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Abstract

The Malliavin-Thalmaier formula was introduced for
simulation of high dimensional probability density functions.
But when this integration by parts formula is applied directly

in computer simulations, we show that it is unstable. We
propose an approximation to the Malliavin-Thalmaier
formula. In this paper, we find the order of the bias and the
variance of the approximation error. And we obtain an
explicit Malliavin- Thalmaier formula for the calculation of
Greeks in finance. The weights obtained are free from the
curse of dimensionality.
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1 Introduction

Let (Q = C([0, T]; RY), F, P) denote the canonical Wiener probability
space whose canonical process denoted by W is a Wiener process. The o-
field on Q, F, is given by the smallest o-field generated by the sets of the
type {x € Q; x(t1) € Aj,...x(t,) € Ay} forn € N, #;,..,1, € [0,T] and
A, ..., A are Borel sets in R?. The measure P is such that the canonical process
W : Qx[0, T] — R?is a measurable map from the product o~field F®B([0, T])
where B([0, T]) denotes the Borelian o-field on [0, 7] such that W(x, f) = x(¢)
satisfies

1. W(x,) : [0,T] — R¢ is continuous in [0, T] for P-almost all x € Q.
By an abuse of notation, we sometimes write W(f), W, to emphasize that
these are random variables when the time variable is fixed.

2. Given 0 =ty < t; < ... < t, = T the random vector (W(t,) — W(t,—y), -..,
W(t) — W(t)) 1s Gaussian distributed with mean zero and diagonal co-
variance matrix with i-th element #,_;, | — #,_;.

In this set-up one defined the filtration associated with W as the family of
o-algebras (F)iep0.r)- ¥ is the smallest o-field that makes W(s), s < f random
variables with respect to this filtration.

The goal of Malliavin Calculus 1s to set up conditions under which a ran-
dom variable F : Q — RY, F = (Fy, ..., Fy) (d > 2) has a smooth density. In
the particular case that F 1s the final value of a diffusion process, the Malliavin
result leads to the celebrated Hérmander theorem that states the existence of a
fundamental solution of a parabolic partial differential equation.

Instead of following the path of a rigorous mathematical sequence of def-
initions that can be found in [7], we will just give the heuristics behind the
definitions. The idea is to define a differential calculus on the space Q. The
problem is that Q = C([0, T]) is not a Hilbert space so defining a derivative is
not an easy matter. Furthermore, most of the interesting functionals will not
be differentiable is the derivative 1s defined in the Frechet sense, as is the case
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of e.g. solutions of stochastic differential equations. In fact, the derivative is
defined in an a.s. sense and only with respect to directions given in

H' = {x € C([0, T)); x is differentiable for almost all ¢ € [0, 7] and x € L?[0, T]}.

In probability this is known as the Cameron-Martin space. Then once the
derivative denoted by D 1s defined one proves a chain rule property stating that
Df(F) =< Vf(F), DF >, that this operator is closable and therefore its adjoint
D~ 1s well defined but it is an unbounded operator. From here one obtains the
important integration by parts formula which is given in Proposition 1.1 below.

Although the goal during the first 20 years of Malhavin Calculus was
the theoretical study of the densities of random variables. It was in an article
authored by a group led by P.L. Lions [4] that they discovered the applications
of this formula to estimation of sensitivity quantities related to risk control in
financial institutions. This is further related to the approximation of densities
in Wiener space.

The goal of the present article is to estimate through simulations the prob-
ability density function of F using Malliavin Calculus and discuss some of its
applications, particularly in Finance.

This problem has attracted some interest due to its financial applications
although we frame it here as a general density estimation problem.

Usually, the result applied to estimate a density is the classical integration
by parts formula of Malliavin Calculus that can be stated as follows. For def-
initions and results we refer the reader to Section 2 of this article or Nualart
[7], Theorem 2.1.4 and Proposition 2.1.5 p.102-103 or Sanz [8], proposition
5.4 p.67.

Proposition 1.1 Let G € D%, F = (F\, ..., F,) € (D*)? be a nondegenerate
random vector. Then

d
pr®) = E|[ [ oe(Fi = x)Hy 2...a/(F; G) | (1.1)

i=1
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Here D™ denotes the adjoint operator of the Malliavin derivative operator D
and v}, =< DF', DF/ > is the so called Malliavin covariance matrix.

The Malliavin covariance matrix is a matrix with random elements that
replaces the concept of covariance matrix in Gaussian settings. We do not give
the exact defimition of a nondegenerate random vector but it comprises the fact
that the random vector F has to be differentiable and that the Malliavin covari-
ance matrix 1s invertible and its inverse has all moments and is differentiable
too.

Expression (1.1) has lead to various results concerning theoretical esti-
mates of the density, its support etc. Nevertheless this expression is not a
tractable expression for computer simulation as it may seem at first.

One can prove that D* is some sort of integral which extends the Ito

Skorohod integral.

The Skorohod integral being a non-adapted integral is not easy to simu-
late in iterative form and therefore the above expression takes a relatively large
amount of time to be simulated when d is big unless an explicit expression for
of high variance and therefore variance reduction methods have to be incorpo-
rated making the problem even less tractable from an applied point of view.

We try to explain this with some experiment. First, we consider as the
density to simulate the two dimensional lognormal distribution whose graph is
given by
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Lognormal density {deterministic; h=0.01,N=10,000,n=10)

deterministic
density

0.0005
0.0004
0.0003
0.0002
0.0001

-0.0001
-0.0002

Figure 1: 2-dim. Lognormal Density

That is, the above is the density of (X}, X?) solution of

t { !
X! 100+0.01fX;ds+0.2fX;dW;+o.3f)(j.dW3,
0 0 0

X;

! f 4
100+0.02f)(3.ds+o.2fx§dwj+0.1fX3.dW§. (1.2)
1] 0 0

Here (W', W?) is a 2-dimensional Wiener process. The above equation being
linear has an explicit solution given by

0.22 +0.32
2

= 100 exp ((0.01 - ) +02W! +0.3 W})

0.2 +0.12

X? = 100 exp ((0.02 + Y +02W! +0.1 W}) .

Therefore the exact density can be computed which is given in the figure above.
The parameters s, N and n are the simulation parameters that will be used in
all the examples so that they are easy to compare but in this case they do not
play any role.
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Now we use Proposition 1.1 in order to approximate the same density.
Guided by the law of large numbers we know that

N

d
I ) A
pr(x) = ~ Z ﬂ llo.oo)(F,-(' —x) | Ha,a(F; 1)V

j=1 \i=1

The index j in the above formula indicates independent copies of the re-
spective random variables.

Once this simulation is done for (1.3) one obtains!

Lognormal density (classical; h=0.01,N=10,000,n=10)

classical

density

0.0005 -
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i \Y 1 \
'ML

0.0003

0.0002
0.0001

e
1/ A?

