004 

0.0003 

0.0002 

0.0001 

·0.0001 

·0.0002 

Figure 4: Simulation ofthe Malliavin-Thalmaier formula 

As one can see from the above result, overall this approximation bchaves 
better than the classical formula ( 1.1) but still one has sorne undesirable spikes 
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that come from the unstability ofthe term !!_Q,¡(FUl -x) in the above formula. 
ax; 

These issues do not only appear in localized points as it seems in the above 
picture. This effect al so appears in the local leve) as the following picturcs can 

show. 
Lognonn.-1 derosily(lociii,Ciuo""'l, n-.001 N•10000.n~10) 

(a) Exact answer (b) Classical ibp 

(e) Malliavin-Thalmaier formula 

Figure 5: Local Comparison 

As we can see the same conclusions that were drawn from the global 
picture can al so be drawn at a locallevel. 

Therefore to sol ve this problcm, we propose a slightly modified estimator 
that depends on a modification parameter h which will tcnd to the function 

a~, Q,¡(x) as h ~ O. 
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In fact, we propose: 

For i = 1, ... , d, define the following approximation to _!!_ Qd, 
ax; 

a ""( ) x; -a 'z!d x := Ar---;¡-
x; lxl¡, 

Here lxlh := ~¿1= 1 x¡ + h (h > O, x E Rd). This approach will generate a 
small bias anda large variance which is not infinite. Then we try to control the 
explosive behavior of the variance using the number of simulations. This type 
of calculation is common in kernel density estimation methods although here 
the problem differs in the fact that the modification is not of the same type as 
in kernel density estimation. 

The simulation results for our proposed approximation are as follows. 
After obtaining these error estimations and the corresponding optimal pa­

rameter h, we app1y the Ma11iavin-Thalmaier formula to finan ce, especially to 
the calculation of Greeks. In the one dimensional case, a method to obtain 
Greeks by the integration by parts formula was introduced by Fournié et al [4]. 
Here we focus our attention to the high dimensional case. We give an expres­
sion of Greeks, which is derived using the Malliavin-Thalmaier formula. In 
particular, the weights are free from the curse of dimensionality, that is, the 
expression does not have a d-iterated Skorohod integral. 

In section 2, we set up our problem. In section 3, we estímate the differ­
ence of ( 1.5) and modified density of ( 1.5). In section 4, we obtain the rate 
of divergence ofthe variance ofthe approximative estimator. In section 5, we 
obtain the centrallimiting theorem for the error of approximation. In section 6, 
we consideras an example the two dimensional Geometric Brownian motion in 
order to show the high variance of the Malliavin-Thalmaier estimator and the 
performance of the corrected estimator. In section 7, we apply the Malliavin­
Thalmaier formula to the calculation of Greeks in Finan ce and we compute the 
Delta of a bivariate digital European type option on the final stock value and 
the volatility value under the Heston model. 
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lognOfmal dem;1ty (approx1mai10n, h=0.01 ,N-o1Q,OOO,n=10) 

approx1mabon-

(a) Global view 

(b) Local view 

Figure 6: The approximation ofthe Malliavin-Thalmaier formula 

As this article is pedagogical in nature, we have done this long introduc­
tion to give a first glimpse of our results from the practica! point ofview. Next 
we give the sequence oftheorems that back the simulation results. In this arti­
cle we only quote the results. For the proofs oftechnicallemmas, we refer the 
reader to the full paper that will appear elsewhere. 

Also note that the expression in (1.1) corresponds toa density only in the 
case that G = l. In general, it represents a conditional expectation multiplied 
by the density (see Lemma 3.3). To avoid introducing further terminology, we 
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will keep referring to pp(x) as the "density". 

2 Preliminaries 

Let us introduce sorne notations. For a multi-index a 
{1, ... , d}\ we denote by !al = n the length of the multi-index. 

2.1 Malliavin Calculus 

(a¡, ... ,an) E 

Let (D., T, P; 'F;) be a filtcred probability space. Here {'F;} satisfies the 
usual conditions. That is, it is right-continuous and To contains all the P­

negligible evcnts in r. Suppose that H is a real separable Hilbert space whose 
norm and inner product are denoted by 11 · IIH and < ·, · >H respectively. Let 
W(h) denote a Wiener process on H. 

We denote by C;'(lRn) the set of all infinitely differentiable functions f : 
R.n -t lR such that f and all of its partial derivatives ha ve at most polynomial 

growth. 

Let S denote the class of smooth random variables of the form 

F = f(W(h¡), ... , W(hn)), (2.1) 

where fE C;'(Rn), h¡, ... , hn E H, and n ~ l. 

If F has the form (2.1) we define its derivative DF as the H-valued random 
variable given by 

n a¡ 
DF = ¿ ¿¡-:(W(h¡), ... , W(hn))h;. 

i=l x, 

We will denote the domain of D in LP(Q) by lDl 1·P. This space is the closure 
of the class of smooth random variables S with respect to the norm 

1 

IIFIII.p = {E[IFIP] + E[IIDFII~]}". 
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We can define the itcration of the operator D in such a way that for a 
smooth random variable F, the derivative Dk F is a random variable with values 

on ¡¡®k. Then for every p ;::: 1 and k E N we introduce a seminom1 on S defined 

by 

k 

IIFIIf.P = E[iFjP] + ¿ E[IID1 Fll~t"i]. 
J~l 

For any real p ;::: 1 and any natural number k ;::: O, we will denote by [))k.p 

the completion ofthe family of smooth random variables S with respect to the 
norm 11 • llk,p· Note that IDJ,p e [))k,q if j ;::: k and p ;::: q. 

Consider the intersection 

[))"' = n n [))k.p. 

p~l k~! 

Then [)loo is a complete, countably normed, metric space. 

We will denote by D* the adjoint of the operator D as an unbounded 
operator from L2(D.) into L2(D.;H). That is, the domain of D*, denoted by 
Dom(D*), is the set of H-valued square integrable random variables u such 

that 

jE[< DF,u >H]i :s; ci1Fii2, 

for all F E [))1.2 , where e is sorne constant depending on u. (here 11 • 112 denotes 
the L2(D.)-norm.) 

