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Abstract 
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The methodology is based on the continuous Whittle contrast. 
A simulation study is performed by driving this process with 

a symmetric CGMY background Lévy process. 

Keywords: Fractional Lévy processes. Long mnge dependence. Frecuency 

domain estimation. 

l. Sección Matemática, Departamento de Ciencias, PUCP. 



Luis Hilmar Va/divieso Serrano 

1 Processes of Ornstein-Uhlenbeck Type 

The main contribution of this paper is to propose an estimation metho­

dology to deal with a Jong-range dependence process of Omstein-Uhlenbeck 

type. 

Given A > O and a Lévy process Z {Z(t)} with generating triplet 

(cr0 ,y0 , v0 ), X = {X(t)} is said to be a process of Omstein-Uhlenbeck type 

generated by (cr0 , y 0 , v0 , A), if it is cadlag and satisfies the stochastic differen­

tial equation 

{ 
dX(t) = -AX(t)dt + dZ(At) 

X(O) = Xo 
(1) 

where X0 is a random variable independent of Z. We will refcr to Z as the 

background driving Lévy process (BDLP) of X. 

The unique solution of ( 1) is pro ved to be 

(2) 

This satifies the recursive equation 

X(t + ~) = exp( -A~) ( X(t) + exp( -At) Jt+ll cxp(As)dZ(As)). (3) 

Equation (2) genera1izes the classica1 solution given by Omstein and Uh­

Jenbeck ( 1930) to the Langevin equation (1908) in the modelling ofthe position 

of a particle under a frictional force. Thesc authors considered Z as a standard 

Brownian motion. 

We mention two important properties of a process of Omstein-Uhlcnbeck 

type X. First, the auto-correlation ofthis process 

p(~) = Corr(X(t), X(t + ~) = exp( -Al~!), (4) 
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decays exponentially. Finally, X is stationary under sorne mild conditions. 

More precisely, Sato [1999] proves the next. 

Proposition 1.1 Let X be a process ofOrnstein-Uhlenbeck type generated by 

(ero, '}'o, vo, A) such that 

( log(lxl)dvo(x) < =, 
Jlxl>l 

then X has a unique se(f-decomposable 1 stationary distribution J.I. 

(5) 

Converse/y, for any A > O and any self-decomposable distribution D, there 

exists a unique triplet (er0 , y0 , v0 ) satisfying (5) and a process of Ornstein­

Uhlenbeck type X generated by (cr0 , y0 , v0 , A) such that D is the stationary 

distribution ofX. 

2 Long-range Dependence 

The subject of long range dependence has sparkled considerable 

interest over the last few years. A good survey of this tapie is Doukhan 

et al. [2002]. The main result of this work will be to provide a estimation 

methodology to deal with a class of long-range dependence processes. 

We adopt the following definition oflong-range dependence. 

Definition 2.1 Let X = {X(t)) be a stationary process with autocovariance 

function y X is said to be a long-range dependence process or to have long 

1 A random variable X (or its distribution) is said to be self-decomposable iffor any O< a< 1, 

3 a random variable Ya, independent of X, such that 

XgaX+Ya. 

where g means equality in distribution. 
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memory if there exists O < d < ! anda constante y > O such that 

. y(h) 
hm 2d-l = cy. 
h-"x' h 

(6) 

Otherwise the process is said to be a short-range dependence process or to 

have short memory. An example of a short-rangc depcndence process is the 

process of Omstein-Uhlenbeck type givcn in the previous section. Observe 

that independently of the BDLP, or the stationary model, any process of this 

type shares the same short-memory autocorrelation function. In this chapter we 

study how to cope with such limitation by introducing a long-range dependence 

process of Omstein-Uhlenbeck type. We handle then the inference problem 

for this process by means of spectral techniques. This approach is needed to 

overcome the difficulties associated to the complex distribution ofthis process. 