0

-0.0001
-0.0002 - 800
03¢ stock 2

Figure 2: Classical integration by parts formula of Malliavin Calculus

'In general, one can not expect to solve a general non-linear stochastic differential equation as
we did in (1.3). Therefore, one usually uses the Euler-Maruyama approximation of (1.3). That is,
forn € N, define ; = £. Then X} = 100, X3 = 100 and

= X} (14 001(t1 = 1)+ 0200, | = W)+ 03(W, - WD),
XZ

tix]

= X7 (1 +0.02(6i1 — 1) + 0200}, = W) + 0A(WZ, - WD). (1.3)

So to carry out this simulation, we need to simulate the increments of the Wiener process (which
have Gaussian laws) and carry out an iterative procedure as the above formula shows.
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In this case the parameters needed to carry out this simulation are N and
n. h docs not play any role in this approximation. These two values have been
chosen after general theoretical results that assure that the Monte Carlo effects
are minimized in the above formula. So what we see in the above picture is
due to the effect on n the number of intervals taken in the discretization of the
multiple Skorohod integrals defined in H. Then the expression within H is
computed explicitely in all detail which after simulation gives the above graph.
The conclusion is clear: The approximation is not very good for values close to
zero. Nevertheless the approximation toward higher values is not so bad. This
effect is due to the use of the function 1jg ). Using —1(_« o] leads to the reverse
result. Using 0.5 (T;g,00)] — 1(=c0,07) leads to uniform results on the whole space
but the errors are still big.

In fact, this result has been known for some time and this has purported
the use of variance reduction methods. Still the amount of calculations seem
to be too high to think that a variance reduction method is the final solution to
the problem.

Recently, Malliavin and Thalmaier [6] (Section 4.5.) gave a new inte-
gration by parts formula that seems to alleviate the computational burden for
simulation of densities in high dimension. In fact, Malliavin and Thalmaier
express the multi-dimensional delta function as

do(x) = AQu(x), (1.4

where A = Zf:l :7 is the Laplace operator and @, is the fundamental solution
of Poisson equatio'n. That is,

Oh(x) = a;l Inlx{ and Qu(x) = —a;l

d>3).

[x[4-2
Here ay is the area of the unit sphere in RY.

Then they obtain the following representation for the density of F
S
pr(x) = E ZI 5, QulF = 0Hy(F; G) . (1.5)
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Therefore one needs to simulate H;,(F; G) which involves only one Skorohod
integral instead of the previous d Skorohod integrals.

In fact, if we partition the time interval in N intervals in order to carry out
simulations of the increments of the Wiener process, then the iterated Skorohod
integrals appearing in (1.1) will require the calculation over N cross-intervals.
Instead formula (1.5) only requires Nd. Graphically the situation is as follows:

Number of grids
stock 1
stock 2
) classical way (o4
stock price stock 2 New way (Mailiavin, Thaimaier) +
stock 1
160 ~ " ’ 103.678
123923 e )
140 /™ N 100

w2 | T B / /l
100 }/

80 r

60

time of stock 2

Figure 3: Number of simulation grids

That is, in the procedure indicated by formula (1.1) we need to simulate
increments in every blue diamond point indicated in the picture. In comparison
the Malliavin-Thalmaier formula suggests that only with the simulation in the
points marked with red diamonds (in both time axis) is enough to carry out the
simulation. This introduces a reduction from n? to 2x in the two dimensional
case.

In principle, one expects then that the calculation time will be highly re-
duced. Nevertheless, the high variance problem in formula (1.1) is taken to
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an extreme as the variance of the estimator in (1.5) is infinite. This problem
appears because the limit of %Qd(x) at x = 0 1is oo.

In fact, the derivatives of the Poisson kernel are

—Qd< )= Aap (1.6)

where i = 1,...d, 4; 1= a;" and ford > 3, A, = a;'(d - 2).

If one carries the simulation of the Malliavin-Thalmaier formula through
the calculation of
1 4L o
~ () _ ) )
Pr0 = 57 2, 2. g 0P~ ()Y

H

one obtains the following result

Lognormat density (Malliavin-Thalmaier formula; h=0.01,N=10,000,n=10)

M-T formula
density
0.0005 } ' "’."
0.0004 | ,‘M ’ ’ “.\\
0.0003 |- ‘4’ ” «
00002 - i n.‘ “M‘ 'l\',\ RS
0.0001

-0.0001

-0.0002

8O-
stock 1

Figure 4: Simulation of the Malliavin-Thalmaier formula

As one can see from the above result, overall this approximation behaves
better than the classical formula (1.1) but still one has some undesirable spikes

Pro Mathematica, 21, 41-42 (2007), 61-106, ISSN 1012-3938 69



A. Kohatsu-Higa and K. Yasuda

o 0 ‘ .
that come from the unstability of the term ™ Q4(FY ~x) in the above formula.
1

I
These issues do not only appear in localized points as it seems in the above
picture. This effect also appears in the local level as the following pictures can
show.

Lognormal densiy (tocal; Oeterministic; he.01 N*10,000.10) Lognormal denshy (local; Ciassical; 1=0.01 Nx10,000,n+10)

dansty Dererministic ~—— densry Classical ——

(a) Exact answer (b) Classical ibp

formuta; he0.01

deraity MT tormuda —

(¢) Malliavin-Thalmaier formula

Figure 5: Local Comparison

As we can see the same conclusions that were drawn from the global
picture can also be drawn at a local level.

Therefore to solve this problem, we propose a slightly modified estimator
that depends on a modification parameter £ which will tend to the function
L 0u(x)ash — 0.
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In fact, we propose:

| g
Fori = 1,...,d, define the following approximation to EQ‘I’

a
ax,»

Xi

Ix[s

QZ(X) = Ay

Here x|, := ‘/Zle xf +h (h >0, x € RY. This approach will generate a
small bias and a large vanance which is not infinite. Then we try to control the
explosive behavior of the variance using the number of simulations. This type
of calculation is common in kernel density estimation methods although here
the problem differs in the fact that the modification is not of the same type as
in kernel density estimation.

The simulation results for our proposed approximation are as follows.

After obtaining these error estimations and the corresponding optimal pa-
rameter 4, we apply the Malliavin-Thalmaier formula to finance, especially to
the calculation of Greeks. In the one dimensional case, a method to obtain
Greeks by the integration by parts formula was introduced by Fournié et al [4].
Here we focus our attention to the high dimensional case. We give an expres-
sion of Greeks, which is derived using the Malliavin-Thalmaier formula. In
particular, the weights are free from the curse of dimensionality, that is, the
expression does not have a d-iterated Skorohod integral.

In section 2, we set up our problem. In section 3, we estimate the differ-
ence of (1.5) and modified density of (1.5). In section 4, we obtain the rate
of divergence of the variance of the approximative estimator. In section 5, we
obtain the central limiting theorem for the error of approximation. In section 6,
we consider as an example the two dimensional Geometric Brownian motion in
order to show the high variance of the Malliavin-Thalmaier estimator and the
performance of the corrected estimator. In section 7, we apply the Malliavin-
Thalmaier formula to the calculation of Greeks in Finance and we compute the
Delta of a bivanate digital European type option on the final stock value and
the volatility value under the Heston model.
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Lognormal density (approximaion; h=0.01,N=10,000,6=10)

approximation

density

(a) Global view

Logaorial donsty focs, Apprusimaon h=0 01,N<10,000,1<10)

(b) Local view

Figure 6: The approximation of the Malliavin-Thalmaier formula

As this article is pedagogical in nature, we have done this long introduc-
tion to give a first glimpse of our results from the practical point of view. Next
we give the sequence of theorems that back the simulation results. In this arti-
cle we only quote the results. For the proofs of technical lemmas, we refer the
reader to the full paper that will appear elsewhere.