Suppose that F = (F1, ... , Fd) is a random vector whose components be­
long to the space IDI,I. We associate with F the following random symmetric 
nonnegative definite matrix: 

yp=(<DF;,DFJ>H) ... 
l"Sl,.f-:ód 

This matrix is called the Malliavin covariance matrix ofthe random vector F. 

74 Pro Mathematica, 21, 41-42 (2007), 61-106, !SSN 1012-3938 



Estimating Multidimensional Density Functions 

Definition 2.1 We will say that the random vector F = (F1, ••• , Fd) E (][])oo)d is 

nondegenerate ifthe matrix YF is invertible a.s. and 

(detyFt 1 En Lf'(Q.). 
p~I 

(2.2) 

2.2 Malliavin-Thalmaier Representation ofMulti-Dimensional 
Density Functions 

We represent the delta function by 

in the following sense. If f is a smooth function then the solution ofthe Poisson 

equation 1'1.u = f is given by the convolution Qd * f. 

Definition 2.2 Given the Rd-valued random vector F and the R-valued ran­

dom variable G, a multi-index a and a power p ~ l we say that there is an 
integration by parts formula (IBP formula) in Malliavin sense if there exists a 

random variable Ha(F; G) E LP(Q.) such that 

1 P a,p(F, G) : E r ::" f(F)G] = E[f(F)Ha(F; G)] for all fE C~1 (Rd). (2.3) 

Related to the Malliavin-Thalmaier formula, Bally and Caramellino [2], 

have obtained the following result 

Proposition 2.3 (Bally, Caramellino [2}) Suppose thatfor sorne p > l 

supEr~~Qd(F-a)ll'~' +IQd(F-a)IP~']<oo forallR>O, aERd (2.4) 
lai~R OX, 

(i). {f IP¡,p(F; G) (i = 1, ... , d) holds then the law ofF is absolutely contin­
uous with respect to the Lebesgue measure on Rd and the density PF is 

represented as 

PF(x) =E [t o~¡ Qd(F- x)H(il(F; G)]. (2.5) 
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(ii). If IPa,p(F; G) holdsfor eve1y multi-index a with lal ::; m+ 1 then PF E 

C'(Rd) and for every multi-index p with IPI ::; m one has 

The heuristic idea of the above proof is to use the intcgration by parts 
formula in Malliavin sense as follows 

PF(X) 

Next we impose conditions to assure that the assumptions of proposition 
2.3 are satisfied. The proof is given in the Appendix. 

Corollary 2.4 If G E I!Jl'"', F = (F1, ••• , Fd) E (IIJ)oo)d is a nondegenerate ran­

dom vector, then the probability density function of the random vector F is 

PF(x) = E [f a:. Qd(F- x)H(i)(F; G)J. 
i=l l 

3 Error Estimation 

In this section, we find the rate of convergence ofthe modified estimator 
of the density at x E Rd. Through this section, we always assume G E IIJ)oo, 

F = (F1, ••• , Fd) E (IIJ)oo)d is d-dimensional nondegenerate random variable. 

Therefore IPa,p(F; G) will always hold (sce Nualart [7], Proposition 2.1.4, 
p.l 00 or Sanz [8], Proposition 5.4 p.67). 

We start with sorne definitions and notations to be used in what follows. 
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Definitions and Notation 

l. Define 1 · lh by 

d 

lxlh := ¿ x¡ + h (h > O, x E Rd). 
i=l 

2. For i = 1, ... , d, define the following approximation to aa Qd, 
X¡ 

a nh X¡ 
-<¿ix) := Ar--;¡· 
ax; lxlh 

3. Then we define the approximation to the density function ofF as; 

p}(x) := E [t a~ (Í¡(F- x)H<o(F; G)]. 
i=! 1 

4. Considera function T] which satisfies; 

[ 

(i). 

(ii). 

(iii). 

(iv). 

T] E C;'(Rd), TJ(X) ;:::: 0 (x E Rd), 

supp(TJ) e {x E Rdllxl ::; 1}, 

( TJ(x)dx = 1, 
JR" 
TJ(X) is constant on x E aB(O, r). 

5. For each t: > O, we define T],(x) as 

6. We define ijs(x); 

(3.1) 

(3.2) 

ij,(x) := 1: · · ·1: T]s(y)dy¡ ... dyd. (::; 1 from 4.) (3.3) 

Remark 3.1 ij,(x) has thefollowing property; 

d 1 
ijs(x) ~ n l(F; ::; X;)+ 

2
d l¡o¡(x) (as t: -7 0). 

t=l 
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Lemma 3.2 Let a E { 1, ... , d}n, n E N U {0}, be any multi-index. Suppose 

G E lDl"'. 

Proof By IBP formula, Proposition 2.3 (i), (3.3) and dominated convergence 

theorem, 

lim ~E[r~e(F- x)G] = 
e->0 iJya 

Ji m E [i]e(F- x)H(l ..... d.al(F; G)] 
t:->0 

= E [[ ú l(F¡ :::; X¡) +f,¡I¡o¡(F-x)) H(l ... d.a¡(F; G)] 

= E[[ú l(F;:::; x;)JH(!, .d,a¡(F;G)l < +oo . 

• 
Lemma 3.3 Let G E ][))"'. Then 

lim E[7Je(F- z)G] = E[GIF = Z]PF(Z). 
e->0 

Proof By IBP formula, for cp E C;'(Rd), 

= "'"E~ ( iJ~¡ ... iJ~d n?=l l(F¡ :::; Z¡)) G J cp(z)dz = E[cp(F)G] 

= _k" E[GIF = z]pF(z)cp(z)dz. 

Therefore from Lemma 3.2, 

~~E[7Je(F- z)G] = E[[ú 1(F;:::; z;)JH(!, ... d)(F; G)l = E[GIF = z]PF(z) . 

• 
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3.1 Error Estimation 

The next result gives the order of the error of the approximation to the 

density. 

Theorem 3.4 Let F be a nondegenerated random vector, then 

1 
PF(x)- p}(x) = efh In h + e~h + o(h), 

where 

d 

ex·- '\'ex 
1 .-L.,¡ l,i 

i=l 
and q := f {e~.i + f e~,i.j,k + e~,i} 

i=l j,k=l 

(3.4) 

and the constants appearing above are defined in Lemmas 8.3, 8.4 and 8.5 in 

the Appendix. 