Proposition 1.1 guarantees not only the stationarity of X, but also the ex­

istence of a Lévy process Z = {Z(t)}, independent of Z but with the same 

distribution, such that 

Xo ~loo exp(-;!s)dZ(;!s) =loo cxp(-s)dZ(s). 

This yields the representation in law 

X(t) loo exp(-;!(t + s))dZ(;!s) + l' exp(-;!(t- s))dZ(;!s) 

[ exp( -;!(t- s))dZ( -;!s) + l 1 

exp(-;!(t- s))dZ(;!s) 

= ¡~ g0(t- s)dZ(;!s), (7) 

where Z = {Z(t)ltEIR is now a two-sided Lévy process given by 

Z(t) = Z(t)l¡o,oo¡(t)- Z( -t-)1 ]-oo,Oj(t) 
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and 

{

exp( -,lx), 
go(x) = 

o , 
if X> 0 

otherwise. 

3 The Continuous Moving Average Process 

Albeit with a different timing in the driving Lévy process, the next defi­

nition provides a natural generalization of (7). 

Definition 3.1 A stochastic process X= {X(t)} is said to be a continuous time 

moving average process, or shortly a MA process, if 

X(t) = l~ g(t- s)dZ(s), (8) 

for sorne measurable function g : lR -? lR and sorne two-sided Lévy process 

Z = {Z(t)}. We will cal! g and Z, respectively, the kernel and the BDLP ofX 

Similar! y to (7), any MA process can be written as 

X(t) = i"" g(t + s)dZ(s) + it g(t- s)dZ(s), 

where although we use the samc notation, the BDLP processes on the right 

hand si de are understood to be independent copies of a common Lévy process. 

Proposition 3.1 Let X be the process in (8) and let g and Z be, respective/y, 

the kernel and BDLP ofX, where (cr, y, v) denotes the generating triplet ofZ. 

Then X is a well-defined, infinitely divisible and strictly stationary process if, 
and only if, the following three integrals below are finite 
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a) J: i(s)ds. 

b) J: J: (lg(s)xl
2 

1\ l)v(dx)ds. 

e) Yg = J: (yg(s) + J: g(s)x(ls(o,l)(g(s)x) -ls(o,l)(x))v(dx))ds. 

M oreo ver, for any real numbers t¡ ::; t2 ::; . . . ::; tn, the cumulant function of 

(X(t¡ ), X(t2), ... , X(tn)) is given by 

(9) 

where we use the convention t0 = O. 

Proof: See Valdivieso [2007] • 

Based on the cumulant function (9) one can easily derive the autocovari­

ance function ofthe MA process. This is given by 

y(h) = E[Z(I)2
] loo g(lhl + s)g(s)ds. (10) 

From now on we will restrict our study toa 'causal' MA process X with 

zero-mean BDLP Z offinite variance. AMA process X is said to be causal if 

its kernel function satisfies 

g(x) = O, Vx < O. 

In other words, a causal MA process depends only on the past ofthe BDLP Z. 
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4 The Fractionally Integrated Ornstein- Uhlen­

beck Process 

To induce long memory, Brockwell and Marquardt [2005] have pro­

posed to convolute the kernel ofa short-range dependence process ofOrnstein­

Uhlenbeck type with the slow decaying function 

where O < d < !· The fractionally integrated Ornstein-Uhlenbeck Lévy pro­

cess Xd = {Xd(t)ltER is then defined as 

Xd(t) = l~ gd(t- s)dZ(s), 

where 

gd(x) = 1: go(x- s)lJ(s)ds 

l "' ~-! 
exp(-A(x- s))-ds 

o r(d) 

= (-Ard exp(-Ax)f(-Ax,d) 

and 
f(a d) = [ exp(-s)~-1 d 

' O f(d) S 

denotes the incomplete Gamma function. Hereafter we will refer to Xd as a 

FIOUL process. 