Also note that the expression in (1.1) corresponds to a density only in the
case that G = 1. In general, it represents a conditional expectation multiplied
by the density (see Lemma 3.3). To avoid introducing further terminology, we
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will keep referring to pr(x) as the “density”.

2 Preliminaries

Let us introduce some notations. For a multi-index o = (ay,...,@,) €
{1,...,d}", we denote by |a| = n the length of the multi-index.

2.1 Malliavin Calculus

Let (Q,F, P;F,) be a filtered probability space. Here {F,} satisfies the
usual conditions. That is, it is right-continuous and ¥, contains all the P-
negligible events in . Suppose that A 1s a real separable Hilbert space whose
norm and inner product are denoted by || - ||z and < -,- >p respectively. Let
W(h) denote a Wiener process on H.

We denote by C’(R") the set of all infinitely differentiable functions f :
R” — R such that f and all of its partial derivatives have at most polynomial
growth.

Let S denote the class of smooth random variables of the form

F = f(W(h), ..., W(h,)), (2.1)

where f € C;°(R"), hi,..,h,e H andn > 1.

If F has the form (2.1) we define its derivative DF as the H-valued random
variable given by

DF = Z 9 (W(hy), ..., W(h)h;.

=1 Ox;

We will denote the domain of D in LP(Q) by D', This space is the closure
of the class of smooth random variables S with respect to the norm

1F1, = {E[iFP] + E[IDFIE ).
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We can define the iteration of the operator D in such a way that for a
smooth random variable F, the derivative D*F is a random variable with values

on H®. Then for every p > 1 and & € N we introduce a seminorm on S defined
by

1@/

k
IFIZ, = E[FP]+ " E[\DFI,
J=1

For any real p > 1 and any natural number & > 0, we will denote by ID*?
the completion of the family of smooth random variables S with respect to the
norm || - || . Note that D/? ¢ D¥ if j > k and p > q.

Consider the intersection

= ([ Dt

p21 kx1
Then D is a complete, countably normed, metric space.

We will denote by D* the adjoint of the operator D as an unbounded
operator from L?(Q) into L?>(Q; H). That is, the domain of D*, denoted by
Dom(D"), is the set of H-valued square integrable random variables u such
that

|E[< DF,u >y]| < cllFll2,

for all F € D2, where ¢ is some constant depending on . (here || - ||, denotes
the L?(Q)-norm.)

Suppose that F' = (F,..., Fy) is a random vector whose components be-
long to the space D'!. We associate with F the following random symmetric
nonnegative definite matrix:

YE = ( < DFi,DFj >H )lgtls

This matrix is called the Malliavin covariance matrix of the random vector F.
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Definition 2.1 We will say that the random vector F = (F\, ..., Fq) € (D®) is
nondegenerate if the matrix yg is invertible a.s. and

(detyr)™ € () 2/(Q. 2.2)

pzl
2.2 Malliavin-Thalmaier Representation of Multi-Dimensional
Density Functions

We represent the delta function by
So(x) = AQu(x) (x€RY, d22),

in the following sense. [f f is a smooth function then the solution of the Poisson
equation Au = f is given by the convolution Qy * f.

Definition 2.2 Given the R%-valued random vector F and the R-valued ran-
dom variable G, a multi-index a and a power p > 1 we say that there is an
integration by parts formula (IBP formula) in Malliavin sense if there exists a
random variable H,(F; G) € LP(Q) such that

a(Y
[Py ,(F.G): E [87 f(F)G} = E[ FFYH(F; G)] forall £ € C'(RY). (2.3)
Related to the Malliavin-Thalmaier formula, Bally and Caramellino [2],
have obtained the following resuit
Proposition 2.3 (Bally, Caramellino [2]) Suppose that for some p > 1
9 =
sup E || = 0u(F = a)|" +|0u(F - a)
lal<R Xi

(0). If IP;p(F;G) (i = 1,...,d) holds then the law of F is absolutely contin-
uous with respect to the Lebesgue measure on R? and the density pr is
represented as

E] <oco forallR>0, acRY (2.4)

pr(x)=E : (2.5)

4 9
Z 7 Q4F = OH(F3 )

Pro Mathematica, 21, 41-42 (2007), 61-106, ISSN 1012-3938 75



A. Kohatsu-Higa and K. Yasuda

(ii). If P, ,(F;G) holds for every multi-index a with |a| < m + 1 then pr €
C™(R?) and for every multi-index p with |p| < m one has

d

a
2. 5 QulF = OH(F3 )

i=1

&’
%PF(X) =E

The heuristic idea of the above proof is to use the integration by parts
formula in Malliavin sense as follows

d 2
P = E[aQUF-xG]= Y E [% Ou(F - x)G]
i=1 i

E

9
Z 3 Qu(F = 0H(F; G)

Next we impose conditions to assure that the assumptions of proposition
2.3 are satisfied. The proof is given in the Appendix.

Corollary 2.4 If G € D*, F = (F), ..., F;) € (D®)¢ is a nondegenerate ran-
dom vector, then the probability density function of the random vector F is

pr(x)=E

49
Zl 3, QulF = ) H(F3 G)

3 Error Estimation

In this section, we find the rate of convergence of the modified estimator
of the density at x € R?. Through this section, we always assume G € D>,
F = (F\,..,Fy) € (D®) is d-dimensional nondegenerate random variable.
Therefore [P, ,(F;G) will always hold (sce Nualart [7], Proposition 2.1.4,
p.100 or Sanz [8], Proposition 5.4 p.67).

We start with some definitions and notations to be used in what follows.
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Definitions and Notation

1. Define |- |, by

d
Iy = Zx,? +h (h>0, xeRY).
i=1

. 0
2. Fori=1,...,d, define the following approximation to B_Qd’
Xi

Xi

0
—Oh(x) 1= Ay——.
g Q40 = Ay

3. Then we define the approximation to the density function of F as;

pr(x) = E

d

ad
>\ ——Ol(F - ) H(F; 6)|. G.1)
£ (9x,- d )

4. Consider a function 77 which satisfies;

(). neCyRY), nx)20 (xeR9),
(i).  supp(p) € (x € RY| x| < 1},

(fiD). f n(x)dx = 1,

(). 77([;() is constant on x € dB(0, r).