Proof Denote by s; = sin 8; ande; = cos 8; (i = 1, ... , d). As we will have to 
change from rectangular to spherical coordinates, to avoid long expressions we 

define e :=(e,' ... , ed)* as the coordinate change 

z1 - x 1 = rcos(8,) cos(82) · · · cos(8J-z) cos(8d-I) =:re, 

z;-x; = rcos(81) .. ·cos(8J-;)sin(8d-i+I)=:re; (i=2, ... ,d) 

wherc o ~ r < oo, -~ ~ 8} ~ ~. i = 1, ... , d- 2, o ~ 8d-l ~ 27f. 
First note that Q~ and its derivatives are bounded for fixed h. By using Lemma 
3.3, Taylor expansion and spherical coordinates, 

p¡;(x) - p}(x) = E [ L,f= 1 (o~; Qd(F- x)- o~; Q~(F- x)) HuJ(F; G)] 

x (!im8 ....,o <DF (re + x)) drd8, ... d8d-l· 1,s 
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where <I>["(z) = E[TJe(F- z)Hul(F; G)] (i = 1, ... , d). Here note that the limits 
appearing in the above formula exist dueto Lcmma 3.2. 

Next, we consider the integral for r E [0, 1] whcre the following Taylor 
formula is used 

This 1eads to three terms, whose order of convergence are analyzed re­
spectively in Lemmas 8.2, 8.3 and 8.4 and in the Appendix. Finally, thc inte­
gral term for r E [ 1, +oo) is analyzed in Lemma 8.5 in the Appendix. Thercfore 
one obtains that 

PF(x)- p}(x) = 

The constants are explicitly given in the Appendix. • 
4 Estimation of the Variance of the Approxima­

tion 

In this section, we try to estímate the rate at which the variance of the 
estimator using ~ diverges. That is, 

c[(t~;Q){F- x)Hm(F;G)- PF(x)n 

= E [ (t.~; Q)(F- x)H<o(F; G) n + 2PF(x)(PF(x) -l,..(x)l- PF(x)2 

(4.1) 

Note that therefore is enough to estímate the rate of divergence ofthe first 
term in (4.1) as the second term converges toO (proven in Section 3.1) and the 
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third is a constant. The term we will estimate is then 

E [(t a~;~(F- x)Hco(F;G) n 
" [ a a J = I E (J.rj;¡(F- x)-¡¡-.rj;¡(F- x)H(i)(F; G)Hw(F; G) . 

i,j=l XI Xl 

Let <PF (z) := E[r¡6 (F- z)Hr0(F; G)Hw(F; G)]. 
I,.J,E 

4.1 Case d = 2 

Theorem 4.1 Let F be a non-degenerate random vector. Then 

E [(t. a~; (t,(F- x)llcn(F; G)- pp(x) n =e; In~+ 0(1), 

where C~ := ¿:;¡= 1 C~,; and the constants C~.; are defined in Lemma 8.6 in the 
Appendix. 

Proof For i, j = 1, 2, by using Lemma 3.3, Taylor expansion and spherical 

coordinates, 

E [a~; Q~(F- x) a~J ~(F- x)Hu¡(F; G)Hw(F; G) J 

A2 1 1 

l
2rrl21xl+l ?0·0. 

= 2 r o o (r2 + h)2 (4.2) 

l
2rrloo r20·0. ( ) 2 1 1 · 'F 

+A2 r 2 h)Z hm <l>i,J,o(r0 + x) drdB. 
O 21xl+l (r + &-->0 
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Then by using Lemma 8.6, Lemma 8.7 and Lemma 8.9, wc obtain 

2 1 
(4.2) =_¿e;_¡ In h + 0(1). 

i=l • 
4.2 Case d;::: 3 

Theorem 4.2 Let F be a nondenegerated random vector, thenfor d;;::: 3, 

E[(~ .!._(Í¡(F- x)HuJ(F; G)- PF(x)J

2

] = CJ-i- +o(-}-), LJ ax h--1 h,-1 
i=l l 2 -

where c4x = If=I cx8. and the constants cx8. are defined in Lemma 8.11. 
,1 ,1 

Proof For i, j = 1, ... , d, by using Lemma 3.3, Taylor expansion and spherical 
coordinates, 

l2"l~ l~ l] 200 2 
2 

' r "i ".i d-1 d-2 
=A · · · r e · · · cd-2 

d o - ~ -! o (r2 + h )d I 
2 2 

(4.3) 

l
2JTl~ ~ 00 20 0 

2 
2 2 r " i "J d-1 d-2 +A · · · { { r e · · · cd-2 

d o - ~ j-! jI (r2 + h )d I 
2 2 

X (iim &¡,s(r0 + x)) drd8¡ ... d8d-l· 
s-+0 '·' 
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Then from Lcmma 8.11, Lemma 8.12 and Lemrna 8.13, we can obtain 

d 1 1 ( 1 ) (4.3) = ~ e~¡-1- + o(-
1
-) +O --¡::;- + 0(1). 

{;} '!z';-1 hJ.-l h'~- • 
Remark. In particular, for h = O one obtains that the variance ofthe Malliavin­
Thalmaier cstimator is infinite. 

5 The Central Limit Theorem 

Obviously when performing simulations, one is also interested in obtain­
ing confidence intervals and therefore the Central Limit Theorem is useful in 

such a situation. In what follows :=:} denotes weak convergencc and the index 
j = 1, ... , N denote independent copies ofthe respective random variables. For 
differcnt j they are independent. 

Theorem 5.1 Let G be a random variable with standard normal distribution. 

(i). When d = 2, set n = h 1~ 1 and N = h2~~ 1 for sorne constan! e fixed 
h h 

throughout. Then 

n( ~ ~ t a~¡Q~(FUl- x)H(:j(FW; G)- PF(x)J =:=:} ~G +efe. 