Observe that the kernel function gd is, by the restriction O < d < ! , square 

integrable. This easily follows from the inequality 

for sorne K> O and all x > O. 
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The next proposition presents the autocovariance function of a FIOUL 

process and its Fourier transform. This transform, called the spectral density 

ofthe process, will play a central role in our estimation methodology. 

Proposition 4.1 The variance, autocovariance and spectral density functions 

of the FIOUL process are given, respective/y, by 

YJ(h) = Yd(O) (cosh(Jh)- ~ exp(Ah)f(Jh, 2d)+ 

( 1 1) 

+~ exp( -Jh)( -l)-2dr( -Jh, 2d)) 
and 

(12) 

Proof: By the convolution theorem, the Fourier transform of gd is given by 

gd(iJ) = 'F[gJ](iJ) = 2n'F[go](iJ)'F[l]](iJ) 

1 1 
=2JT----

2n(.-1 + W) 2n(iiJ)d 2n(iiJ)d(J + iiJ) · 

Hence, by the inversion theorem 

1 Joo 1 
gd(x) = r- 1 

[gd](x) = 2n -oo exp(Wx) (iiJ)d(;t + W) diJ. 

Since gd(x) = O for any x < O, the autocovariance function (1 O) can be ex­

pressed as 
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Then the spectral density ofthe FIOUL process is given by 

E[Z(l?] l"" l"" fd({}) = 
2

7r -oo exp(-i{}h)( -oo gd(s + h)gd(s)ds)dh 

E[Z(l)
2

] l"" (l"" ) = 
2

7r -oo -oo exp( -i{}(u- s))gd(u)du gd(s)ds 

2nE[Z(l)
2

] e~ 1: exp(-i{}u)gd(u)du) 

X (_.!_ loo exp(i{}s)gd(s)ds) 
2n -oo 

E[Z(l?] 

On the other si de, let Yo and Jo be the autocovariance and spectral density 

functions ofthe MA process (8) with kernel g0 ; i.e, 

Hence, by the convo1ution theorem 

'Yd(h) = r- 1[fd](h) = r-1[:F[yo]:F[e]](h) = 1: Yo(h- s)e(s)ds, 

where 

l oo exp(i{}s) 
e(s) = 00 1{}12d d{} = 2sin(nd)f(l - 2d)lsl2

d-l. 

This yields 

1 = 'YJ(O)(cosh(,Ih)- 2 exp(,lh)f(,lh, 2d) 

1 
+ 2 exp( -,lh)( -1)-2dr( -Ah, 2d)), 
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where Yd(O) = 21~I~(l):J d) represents the variance ofthe FIOUL process. • 
1 cos 1f 

Remar k 4.1 The kernel and autocovariance fimction of a F!OUL process can 

be asymptotically approximated by 

as x ~ oo 

and 

Observe that the last expression guarantees the long memory of the FIOUL 

process. 

5 The Whittle Approach 

In contrast to a process of Omstein-Uhlenbeck typc, a FIOUL process 

Xd = {Xd(t)} is not Markovian and has conjoint cumulant function ofthe form 

(9). Then the likelihood inference approach requires the invcrsion of the loga­

rithm of (9). No analytical solution exists for this and any numerical solution 

is limited by the curse of dimensionality. 

Instead ofworking on the time domain, one interesting altemative is work­

ing on the frequency domain. This will exploit the closed form ofthe spectral 

density in proposition 4.1. To be more precise, suppose for instancc, as in the 

seminal work ofWhittle [1962], that {XJl¡= 1,2,.,n is a discrete stationary Gaus­

sian process with auto-covariance function y and finite variance y(O). A well 

known result in spectral theory states that 

y(n) = ( exp(intJ)f(tJ)d{}, 
J]-rr,rr] 