5. Foreach ¢ > 0, we define 7.(x) as

1
ne(x) := ;n(z)- (3.2)
6. We define j.(x);
Re(x) = f f ey dya. (< 1 from 4.) (3.3)

Remark 3.1 7j.(x) has the following property,

d
1
fe(X) — ]_[ 1F; < x) + 3 1l(0) (ase = 0).

i=1
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Lemma 3.2 Let @ € {1,...,d}", n € N U {0}, be any multi-index. Suppose
G e D>,

< +o00,

lim :—;E[US(F -X)G|=E

i=1

d
(ﬂ 1(F; < Xi)] Hq...40(F;G)

Proof By IBP formula, Proposition 2.3 (i), (3.3) and dominated convergence
theorem,

lim %E[UE(F - x)G]

It

lij)r(‘)E [7:(F = X)H(,. a0 (F; G)]

= F

d
l_[ 1(F; < x;) +;l,71un(F—x)] H,..am(F;G)

i=1

d
[1—[ 1(F; < xi)] Hq...de)(F;G)

= E < 400,
i=] n
Lemma 3.3 Let G € D®. Then
lim E[ne(F - )G| = E[GIF = z]pr(2).
Proof. By IBP formula, for ¢ € Cy°(RY),
Je E[(TTE) 1(Fs < 2)) Hya(F; G)| p(2)dz
= fu B[22 2 1L, 1(F, < 2)| G| plaxdz = Elp(F)G)
R axl 6xd =1 e
= J EIGIF = 2)pr(z)p(z)dz.
Therefore from Lemma 3.2,
d
lim E[n.(F - 6] = E (ﬂ 1(F; < z,-)] Hq...o(F: G)| = E[GIF = dlpr ().
i=1
|
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3.1 Error Estimation

The next result gives the order of the error of the approximation to the
density.

Theorem 3.4 Let F be a nondegenerated random vector, then
1
pr(x) - pl(x) = Cihn Pt C3h + o(h), (3.4)
where
d d d
Cii= ) Cf, and Cyi= ) G5+ ) Cf, 4+ Ci,
i=1 i=1 k=1

and the constants appearing above are defined in Lemmas 8.3, 8.4 and 8.5 in
the Appendix.

Proof. Denote by s; = sin6; and ¢; = cos8; (i = 1,...,d). As we will have to
change from rectangular to spherical coordinates, to avoid long expressions we
define ©@ := (@, ...,0,)* as the coordinate change

zi—x; = rcos(0))cos(d): - cos(By-2)cos(6y-1) =: r®,;
zi=x; = rcos(0)):-cos(By_;)sin(li_is1) =:r0; (i=2,..,d)
whereO<r<oo—~<49]_2,i_1 L,d—=2,0<80,, <2n.

First note that Q" ; and its derivatives are bounded for fixed 4. By using Lemma
3.3, Taylor expansion and spherical coordinates,

a 0
pr(x) - ph(x) = E [ 4 (5}: Qu(F —x) - éi_x,-QZ(F - X)) H(F; G)}

= Ad Z0 fa (,z =5 ,|)( litgeo E[ne(F = 2)Hey(F G)])dzl eedzy s

sd (Y () et g a2
-—AdZizl 0 f—%f_% (](; +ﬁ ) (r2+h)‘21 ®icl Cd-2

x (limg_o ®F, (0 + X)) drdf); ...d0_.
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where (Df (2) = Eln(F - 2)Hy(F; G)] (i = 1,...,d). Here note that the limits
appearing in the above formula exist due to Lemma 3.2.

Next, we consider the integral for r € [0, 1] where the following Taylor
formula is used

d d 1 2
d 1 i
of (2) = @, (x)+§ rQ;— ! (x)+= § 0,0 f ——OF (x+yr@)dy.
* g j=1 ! ayj ' 2 Jk=1 o 0 aykay] €

This leads to three terms, whose order of convergence are analyzed re-
spectively in Lemmas 8.2, 8.3 and 8.4 and in the Appendix. Finally, the inte-
gral term for r € [1, +c0) is analyzed in Lemma 8.5 in the Appendix. Therefore
one obtains that

pr() = phx) =

d 1 d
D {Cihin 2 + Ciih+o(hy + 3 CF, i+ o(h) + Ci b+ o(h)
i=1 Jk=1

The constants are explicitly given in the Appendix. -

4 KEstimation of the Variance of the Approxima-
tion

In this section, we try to estimate the rate at which the variance of the
estimator using Q% diverges. That is,

d 4 ’
E ZIEZQZ(F -xX)Hy(F;G) - PF(X)]

4.1

2

d
a
=E(2;5;QKF—XVﬂMF#3 +2pr(0{pr(0) — PO} ~ pr(x)?.

Note that therefore is enough to estimate the rate of divergence of the first
term in (4.1) as the second term converges to 0 (proven in Section 3.1) and the
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third is a constant. The term we will estimate is then
d P 2
E — QW(F = xX)Hy(F; G
{Z 5 QulF = 0Ho )]

d
=>E [ - Q(F ~ )5 Qf,(F X)Hy(F; GYH(y(F; G)|.

ij=1

Let &, (z) := E[ne(F - )Hy(F; GYH((F; G)].

ij.e

41 Cased=2

Theorem 4.1 Let F be a non-degenerate random vector. Then

2, 9 ’ 1
E [Z1 a—)Cng(F - X)Hy(F;G) - p;:(x)] = C5In +0(1),

where C3 = Zil C5; and the constants C3; are defined in Lemma 8.6 in the
Appendix.

Proof. Fori,j = 1,2, by using Lemma 3.3, Taylor expansion and spherical
coordinates,

a ]
E L‘)_xng(F - x)éx_ng(F - X)Hy(F; G)H ) (F; G)]

(zi = xi)(z; ~ xj)
—_ 42

, (2 (20,0,
=4 _

2£ j(; r(rz T h)? 4.2)

~ 2 1
X {umM OF (0 + Z’Gk fo o OF (x + yr@)dy }drde
k=1

2
2 F
4 f fl » (r2 - h)z (1im &f,.0© + x)) drdo.
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Then by using Lemma 8.6, Lemma 8.7 and Lemma 8.9, we obtain

2

(42)= ) Ci,In % +0(1).
i=1

4.2 Cased >3

Theorem 4.2 Let F be a nondenegerated random vector, then for d > 3,

2
(Z - Ol(F - \)H(F; G) - pF<x>]

1
4hd 1 +O(h_%"_‘)’

where C§ = Zf’zl Cy; and the constants Cg , are defined in Lemma 8.11.

Proof. Fori, j = 1,...,d, by using Lemma 3.3, Taylor expansion and spherical
coordinates,

[ QZ(F x) QZ(F X)H(F; G)H ) (F; G)]

e fR [(—2—1—)(11)( O, (@) dzr..dzy

IZ—X}h
_Azfznf fer@ d-1,d-2
— d 0 % (’ +h)d Cy crCd-2

d 1
{llm[q)fjg(x)+2r@k fo o ,js(x+'yr®)dy]} drd®;...d6,_,
k=1
2 2@@
42 Pl d=2 L
+dfo f% fzfn Zrmd e

(11m & (0 + x)) drdé,..d0y;.

iy

Nl:a

4.3)

i, /€
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Then from Lemma 8.11, Lemma 8.12 and Lemma 8.13, we can obtain

I
(43)_Zc8, o )+0(h‘,,)+0(1) _

Remark. In particular, for # = 0 one obtains that the variance of the Malliavin-
Thalmatier estimator is infinite.