(ii). When d ~ 3, set n = -
1 1

e 1 and N = " e' for sorne constant e fixed 
1 n¡; h1+ 1(lnt)' 

throughout. Then 

n ( ~ ~ t a~¡ m(FUl- x)H({i(FUl; G)- p¡:(x) l =:=:} .JCic + C~C. 
Proof Considcr 

n ( ~ ~ t a~¡ m(F(J)- x)H({j(FUl; G)- PF(x) l 
= ; ~ { t a~¡ Q~(FUl- x)Hi~l(FCil; G)- p}(x)} + n(p}(x)- PF(x) ). 
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Dueto the definition of n and Theorem 3.4 we ha ve that the second term 
above converges to efe. Therefore it only remains to prove a central Iimit 
theorem for f¡ I.~=l (;·N,h where 

d 

(]'N,h := I a~ Q~(F(j) - x)Hif!(F(j); G)- p'}(x). 
i=l 1 

To prove this, we compute the characteristic function off¡ I.~=l ;;'J,N.h. Set 

i := ...r::f. By Taylor expansion, Lemma 8.14 and Lemma 8.15, 

where when d = 2, e~ = e~ and when d ~ 3, e~ = e~ and we define the 
remainder term 'R as 

• 
6 Example 

In this section, we apply our approximation result to the multi-dimensional 
log-normal density, that is, the solution of the foiiowing stochastic differential 
equation, 

. d 

dJG- ~ j . --. - J.L¡dt + LJ O"¡¡dW1 , X!J- X¡. 
JG j=! 

(6.1) 

where W = (W1, ... , Wd) is a standard d-dimensional Brownian motion, J.L¡ and 

O"¡¡ are constants. 

The goal in this section is to rcwrite the integration by parts formula in 

various ways so as to compare the different formulations. 
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6.1 The approximation to the Malliavin-Thalmaier formula 
(3.1) 

The only element needed to write the formula (3.1) explicitly is to find 

an expression for the weight HuJCF; G). In our settings, we have to consider 

multi-dimensional settings. 

(1). Seta complete probability space (Q, 'T, P; 'F;), then we consider d-dimen­

sional Brownian motion B1 = (B), ... ,E/)*. 
(2). Next we define h := (h 1, ••• , hd) E H := L2([0, T]; Rd) : [0, T] ~ Rd, 

where h; := 1(- :::; T) E fJ := L2([0, T]; R): [0, T] ~R. 
(3). Then we put, for i = 1, ... , d, W;(·) :=Jo""· dB~: f¡ ~R. 
(4). Let 

f¡(x 1, ... , xd) o [( L-1~1 cr;j) f l .- Y; exp Ji;-
2 

T + L. rr;1x; , 
;~l 

F¡ .- f¡(W¡(h,), ... , Wd(hd)). 

(5). We define the Malliavin dcrivatives D1, ••• , Dd (Di is a map from smooth 

random variables to fl-valued random variables); 

And we define the Malliavin derivative D := (D 1, ... ,V)*; 
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(6). We want to define (D1 )*, ... , (IY')* and D*. Let G, G1, ••• , Gd be a random 
variable. 

(D1)*(Gh) .- GW1(h)- < D1G,h >¡¡ for hE H, (6.2) 

d d d 
J)n')*(G,h,) = I G,W,(h1)- I < D'G,, h, >¡1 

i=l i=l i=l 

1 d ' for h , ... , h E H. 

(7). Finally we define Malliavin covariance matrix 

YF := (< DF',DFi >HkJ=l ..... d· 

And we denote the inverse matrix by y¡;1. 

Then by Lemma 8.16 in the Appendix, we can express the density at x as; 

Id [ F 1 
- x· Id det(I:i) { W(l(· < T)) u T }] (x)=A E 1 (-l)'+i __ l 

1 ~ +-11
-. • (6.3) 

PF d . IF- xld . det(I:) p p 
l=l j=l 

Our approximation to the density is given by 

"(x) =A "E X¡ "(-!)1+i __ t 
1 ~ + ___.!_!_,-- • (6.4) d [ F'- . d det(I:¡) { W(l(· < T)) u ·T}] 

PF d L. IF- xld L. det(I:) p p 
l=l h )=1 

6.2 Simulation 

In figures 7 and 8 we show the result ofthe simulation of (6.3) and (6.4) 
for the 2-dimensional case at time l. That is, 

dXi l 2 dx¡ 1 2 
-

1 
= O.O!dt + O.ldW1 + 0.2dW1 and -

2 
= 0.02dt + 0.3dW1 + 0.2dW1 • 

~ x, 

We ha ve used N = 1 O, 000 Monte Cario simulations at each point. The result 
of (6.3) is in Figure 7 and the approximation of the density (6.4) is in Figure 
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8, where h = 0.01. As it can be seen from Figure 7, there are sorne points 

where the estimate is unstable. This is clearly dueto the infinite variance ofthe 
Malliavin-Thalmaier estimator. 

In Figure 8 these points do not exist dueto the approximation of a~; QJ. 

denSJty 

00005 

Figure 7: equation (2.5) 

dens1ty 

0.0005 

Figure 8: equation (3.1) (h = 0.01) 
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7 Application of the Malliavin-Thalmaier formula 
to Finance 

In this section, we compute Greeks using the Malliavin-Thalmaier For­
mula. We considera random vector FJl = (F~, ... ,~)(¡.¡E Rn; n E N) which 
depends on a parameter Jl. Suppose that FJ1 E ([])oo)d is a nondegenerate ran­
dom vector. And Jet .f(x1, ... , xd) be a payoff function in the following class 
..9{;2 

continuous a.e. w.r.t. Lebesgue measure, 

and there exist constants c,a such that j.f(x)j :::=; (I+Íxl)" (a > 1). } . 

Note that functions in ..9{ are bounded. 
Essentially a greek is defined for f E ..9{, as the following quantity 

U= I, ... ,n) 

As the study of the second derivative is similar we concentrate on the above 
quantity andjust quote the result for second derivatives. First we give a lemma. 

2 Note that for example in the case ofa put option, ifwe define the payoff function (K- x)+; 

then (K- x)+ E .JI. 

{ 
K -X 

(K- x)+ ·= . o 
Os x s K 
otherwise, 

In a digital put option case, payoff function is l¡o,K¡(x). Therefore it's in .JI. 
Next in a digital cal! option case, the payofffunction l¡K,oo)(x) doesn't go toO as x--> oo. But since 
stocks don't take negative value, then we can transformas it follows, 

l¡K,oo)(X) = 1 - l¡n,K)(X). 