5 The Central Limit Theorem

Obwviously when performing simulations, one is also interested in obtain-
ing confidence intervals and therefore the Central Limit Theorem is useful in
such a situation. In what follows = denotes weak convergence and the index
j =1,..., N denote independent copies of the respective random variables. For
different j they are independent.

Theorem 5.1 Let G be a random variable with standard normal distribution.

(). Whend = 2, setn = # and N = hcl% for some constant C fixed
h h

throughout. Then

N d
1 3 4 ,
n 7\7§ > EZQ{I(FULx)H}/;(FW;G)— pp(x)] = JCG+CIC
J=1 i=1

(ii). Whend > 3, setn = % and N = Jor some constant C fixed
1n

hf*‘(l P
throughout. Then

ZZ m OMFY - ) H)(FD, G) - p,n(x)) = JCIG+CiC.

Proof. Consider

( ZZ 7, QUF = OHF; G) - pF(X)J

ZI

2|=

N
Z{Z —— OL(FY = HL(FP; G) - pF(x)}+n( %) = pr(x).

J=1

Pro Mathematica, 21, 41-42 (2007), 61-106, ISSN 1012-3938 83



A. Kohatsu-Higa and K. Yasuda

Due to the definition of n and Theorem 3.4 we have that the second term
above converges to C{C. Therefore it only remains to prove a central limit
theorem for % Z = g iV where

.

a . . .
nNh () _ DD gy —
:El —a (F’ x)H(i) (FY5,GYy = pr(x).

To prove this, we compute the characteristic function of % ’/V: | g:f‘N hSet
= V-1. By Taylor expansion, Lemma 8.14 and Lemma 8.15,

exp[ ZgnNhJ
- { -~ ( :12 £ A’f [(g{"N"')z] - NR)}N s exp (-"2—26;),

where when d = 2, C;, = C] and when d 2 3, C; = Cj and we define the
remainder term R as

o= [ () - {1 - 35l

6 Example

In this section, we apply our approximation result to the multi-dimensional
log-normal density, that 1s, the solution of the following stochastic differential
equation,

dX, :

—L = pdt+ ) oy dW Xy = xi. 6.1

X =H ; j (6.1)
where W = (W', ..., W) is a standard d-dimensional Brownian motion, 4; and

o ;; are constants.

The goal in this section is to rewrite the integration by parts formula in
various ways so as to compare the different formulations.
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6.1 The approximation to the Malliavin-Thalmaier formula
3.1

The only element needed to write the formula (3.1) explicitly is to find
an expression for the weight H;,(F; G). In our settings, we have to consider
multi-dimensional settings.

(1). Seta complete probability space (Q, F, P; F;), then we consider d-dimen-
sional Brownian motion B, = (B, ..., BY)". '

(2). Next we define & := (hy,...hy) € H := L*([0,T];RY) : [0,T] - R,
where h; ;= 1(- < T) € H := L*([0,T];R) : [0, 7] — R.

(). Thenweput, fori=1,..d W():= [~ -dBi: H->R.

4). Let

Z“.; 0-,2 d
oy = st E e S0,
=1
F'oi= fi(n),s e, Wa(ha)).

(5). We define the Malliavin derivatives D', ..., D? (DF is a map from smooth
random variables to /-valued random variables);

DIF = {%fwl (1), s Wd(hd»} DIW(h)) = oy FA(- < T)(e ).
J

And we define the Malliavin derivative D := (D', ..., D%)*;

D'Fi o F'1(- < T)
DF' = : = : (e H).
DAF ciuF'1(- < T)
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(6). We want to define (D', ..., (D")* and D*. Let G, Gy, ..., G4 be a random
variable.

(D'Y(Gh) = GWh)~<D'Gh>; for hef, (6.2)

Gih

2
1l

: : Z(D‘) (Gh)—ZG Wih;) - Z<D’G,,h >4
Gaha =1
for B',.. K ed.

(7). Finally we define Malliavin covariance matrix

¥r = (< DF',DF! >); =1

44444

And we denote the inverse matrix by yz!.

Then by Lemma 8.16 in the Appendix, we can express the density at x as;

" det(Z’) wae<Ty oyl
pr(x) = Adz X]d Z( 1 ]det(Z) { = 0 } . (6.3)
Our approximation to the density is given by
~ i det@) (W,A(-<T))  oyT
Phx) = Adz o ;Z; s TS { ot } . (6.4)

6.2 Simulation

In figures 7 and § we show the result of the simulation of (6.3) and (6.4)
for the 2-dimensional case at time 1. That is,

dX; dx?
}— =0.01dt + 0.1dW + 0.2dW? and X—; = 0.02dt + 0.3dW, + 0.2dW?.

t t

We have used N = 10,000 Monte Carlo simulations at each point. The result
of (6.3) is in Figure 7 and the approximation of the density (6.4) is in Figure
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8, where £ = 0.01. As it can be seen from Figure 7, there are some points
where the estimate is unstable. This is clearly due to the infinite variance of the
Malliavin-Thalmaier estimator.

In Figure 8 these points do not exist due to the approximation of a%Qd.

density

00005

Figure 7: equation (2.5)

density

Figure 8: equation (3.1) ( = 0.01)
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7 Application of the Malliavin-Thalmaier formula
to Finance

In this section, we compute Greeks using the Malliavin-Thalmaier For-
mula. We consider a random vector F¥ = (F, ...,FZ) (1 € R"; n € N) which
depends on a parameter u. Suppose that F¥ € (D*) is a nondegenerate ran-
dom vector. And let f(xi,...,x4) be a payoff function in the following class
A?

continuous a.e. w.r.t. Lebesgue measure,

A:={f:R*>R: .
{f and there exist constants c,« such that lf(x)l < m (a > 1)

Note that functions in A are bounded.
Essentially a greek is defined for /" € A, as the following quantity

E
%E[f(F“, WP G=1,m)

As the study of the second derivative is similar we concentrate on the above
quantity and just quote the result for second derivatives. First we give a lemma.

2 Note that for example in the case of a put option, if we define the payoff function (K — x),;

K-x 0<x<K
0 otherwise,

(K-x)4:= {

then (K — x)+ € A.

In a digital put option case, payoff function is 1jg kj(x). Therefore it’s in A.

Next in a digital call option case, the payoff function 1[x c)(x) doesn’t go to 0 as x — co. But since
stocks don’t take negative value, then we can transform as it follows,

Lk oo)(x) = 1 = Lo (%)

And now we want to calculate Greeks, that is, derivation of the term 1 is 0. It’s enough to calculate
the term 1gg,xy(x), which has a compact support.

Finally if we want to compute a Greeks for call option case (x — K),, then one uses directly g; and
gf' after taking the derivative. Although it’s known that then a localization is needed.
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Fori=1,..,d, set

gi(y)

ghy)

[ 1005 0uty = xa,

f,..fRd f(x)_a%gg(y— X)dx.

And obviously for x # 0 and 4 — 0,

0l — 22 0u0)
Lemma 7.1 For f € AN LP(RY) (p > 1),
g?(y) — gi(y) forallye {z e RY; fis continuous at z} .
Lemma 7.2 f € A implies that

lgiy)l < alyl+b and [g}(y)| < alyl + 0,
where a and b are constants which depend on d and are independent of h.

The above result follows easily from the assumptions on f. Next we consider
convergence in L' (Q).

Lemma 7.3 Assume that F* € (D*)? is a nondegenerate random vector. And
assume that f € A is continuous a.e. Then

E[gh(P)] — E[gi(7).

Proof. This lemma is trivial from Lemma 7.1 and Lemma 7.2.

We denote expectation with respect to p%(x) by E[-]. That is,

EMf(F)] = f j; SOk x)dx.
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Lemma 7.4 If f € A, then we have

E[f)] E[gi(F*)Hop(F*3 1),

M-

i=1

M-

EM ()] E[gh(F*)Hap(F*; 1)]. (7.1)

5

Proof- By the Malliavin-Thalmaier formula,

[ oo
Z { f f f(x)—-Qd(F“—x)dxH(,)( _x)]

i=1

U

E[ ()] Z é—Qd(F“ — X)H(F*; 1)| dx

The second equation (7.1) follows similarly.

|
7.1 First Derivative Case
Now we consider an expression of a first denivative.
Proposition 7.5 Let k € {1, ..., n} be fixed. Suppose that for every i = 1,....d,
Hg,. d,)(F ) is dtfferentzable in py and in L*(Q), —H(l d,)(F“ 1) is in

F#
L), and also -a—j e LP(Q)(p = 4) forall j=1,..,d Then we have
m

6

d
d
5 )= 21;; & (F)H (R 1] —

0

d
> g EleP o 1] = -]
i=1

Fori,j=1,..,d, put

0 0
gf',/.(y) = gffj(yl, o Va) = a—y; f o f(x)(?—xiQZ(y — X)dx.
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Remark 7.6 Note that if f € A then g}, exists fori = 1,...,d.

Theorem 7.7 Let k € {1,...,n} be fixed. Let f € A. Suppose that for j =
IF,
1,..,n % e D%, Then

9 & d OF"
— E F“H, F"l E | (FHH | F*; —L|].
aﬂkz (P He Z [gff,( ) m[ Hyk)]

i= i,j=1

Moreover if we assume that for all i = 1, ..., d, there exists some g;; such that
gj’Li — g;;a.e and g{’, has polynomial growth (independent of h).

a d oF*
g Elrem] = Z [ (F")H(»[F“ aﬂkﬂ —
d 9

H M 6F7
Elg{FYHuF' — || = —

Lj=1

E[f(7)].

Proof. We prove the first part by using integration by parts formula. For i =
1,...d,

iE[ig?(F“)]

- d

B
ﬂE[gf’(F")H(i)(F“; 1]

gﬁ( ")—

6 j OYi Ok

4 9 y . 6F5f
ZE[a—Mgf'(F )H(/)[F a)]

J=1

d .
where we use . gf’(y) (i = 1, ...,d) has polynomial growth. Therefore we ob-

tain the first assertion.
The second claim is trivial by the assumptions.

In the next section, we consider Greeks in a second derivative case.

Pro Mathematica, 21, 41-42 (2007), 61-106, ISSN 1012-3938 91



A. Kohatsu-Higa and K. Yasuda

Remark 7.8 The expression in Theorem 7.7 is obviously not unique. In fact
we also have

d

; AFY
Z Elgh (P 1)] = ) [gﬁj(F L) [F#; '6/1: ]J '
i=1

i,j=1

Remark 7.9 [fgf‘} (i,j = 1,...,d) have an explicit representation, then we can
calculate Greeks very easily. This is the case for example, in put and call
digital options. If we don 't have an explicit expression for the multiple integral
then one can use any approximation for multiple Lebesgue integrals. Therefore
we can calculate Greeks easily.

Here we consider a similar expression by using the classical expression of a
density. And we compare to them (only the first derivative case).

Proposition 7.10 Let k € {1,...,n} be fixed. Assume that [** - [*! f(x)dx
has at most polynomial g orowrh Assume that Hy__q(F¥; 1) is differentiable in

-----

Uk And assume that F{ (i = 1,...,d) is differentiable in y; (j = 1, ..., n).

B[] =
“

P o]
f f J(x)dx TH(l .y (FH, 1)+—'H(1 ,,,,, a(F*;

This result can be proved using the integration by parts formula.

7.2  Second Derivative Case

Next we consider a second derivative case. Proofs are similar, so we only
quote the results. In this section Cf;(R”) denotes the class of functions that are
twice differentiable with to the parameter i € R.

Proposition 7.11

o Letk,le{l,..,n}befixed
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o Let F* € (D®) be a nondegenerate random vector. in C*(R") with

OF" OF" PR

—L L e Q=4 foralj=1,..dand —=
Opi0u

" Ay

e (p=4
k
forall j=1,...d.

e Suppose that for every i = 1,...,d, H(l,.“,d,],...,d,i)(Fy; 1) is in C*(R") and

0
also 5[;—H(1_"_.¢1,]___A,d,f)(F”; 1), H(l,“..d,l,....d,i)(Fﬂ; 1) are in Lz(Q)
k

OOy

Then we have

a 2

OO

E'[ 1) . Tl E[gh(F*)H (P 1)

62

o ElaiPOH(P3 D] = 2 ELF(P)]

We prove this proposition as in the proof of Proposition 7.5. For i, j,k =
1,....d, define

, & d
&) = g0 ya) = Y f : j.;: f(x)a_xiQZ(y = X)dx.

OF% >*F
Theorem 7.12 Suppose that fori = 1,...d, Lk = 1,..,n, —~ :

an
Oy Ol
are in D”. Then

L@
> E[gh(F")Hey(F*; 1)

d (4 o OF
= Z{ZE[gfi,m(F” )Hw( aF o ﬂ

Moreover if we assume that for all i = 1, ...,d, there exists some g;; such that
g{". — gijae ash — 0and g” has polynomial growth (independent of h).
And also for all i, j = 1,.,,.,d, g"l n Convergences to some g;;m a.e. and has

Oudp

E g (F"H) (F” i ]]}
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polynomial growth (independent of h). Then we have

E"[ f( “>]
a oF" OF" PF
ZJ im )HU)(F“ 1 on )] [gj”(F")HU)[F” o 3/11”}

d oF" OF O*F*
{Z [gum(F )H(j) (F# 3 ou ] &iilF* )HU) [Fﬂ g ka;*‘l]jl}

m=1

('),u 6/1

215
-

_ 62
Ouruy

+ F

E[f(7).
We can prove this theorem by the same way of Theorem 7.7.

Remark 7.13 We remark that in the above formula, H requires only one
Skorohod integral. Even if higher derivatives with respect to u are considered
this fact remains unchanged.