And now we want to calculate Greeks, that is, derivation ofthe term 1 is O. lt's enough to calcula te 
the term l¡n,K)(x), which has a compact support. 
Final! y if we want to compute a Greeks for cal! option case (x- K)+, then one uses directly g¡ and 
Ji: after taking the derivative. Although it's known that then a localization is needed. 
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For i = 1, ... , d, set 

g;(y) .- J· · · ( f(x).!!._Qd(Y- x)dx, JR" ax; 

/;(y) .- J· · · ( f(x).!!._ d,}(y- x)dx. JR" ax; 

And obviously for x * O and h -....? O, 

a a 
ax; Q~(x) ~ ax; Qd(x) 

Lemma 7.1 For fE 3{ n LP(R") (p > 1), 

g'¡'(y) ~ g;(y) for all y E {z E R"; f is continuous at z}. 

Lemma 7.2 fE 3{ implies that 

lg;(y)l :S: alyl + b and 1/;(y)l :S: alyl + b, 

where a and b are constants which depend on d and are independent of h. 

The above result follows easily from the assumptions onf. Next we consider 

convergence in L 1 (0). 

Lemma 7.3 Assume that F!l E (Doo)d is a nondegenerate random vector. And 

assume that fE 3{ is continuous a. e. Then 

Proof This lemma is trivial from Lemma 7.1 and Lemma 7.2. 

• 
We denote expectation with respect to p}(x) by Eh[-]. That is, 

Eh[f(F)] := J· · ·l" f(x)p}(x)dx. 
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Lemma 7.4 If fE 3f, then we have 

d 

E[f(FI')] = ¿ E[g;(P')Hu>(F11 ; !)), 
i=l 

d 

Eh[f(Fil)] = ,EE[i'(Fil)H(i)(F11 ; 1)]. (7.1) 
i=l 

Proof By the Malliavin-Thalmaier formula, 

The second equation (7 .1) follows similar] y. • 
7.1 First Derivative Case 

Now we consideran expression of a first derivative. 

Proposition 7.5 Let k E {1, ... ,n} befixed. Suppose thatfor every i = 1, ... ,d, 
a 

Ho, ... ,d.i)(F11 ; 1) is differentiable in Ji k and in L 2(0.), -;:;- Ho. ,d,i)( F11 ; 1) is in 
U Ji k 

aFJl 
L2(Q), and also ~ E LP(Q) (p::::: 4)for al! j = 1, ... , d. Then we have 

U Ji k 

a d a 
-Eh[f(P')] = ¿ -E[i'(P')Hu>(F11 ; 1))---+ 
aJlk i=l aJlk 

d a a ¿ -E[g;(P')Hu>(Fil; 1)) = -E[f(Fil)] 
i=' a Ji k a Ji k 

Fori,j= 1, ... ,d,put 

i/,¡(y) := i/./Yt . ... ,yJ) := ,a. f· · · ( f(x)~Q~(y- x)dx. 
uy1 JRd ax, 
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Remark 7.6 Note that if f E :A then g'j ¡ exists for i = 1, ... ,d. 

Theorem 7.7 Let k E ¡¡, ... , n) be fixed. Let f E :A. Suppose that for j = 
ap; "" 1, ... , n, -a E IDl . Then 

)ik 

Moreover if we assume that for al! i = 1, ... , d, there exists so me g;,; such that 

i:,; ---; g¡,¡ a.e. and r/¡~¡ has polynomial growth (independent of h). 

Proof Wc prove the first part by using integration by parts formula. For i = 
1, ... ,d, 

_!}__E [ ..i_ g'j ( P' )] 
aJlk ay; 

E[t ~..i_i/(P') aF~l 
J=l ay1 ay; aJlk 

d r a ( aF
11 

)1 I E -i/(F11 )Hw Fll; - 1 
. 

J=l ay; aJlk 

where we use ..i_g¡(y) (i = 1, ... , d) has polynomial growth. Thercfore we ob­ay; 
tain thc first asscrtion. 
Thc sccond claim is trivial by the assumptions. • 
In the ncxt section, wc consider Greeks in a second derivative case. 
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Remark 7.8 The expression in Theorem 7. 7 is obviously not unique. In fact 
we also have 

Remark 7.9 Jf i/. (i, j = 1, ... , d) have an explicit representation, then we can 
l,j 

calculate Greeks very easily. This is the case for example, in puf and cal! 
digital options. Jfwe don 't have an explicit expressionfor the multiple integral 
then one can use any approximationfor multiple Lebesgue integrals. Therefore 
we can calcula te Greeks easily. 

Here we consider a similar expression by using the classical expression of a 

density. And we compare to them (only the first derivative case). 

Proposition 7.1 O Let k E { 1, ... , n} be fixed. Assume that f~ · · · f~ /( x )dx 
has at most polynomial growth. Assume that Ho ... ,d)(FJ.l; 1) is differentiable in 
J.i.k· And assume that F; (i = 1, ... , d) is differentiable in J.1. 1 U = 1, ... , n ). 

E l .. ·l f(x)dx I ¡¡-Ho ..... d,i)(FJ.l; 1) + aH(I .. ,d)(FJ.l; 1) . [ 
Fj p; ¡ d oF1 8 }1 

-oo -oo }= ¡ J.l.k 'J.l.k 

This result can be proved using the integration by parts formula. 

7.2 Second Derivative Case 

Next we considera second derivative case. Proofs are similar, so we only 

quote the results. In this section C~(Rn) denotes the class of functions that are 

twice differentiable with to the parameter J.1. E R. 

Proposition 7.11 

• Letk,IE {1, ... ,n}befixed. 
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• Let P' E (lDl"')d be a nondegenerate randorn vector, in C2(R") with 
aF11 aF11 a2F 11 

~, - 1 
E LP(D.) (p 2: 4)for al! j = 1, ... , d and --1

- E LP(D.) (p 2: 4) 
Uflk afl¡ afl¡aflk 

foral! j = 1, ... ,d. 

• Suppose that for every i = 1, ... , d, H0 , ... ,d,l, ... ,d,iJ(F11 ; 1) is in C2(R") and 

a a2 

also -H " ¡· (F11 · 1) --H 1 d · (P· 1) are in L2(D.) a (1, ... , ,l, ... ,l,l) , ' "' "' (1, ... ,<,1, ... , ,1) , . 
flk Ufl¡Uflk 

Then we have 

We prove this proposition as in the proof of Proposition 7.5. For i,j, k = 

1, ... , d, define 

i:,k(y) := g¡',k(y¡ •...• yd) := "'a: f· .. r f(x) "'a mcy- x)dx. 
·' · · UYkUY¡ JRd uX¡ 

aF11 a2F11 
Theorem 7.12 Suppose that for i = 1, ... , d, l, k = 1, ... , n, -' and --'-

Ofl¡ aflkaflt 
are in ][}loo. Then 

Moreover if we assurne thatfor al! i = 1, ... , d, there exists sorne g;,; such that 

g'¡. ~ g;,; a. e. as h ~ O and g'¡. has polynornial growth (independent of h). 
l,l 1,1 

A nd al so fiar all i, J. = 1, ., , , d, ...h. convergences to sorne g;; m a. e. and has bi,l,m •• 
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polynomial growth (independent ofh). Then we have 

d {d r ( aFJJaFJJ)l r ( a
2Fil)l} --7 I I E g;,¡,m(Fil)Hu¡ Fll; a m~ +E g;,;(Fil)Hu¡ Fll; a .; 

i,j=l m=l f.11 'Jlk 'Jlk 'Jli 

= __!!_E[f(Fil)]. 
af.1¡af.1k 

We can prove this theorem by the same way ofTheorem 7.7. 

Remark 7.13 We remark that in the above formula, H(i) requires only one 

Skorohod integral. E ven if higher derivatives with respect to f.1 are considered 

this fact remains unchanged. 

7.3 Example 1 

Now we consider an example. The objective is to calculate Delta in a 
digital type option where the asset is characterized by the Heston model. First 

we define the Heston model as follows; 

dS, = f.1S 1dt+ R ..¡v;s,dWf +p..¡v;S,dW,v, 

dv1 K(B- v1)dt +a- FtdW,v, 

where their initial values for the stock pricc proccss S and the volatility process 
vare s0 and v0 , respective! y. 

And our option price is written as follows 

where r expresses a constant interest rate. Without loss of generality, wc as­
sume that r = O. Ks and Kv are strike prices of stock and volatility respective! y. 
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Remark 7.14 The Heston modelleads to an incomplete market. Therefore 
there are many equivalen! martingale measures. We do not discuss that prob­

lem here. 

Then the Delta of above option is; 

a 
-E[t(Ks::; Sr)1(vr::; Kv)] 
aso 

=E[1(Sr~Ks)1(vr::;Kv) WIT 1· (7.2) 
.,ji- p2s0 fo -.JVudu 

Remark 7.15 In the Heston model, one has to prove the Malliavin differentia­

bility of v. This result can be found in A los, Ewald [1}. In fact, the volatility 
process v1 is not in ITY". But since s0 depends on only S1 and v1 is independent 

of Wf, the abo ve calculation works well. in fact, this is also one case where 
g¡ can be computed explicitly which is complete/y independent ofthe assumed 

model. 

We simulate above Delta by using the following parameters; s0 = 100, f1 = 
0.1, vo = 0.08, K= 2, (} = 0.08, rr = 0.2, Ks = 100, Kv= 0.08, p = 0.2, t = 
l. Anda number oftime step n =50. When pricing, then a number ofMonte 
Cario simulation N = 1 O, 000, 000 times. The gradient of Figure 9 is about 

0.008, and the delta by equation (7.2) is close to 0.008. (Figure 10 and Figure 
11 ). 

Remark 7.16 We have chosen the above parameter so as to ensure the exis­

tence and uniqueness of the equation defining v and so that is strictly posi­
tive with probability one. For more details, see Section 6.2.2. in Lamberton, 
Lapeyre [5}. 

7.4 Example 2 

Here we give an example in higher dimensional case. We consider d-

dimensional linear stochastic differential equation case S1 (S!, ... , Sf) de-

Pro Mathematica, 21, 41-42 (2007), 61-106, ISSN 1012-3938 95 



A. Kohatsu-Higa and K. Yasuda 

fined by 

PnC<O­
Vanauc.o ·• 

Figure 9: Initia1 price - Option price 
Mofllll Carto- Deta and Vanance (rho~O 2 n:SO) 

Nwnber o1 MQnt., Cario 

Oelle­
Varoance •• 

Figure 10: MC - Delta 

. d 

dS~ ,;(SI si-l si+! Sd)d ~_;(SI si-l si+l Sd)dWJ --~ = /l t' ... , t ' t ' ... , f t + ú u j t' ... , t ' t ' ... , t f' 

s, j=l 

where i = 1, ... , d, and { W/ }, ... , { Wfl are d-independent Brownian motions. For 
· · 1 d ; a-i Rd-l R C""(Rd-I) b1 fu f d ; l,J = , ... , , J1, 

1 
: ~ are measura e nc tons an (Ti 

are bounded. 
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MC Delta Variance 

103 0.00954274 0.000392088 

104 0.0081553 0.000345127 
105 0.0082723 0.00034328 

106 0.00828167 0.000345285 

107 0.00830052 0.000346419 
108 0.00830217 0.000346655 

Figure 11: Delta & Variance 

And we consider the following option; for fE 3{, 

Then from Theorem 7.7, the delta ofthis option is; k= 1, ... , d 

d r i ( j )J -rT a S T - X¡ as T 
=e ¿e -J··· ( f(x¡, ... ,xJ) ddxH(J) Sr;-a 

. . alJ¡ JRd ISr - xl Sk 
l,j=l J 

Again, we remark that in various cases the above multiple Lebesgue integral 
can be computed explicitly and the simulation of the above quantity requires 
only one Skorohod integral which in many cases can be written explicitly. 