7.3 Example 1

Now we consider an example. The objective is to calculate Delta in a
digital type option where the asset is characterized by the Heston model. First
we define the Heston model as follows;

ds, = uSdt+ \[1=p> WS dW> +p VS dw;,
dv; = k(0 —v)dt+ o WvdWw,

where their initial values for the stock price process S and the volatility process
v are sg and vy, respectively.

And our option price 1s written as follows
Ele"™1(Ks < SH1(vr < K)],

where r expresses a constant interest rate. Without loss of generality, we as-
sume that r = 0. K5 and K|, are strike prices of stock and volatility respectively.
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Remark 7.14 The Heston model leads to an incomplete market. Therefore
there are many equivalent martingale measures. We do not discuss that prob-
lem here.

Then the Delta of above option is;

;TOE[I(KS <SPy < KV)]

WS'

T
Vl —-pZSO j(;T ‘\/V_udu '

Remark 7.15 In the Heston model, one has to prove the Malliavin differentia-
bility of v. This result can be found in Alos, Ewald [1]. In fact, the volatility
process vy is not in D™. But since sq depends on only S, and v, is independent
of W5, the above calculation works well. In fact, this is also one case where
gi can be computed explicitly which is completely independent of the assumed
model.

= E|1(St 2 Ks)1(vr < K,)

(7.2)

We simulate above Delta by using the following parameters; so = 100, y =
0.1, vy =0.08, k=2, 6=0.08, 0 =02, Ks =100, K, =0.08, p=0.2, t =
1. And a number of time step n = 50. When pricing, then a number of Monte
Carlo simulation N = 10,000, 000 times. The gradient of Figure 9 is about
0.008, and the delta by equation (7.2) is close to 0.008. (Figure 10 and Figure
).

Remark 7.16 We have chosen the above parameter so as to ensure the exis-
tence and uniqueness of the equation defining v and so that is strictly posi-
tive with probability one. For more details, see Section 6.2.2. in Lamberton,
Lapeyre [5].

7.4 Example 2

Here we give an example in higher dimensional case. We consider d-
dimensional linear stochastic differential equation case S; = (S }, ...,Sj’) de-
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Digital Option Prce 8nd Verancs (tha=0.2 n=50, N=10A7)
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Figure 9: Initial price - Option price
‘Mante Cara — Delta and Variance {ho=0 2.n=50)
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Figure 10: MC - Delta

fined by

i d

ast . o . o .

S—i' = XS}, .., 85 S SDdr + § (St . STLS L shaw,
t j=1

where i = 1,...,d, and {W}}, ..., {W?) are d-independent Brownian motions. For
Lj=1,..,d, ,u‘}o-? : R 5 R are C*(RY"!) measurable functions and o-j.
are bounded.
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MC Delta Variance

10° | 0.00954274 | 0.000392088
104 | 0.0081553 | 0.000345127
10° | 0.0082723 | 0.00034328
106 | 0.00828167 | 0.000345285
107 | 0.00830052 | 0.000346419
108 | 0.00830217 | 0.000346655

Figure 11: Delta & Variance

And we consider the following option; for f € A,

e TE[f(S},...5D)].

Then from Theorem 7.7, the delta of this option is; k = 1, ...,d
ie—'TE[ ST 8P
ask T T

d i J

a St —x; oS
=7 E E——f oo Xg) ————dXHj | S7; —F
¢ Ay S xd)lSr—xld vl Rk

d
ij=1 R

Again, we remark that in various cases the above multiple Lebesgue integral
can be computed explicitly and the simulation of the above quantity requires
only one Skorohod integral which in many cases can be written explicitly.

8 Appendix

Here we quote various technical lemmas use throughout the text. For
proofs, we refer the reader to the full paper that will appear elsewhere.
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8.1 Proof of Corollary 2.4

Lemma 8.1 Forx; 2 0( = 1,...,d), the following inequalities hold;
(i). Ford=2and1 <K<2—§wehave

A 2 _r p—1 o)
Qo (V)T dy dyy < 2ms, ™! {____.__ + |x|‘L,.4 }
fo fo y14y 2 2-x)p-2

(ii). For p > ;—1 > %

Xd X1 ) _.L -1
£ d-1 =4
Tdy..dys < (2n el
‘[0 \[0‘ |Qu(Y)I7Tdy1...dya < (27) Sy 3 ,le

(iii). For p > d > 2,

Qd(y)’ dyl dyd < (27T)d ]Ap ! ;) |x|p 1 (l = 1 ,d)

8.2 Lemmas used in the proof of Theorem 3.4

Lemma8.2 Fori=1,...,d

F (I +h)2—r
(1m(I) (X))f (r? +h)2

27
f f v f @,’Cl cee cd_szI...d9d4 =0.
% -

Lemma 8.3 Fori,j=1,...,d,

[STE]

. d
Ad(hmﬁo 5@, (x)) fo "(;’“;,j

X znf_ f @@c e CgadBy - dOy =

{ CEhin L+C5 hvolh) (=)
0

Gtp
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where

d 2n 3
Cy, = ZAd(iim (x)) f f f @t ey pdfy - dbyy,
: -
2 5 5
Ad(hm (X))f f f 'Cd_zdgl ---dgd_l
o % %

[VE

C;,i =
' MO f - d
x| ] ”(uh e o L (1n(z) n(24+28))+ M),

and Mg is a constant (defined in the proof).

Lemma 8.4 Fori, jk=1,..4d,

2 h _
f f f f RIS 7 0,0,0:ci 7 cuz
: 5 (12 + h)

&
di _
X I} i, le(x + yr@)dydrd6, - - - d,_,
= C;i,j.kh + o(h), 8.1

where

N dA4, z ! _
31/k TL IL’ fg\f()@i@j@"ccllz"'cdﬂ

1 2
X f (lim g o (x +yr®)) dydrd®; - - - dby,.., .
. )

[N

-0 Oyrdy;
Lemma 8.5 Fori=1,..d,
2n
s —
Adf f f f it -rt Oict2 -+ cqy (limCng(r®+x))
z -1 J1 (2 + h)f &0
drdb,...d6,_, = Cy ;b + o(h), (8.2)
where
C\f

dAd L R [T L0 cay (limeng OF,(rO + %)) drdf) .dbu.
2 2 M
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8.3 Lemmas used in the proof of Theorem 4.1

We give some lemmas for Section 4.1.

Lemma 8.6 Fori,j=1,2,

. 2)x|+1 » 2
(llm (D’js(X))\fo\ E;”—Z_Ih—)zdrf @,dog

_) Cin i{ +0(1) (=) (8.3)
0 (%))

where
LLE

Cs; —2 (thDF (x)).

Lemma 8.7 Fori, jk=1,2,

2 2nf2|X!+1 +0,0,0; , "o ®)dy|\drda < C
f Ere 8g%f06y O, (x +yr@)dy |} drdé < Cs,

where Cg is a constant independent on X.

Proof. By Lemma 3.2, lim,_,o( fo
Therefore the result follows.

aﬁk Cijs(x +yr®)dy) is uniformly bounded.