8 Appendix 

Here we quote various technical lemmas use throughout the text. For 
proofs, we refer the reader to the full paper that will appear elsewhere. 
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8.1 Proof of Corollary 2.4 

Lemma 8.1 For X¡ :2: O (i = 1, ... , d), the following inequalities hold; 

(i). For d = 2 and 1 < K < 2 - l we have 
p 

l x,lxl ..1'..... _..J'..... { p _ 1 :!E.:.'.} 
IQ2(Y)I"- 1 dy¡ dy2 :S: 2rrs2 "-

1 + lxlr-l . 
O O (2- K)p- 2 

1il). Forp >!!. > :l. \' 2 - 2' 

(iii). For p > d :2: 2, 

l
XJ lXI 1 a 1 f¡ J 1 ..1'..... p - 1 p-d 

· · · -Qd(Y) dy¡ ... dyd :S: (2rr)- A~-~ --lxl"-1 (i = 1, ... ,d). 
o o 8y¡ p- d 

8.2 Lemmas used in the proof of Theorem 3.4 

Lemma 8.2 For i = 1, ... ,d, 

( ) l t (r2 + h)~ - rd 
Ad Iim <I{;(x) " dr 

s->0 • o (r2 + h) 2 

l
2lf ~ ~ 

2 2 d-2 
x 

0 
J~ ···J~ G¡c 1 ···cd_2de, ... ded-t =0. 

2 2 

Lemma 8.3 For i, j = 1, ... , d, 

c;.,h In* +Ci_,h+o(h) (i=j) 

(itj) 
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where 

Cf,¡ .- ~Ad(lim~<l>[,;(x)) (
2
" f 1 

... r~ etcf-2 ···Cd-2d81···d8d-1· 
4 t:-+0 oy¡ Jo j_! j_! 

2 2 

C~.i .- Ad( lim ~<l>["(x)) (
2
" (Í · · · (i e¡ cf-2 

· · · cd-2d81 · · · dBd-1 
e-+O ov¡ Joo J_! J_! 

- 2 2 

[l
1 

(u
2 + 1)~- ud 1 " 1 x u , d du+-(ln(2)-ln(2d+22))+Acf3, 

o (u~+ !)2 4 

and M3 is a constan! (defined in the prooj). 

Lemma 8.4 For i, j, k= 1, ... , d, 

Ad l2" ¡Í f'i ll 2 (r2 + h)~ - rd d-2 
- · · · r 

2 
d 8¡8¡8kc1 · · · Cd-2 

2 o -; -; o (r + h):;: 

l
l [)2 

X 
0 

:.,, <l>[e(x + yr8)dydrd81 · · · d8d-1 
O 'Ykuy¡ 

= c~,i,j.kh + o(h ), (8.1) 

where 

ex ... := dAd l2" ¡Í .. ·JÍ ll 8¡8 ·Gkcd-2 ... cd-2 
3,1,f,k 4 J 1 

o -1 -~ o 

x l 1 

(lim ~<l>{,(x + yre)) dydrd81 · · · d8d-l· 
o e-+0 aykoy¡ ' 

Lemma 8.5 For i=l, ... ,d, 

12" f'i f'i loo (r2 + h)~ - rd d 2 ( F ) 
Ad · · · " 8¡c1- · · • CJ-2 lim <l>i,e(r8 + x) 

o -; -1 1 (r2 + h)2 e-+0 

drd81 ... d8d-1 = c~_¡h + o(h), (8.2) 

where 
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8.3 Lemmas used in the proof of Theorem 4.1 

We give sorne lemmas for Section 4.1. 

Lemma 8.6 For i, j = 1, 2, 

( ) i
21xl+ 1 ? i2rr 

A~ lim <Í>[1,6 (x) 2 h)2 dr G;G1de 
.,_,o o (r + o 

=J e~.;In~+O(l) (i=j) . (S.3) 

l o (ii:. j) 

where 

e5x, = :!:2 A~ (!im <Í>~ 6 (x)). 
' s->0 '' 

Lemma 8.7 For i,j, k= !, 2, 

i
2rri21xl+l r4G;G¡Gk {. (il a A )} A~ ( 2 · ) 2 hm -ct>{,¡,s(x + yrG)dy drde :::;; e6 , 

o o r + h t:->0 o ayk 

where e6 is a constan! independent on x. 

Proof By Lemma 3.2, lim6 _,o(};/ a~k <Í>[1,6(x + yrG)dy) is uniformly bounded. 
Therefore the result follows. • 
Lemma 8.8 Let F be a nondegenerate random vector and G E IIJJ"'. For p ;::: !, 

then there exists so me constan! e such that 

lim E[r¡s(F- x)G] :S: !:..._ (x E Rd). 
s->0 lxiP 

Proof Using the IBP formula, where a; E { 1, ... , d), i = 1, ... , n 

n n Xa, ~~E[r¡~(x)G] 
i=l 

=E[[_!__···_!__ IÍ l¡o,oo¡(F;- x;)J n Fa,G] 
8x¡ 8xd i=I i=l 

=E [[ ó l¡o,oo¡(F¡- X¡)J Ho, ... d)(F; ú Fa,G) l:::;; e< OO. • 
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Lemma 8.9 For i, j = 1, 2, 

l 2" l"' r2e e. ( ) 2 1 J · 'F A2 r 2 2 hm <1\¡.e(rE> + x) drdB::; e7. 
o 21xl+1 (r + h) e->0 . 

Proof From Lemma 8.8, 

1 12" l"' ,.2e.e. ( ) 1 A~ r 2 

1 1
, lim <1>;¡ ,(rE>+ x) drdB 

O 21xl+1 (r + h)~ e->O ·' 

< A2 drde l 2¡r l"" r3 e 
-

2 
o 21xl+1 (r2 + h)2 lrE> + xF 

e 
<---- 21xl + 1 · 

8.4 Lemmas used in the proof of Theorem 4.2 

We give sorne 1emmas for Section 4.2. 

Le mm a 8.1 O Set I(n, m) = J sinn x cosm xdx (n + m * 0). Then 

I(n,m) = 

= 

sinn- 1 x cosm+ 1 x n- 1 
----- + --I(n -2,m) 

m+n m+n 
sinn+ 1 x cosm- 1 x m- 1 
----- + --J(n,m- 2). 

n+m m+n 

Proof This is proven using the integration by parts formula. 