Lemma 8.8 Let F be a nondegenerate random vector and G € D®. Forp > 1,
then there exists some constant C such that

. c J
lim E[ne(F - 0G| < P (x € RY).

Proof. Using the IBP formula, where a; € {1,...,d},i=1,...,n

n

[ [ tim E[nf(06]

i=1

8 o - ‘
=FEl— — I | oy (Fi = x; F,

[[(kl Oxy : loe(F. x)] G

(I |1[0m)(F x:)]H(l ,,,,, d)(F, FoG)| <

i=1

=
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Lemma 89 Fori,j=1,2,

2n 0.0

2 oY F

Af ful EFYY 1m®,le(r®+x))drd9<C7
2ix|+

Proof From Lemma 8.8,

21 @ @
2 f f i lim &0 + x)) drde
2ix]+1

(r + h)
27 )
C
<43 drde
2£ f2|x|+1 (r2 + ) r® + x2 "
C
< .
2Ixj + 1
|
8.4 Lemmas used in the proof of Theorem 4.2
We give some lemmas for Section 4.2.
Lemma 8.10 Set /(n,m) = fsin" xcos" xdx (n+ m#0). Then
i1 m+1 -1
Knm) = _sin™ xcos™ x n 1(n—2,m)
m+n m+
_ sin"*! xcos™ ! x Lme I(n n-2)
n+m m+
Proof. This is proven using the integration by parts formula.
|
Lemma 8.11 Fori,j=1,..,4d,
2 H 1 ,,d+\®_®‘ .
2 ) d-2 o &F
af |, . Lo Jy et aun{im bt ardo.an
1
Cr + o\ —— i=7
| G elm) e (84
0 @+
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where
2 3
B [ Ol {limeno ©F, 0} d61d6, d=73)
) 2r )
(dll k=0 dizl/‘()Az f_g f Olc d SRR (d=4: even)

Cii =\ {limeo OF, (0} d61...d04

iie

d-7 d—-1 n T
T 3+2k T sk \ 42 (¥ (3 7 @2 -2
1 ( ko 2:2&-)( ko 2m++2k)Adfo f_zg . 'ffg O;ci™ a2
{lim_o B, (%)} d6;..d04_y (d>5: odd),

d=7
where if d = 5, then we define [],2, :3)_—3—2 =1

Lemma 8.12 Fori, jk=1,...,4d,

27 d+2®®®k
A A2 0,
”f f ff TeTaRE e

. 1
X {hmf -—d),/s(x + 7r®)dy} drdf,..d0;_, = O(F)

&0

Proof ByLemma 3.2, ]im,g_)o(fO
the result follows.

2 GF (x +yr®)dy) is bounded. Therefore

0)‘ ij&

Lemma 8.13 Fori, j=1,...,d, there exists some constant C such that

on f z 10,0,
A2 A "f_% ---f_z,i, fl Ty 2y z(llmg_,o (I),FJE(/G) + x))drd@l A6,
<C.

Proof. By Lemma 3.2, lim._, (D O+ x) is bounded. Then we can easily
check.
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8.5 Lemmas used in the proof of Theorem 5.1

In this section, we give some lemmas used to prove the central limit
theorem.

Lemma 8.14 Foranyd>2and 0 < p < % we have
N xIR| < o(hP).
Lemma 8.15

. [(ém‘w)z] _ cx 1n1% +0(1)  (d=2)
c:;h,, +o(h) (@2 3).

Proof. In the case of d = 2, the result follows from Theorem 3.4 and Theorem
4.1. In the case d > 3 it follows from Theorem 3.4 and Theorem 4.2.

8.6 Lemma for Section 6.1

Here we obtain the weights H(; in the classical setting.

Lemma 8.16 Let F be a nondegenerate random vector then the density of F =
X,, solution of equation (6.1), can be expressed as

(8.5)

k4t (W1 < TY) | ouT
pr(x) = AdZ xld Z( 1) det(Z){ I 5 }

Proof. Fori,l=1,..,d, we have

9 d o
D= Qu(F -x) = ) F-x)D'F’.
dx; Qul X P 0x;0x; Qu WDE
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We solve this simultaneous equation by using Cramer’s formula and ob-
L& .
tain e,0%, Qu(F - x);

ax o Qu(F —x)

" 0
F!d ) 1(- £7) Z( l)k 7 det (ZA)Dk( x[Qd(F—x)) a.s.,

where

Odr ° Odd

Z’j‘. isa(d— 1) X (d — 1) matrix obtained from X by deleting row & and column
Then by a duality argument;
62
El—QyF —x
[ o2 Qu( )]
d
det(Z ) 1-<T)
=) (- —L F—x)(D! . (86
;< ) [ Qu(F — X )( ) (8.6)

The result follows from (6.2).

Remark 8.17 In the above proof, we need to introduce a local property. Since
the function B%Qd(x) doesn’t satisfy the Lipschitz condition (See Proposition
1.2.4., p.29 in Nualart [7]), the chain rule doesn’t work well. But now F has a
continuous density. Then P(F = x) = 0.
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Resumen

La férmula de Malliavin-Thalmaier se introdujo para la simulaciéon de fun-
ciones de densidad de probabilidad multidimensionales. Cuando la férmula de
integracion por partes se aplica directamente en simulaciones computacionales,
mostramos que es inestable. Proponemos una aproximacion a la formula de
Malliavin-Thalmaier. En este trabajo hallamos el orden del sesgo y la varianza
del error de aproximacion y obtenemos una formula explicita de Malliavin-
Thalmaier para el calculo de las Griegas en finanzas. Los pesos obtenidos
estan libres del problema de la multidimensionalidad.
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Comentarios Finales

Este articulo es una version resumida de la presentacion que tuve el honor
de impartir durante el Congreso Internacional de Matematicas PUCP realizado
entre el 14 al 17 de agosto del 2007. Fui estudiante de la carrera de Estadistica
durante los afios 1981-1985. Como expresé durante la mesa redonda del dia
16 de agosto, la educacion recibida durante aquellos afos fue fundamental
para poder establecerme en mi mundo profesional. Hasta cierto punto, lo mas
importante de aquellos afios, mas alla del conocimiento especifico, fue la habi-
tuacion al método matematico de rigurosidad. Esto se demuestra efectivamente
con el hecho de que la gran mayoria de graduados de la PUCP en el drea de
matematicas han trabajado en areas relacionadas al algebra.

Sin embargo, no quiero dejar de lado el hecho que mas alla de intentar
cubrir muchas areas lo mas importante siempre fue cubrir pocas y con inten-
sidad. No quiero tampoco decir que la educacion recibida fue perfecta. Pero
si quiero decir que me dio lo suficiente para poder finalmente sobrevivir en el
dificil mundo de la investigacion.

Siempre hay espacio para mejorar y deseo que los pasos tomados sean
en esta direccidon. Finalmente deseo agradecer a los organizadores de este
Congreso asi como a todos mis profesores de aquellos afios por la educacion
recibida.

Esta nota se ha escrito tomando en cuenta el aspecto divulgador por encima
de la exactitud matematica. Los detalles matematicos de las pruebas apareceran
en otro articulo.
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