Lemma 8.11 For i,j = 1, ... , d, 

• 

• 

l 2"J1 JÍl1rJ+1ee. { } 2 1 1 d~ · 'F 
Ad · · · 2 d c1 · · · cd-2 hm <l>¡J,(x) drd81 ... ded-1 

o - Í - Í o (r + h) e->0 

{ 

X l ( 1 ) . . e8,i_,¡_ +o-,¡- (z =j) 
= h2- 1 h2- 1 

O (U:. j), 
(8.4) 
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where 

(d = 3) 

(d ~ 4 : even) 

q_¡= 

d~? 

where if d = 5, then we define nk!o ~:~~ = l. 

Lemma8.12 Fori,j,k= l, ... ,d, 

l
2

rr lÍ lÍ l' rd+
2
0 0 ·0 2 1 J k d-2 

Ad · · · 2 d c 1 · · • CJ.-2 
o -Í -1 o (r + h) 

{ . l' a -F } ( 1 ) X hm -;;-<I>i,J,s(x + yr0)dy drd8 1 ••• ded-t =O ,_3 • 

s-.0 o uyk h 2 

Proof By Lemma 3.2, lims-.o(J;/ iJ~k éi>f1)x + yr0)dy) is boundcd. Therefore 
the result follows. 

• 
Lemma 8.13 For i, j = 1, ... , d, there exists sorne constant C su eh that 

Proof By Lemma 3.2, lim8 ..,.0 éi>F (r0 + x) is bounded. Thcn wc can easily 
l,J,S 

check. 

• 
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8.5 Lemmas used in the proof of Theorem 5.1 

In this section, we give sorne lemmas used to prove the central limit 

theorem. 

Lemma 8.14 For any d :2:: 2 andO< p < !. we have 

Lemma 8.15 

E[(<""')']= { 
l 

e~ ln h + 0(1) 

X 1 (h 2-d) C4-d- +o 2 
h2-J 

(d = 2) 

(d :2:: 3). 

Proof In the case of d = 2, the result follows from Theorem 3.4 and Theorem 

4.1. In the case d :2:: 3 it follows from Theorem 3.4 and Theorem 4.2. 

• 
8.6 Lemma for Section 6.1 

Here we obtain the weights HciJ in the classical setting. 

Lemma 8.16 Let F be a nondegenerate random vector then the density ofF = 
X1, solution of equation (6. 1 ), can be expressed as 

(x) =A fE [ F¡- X¡ f(- 1 )i+kdet(I:~) { Wk(1(- .~ T)) + CT¡kT}]· (8.S) 
p F d Li IF - xld Li det(I:) F 1 P 

t=l k=l 

Proof For i, 1 = 1, ... , d, we have 
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We solve this simultaneous equation by using Cramer's formula and ob­

tain ax~~x1 Qd(F- x); 

where 

& 
--Qd(F-x) 
8x¡8x1 

d 

= F d
1 

( )1(·:::;; T) ~(-Ii+1 det(I.J)Dk(_.!!__Qd(F-x)) a.s., 
J et 'L f;j ax, 

I.J is a (d- 1) x (d- 1) matrix obtained from 'L by deleting row k and column 

J. 
Then by a duality argument; 

(8.6) 

The result follows from (6.2). • 
Remark 8.17 In the above proof, we need to introduce a local property. Since 
the function 8

8 Qd(x) doesn 't satis.JY the Lipschitz condition (See Proposition 
X¡ 

1.2.4., p.29 in Nualart {7]), the chain rule doesn 't work well. But now F has a 

continuous density. Then P(F = x) = O. 
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Resumen 

La fórmula de Malliavin-Thalmaier se introdujo para la simulación de fun­
ciones de densidad de probabilidad multidimensionales. Cuando la fórmula de 
integración por partes se aplica directamente en simulaciones computacionales, 
mostramos que es inestable. Proponemos una aproximación a la fórmula de 

Malliavin-Thalmaier. En este trabajo hallamos el orden del sesgo y la varianza 
del error de aproximación y obtenemos una fórmula explícita de Malliavin­
Thalmaier para el cálculo de las Griegas en finanzas. Los pesos obtenidos 
están libres del problema de la multidimensionalidad. 
MSC 2000: 60H07; 60H35; 60160; 62007; 65C05; 60F05 
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Palabras Clave: Cálculo de Malliavin, Ingeniería Financiera, Griegas, Análisis de Sen­

sibilidad, Estimación de Densidad. 

Comentarios Finales 

Este artículo es una versión resumida de la presentación que tuve el honor 
de impartir durante el Congreso Internacional de Matemáticas PUCP realizado 
entre el 14 al 17 de agosto del 2007. Fui estudiante de la carrera de Estadística 
durante los años 1981-1985. Como expresé durante la mesa redonda del dia 
16 de agosto, la educación recibida durante aquellos años fue fundamental 
para poder establecerme en mi mundo profesional. Hasta cierto punto, lo más 
importante de aquellos años, más allá del conocimiento específico, fue la habi­
tuación al método matemático de rigurosidad. Esto se demuestra efectivamente 
con el hecho de que la gran mayoría de graduados de la PUCP en el área de 
matemáticas han trabajado en áreas relacionadas al álgebra. 

Sin embargo, no quiero dejar de lado el hecho que más allá de intentar 
cubrir muchas áreas lo más importante siempre fue cubrir pocas y con inten­
sidad. No quiero tampoco decir que la educación recibida fue perfecta. Pero 
si quiero decir que me dio lo suficiente para poder finalmente sobrevivir en el 
díficil mundo de la investigación. 

Siempre hay espacio para mejorar y deseo que los pasos tomados sean 
en esta dirección. Finalmente deseo agradecer a los organizadores de este 
Congreso así como a todos mis profesores de aquellos años por la educación 
recibida. 

Esta nota se ha escrito tomando en cuenta el aspecto divulgador por encima 
de la exactitud matemática. Los detalles matemáticos de las pruebas aparecerán 
en otro artículo. 

Arturo Kohatsu-Higa 
Kazuhiro Yasuda 

Osaka University, Graduate School of Engineering Sciences, 
Machikaneyama cho 1-3, Osaka 560-8531. Japan 

arturokohatsu@gmail.com 

106 Pro Mathematica, 21, 41-42 (2007), 61-106, ISSN 1012-3938 