(13) 
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where f is the so-ca1led spectral density of the series. The classical estimator 

off is the pcriodogram 

1 n 
In({})= -1 ¿ cxp(-Wj)Xi, -Jr < {} ~ lf, 

2nn ¡~I 

which can be proved to be unbiased but not consistent. Brockwe11 and Davis 

[1986] have proved that ifwe take the partition {+{}k = + 2~klk~I.2, .... ~, then 

the random variables ln({}k) are asymptotically independent and exponentially 

distributed with mean j({}k). Then, for n sufficiently large, we can build the 

"log-likelihood function" (not on {X¡}, but on Un({}k)h~ 1 .2 .... ,m with m= [n;l]) 

K(8) = ~(log( 1 ) In( {}k)) ft j({}k) - j({}k) 

~ fn({}k) 
- ft(log(j({}k)) + j({}k)) 

and define the Whittle cstimator as 

. ~ ln({}k) 
argmm ¿)log(f({}k)) + -

1 
)). 

H k~l ({}k 

One surprising fact is that this estimator also works with a large class of con­

tinuous proccsses which are not necessarily Gaussian. Gao [2004] for instance, 

has adapted thc Whittle methodology to estímate the continuous fractional 

stochastic volatility model proposed by Comte and Renault [1996]. Recently, 

Leonenko and Sakhno [2006] have extended the Whittle approach to deal with 

Lévy random fields. 

5.1 High Order Spectral Theory 

Befare studying thc extension of the Whittlc estimator, it is relevant to 

introduce sorne theory ofhigh ordcr spectral analysis. A good account ofthis 

can be found in Brillinger [ 1981]. 
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We define the joint cumulant of a p-dimensional random vector 

(X¡,X2, ... ,Xp) as 

cum(X¡,X2, ...• Xp) = I<-1)'-1(r- 1)!E[n X¡] ... E[n X¡]. 
jEV¡ }EV,. 

where the summation extends over all partitions (V1, V2 , ... , Vr) of {1, 2, ... , p} 

and the vector above has the required absolute moments. Note that this term 

corresponds to the iP{}¡ fh ... {} P coefficient in the Taylor expansion of the cu­

mulant function e ofthis vector; i.e, 

1 fJPC({}¡, ... ,{}p) 
cum(X¡,X2, ... ,Xp) =-:¡; [){} [){} i(o1, ••• ,Ut>)=O· 

l 1... p 

An application ofthe Faa di Bruno's formula yields the next relation between 

p-th order moments and cumulants 

r 

E[X1X2 ... Xp] = ¿ n cum({XklkEV1), 

j=l 

where the summation extends over all partitions ( V1, V2 , •.• , Vr) of 

(1,2, ... ,p}. 

Leonov and Shiryaev [1959] have developed the foiiowing useful formula 

to calcula te cumulants of products of random variables 

n1 n2 nq p 

cum(n X;, n X;, ... , n X;) = ¿ n cum({XklkEV¡), 
i=l i=n 1+1 i=nq_ 1+1 j=l 

where 1 :::; n 1 < n2 < ... < nq and the summation extends over all indecom­

posable partitions (V1, V2 , ... , Vp) ofthe table 'T = {R1, R2 , ... , Rq} with rows 

R1 = { 1, 2, ... , n1}, ••• , Rq = {nq-I, ... , nq); that is, over those partitions ofthe 

table 'T in which there exits no sets V;
1

, ••• V;" (n < p) such that for sorne rows 

RJ1 , ••• , R.im (m < q) of'T the following equality holds 

Rj¡ u ... uR¡m =V;¡ U···U V;n. 

118 Pro Mathematica, 21, 41-42 (2007), 107-143, 1SSN 1012-3938 



Fractionally integrated processes of Ornstein-Uhlenbeck type 

5.2 The Aliasing Problem 

Let X = {X(t)}tEIR be a zero-mean continuous and strictly stationary 

process with spectral density f and autocovariance function y such that y(O) < 

oo. lt is very well known that these functions satisfy the relation 

y(h) = 1: exp(ihfJ)j(fJ)dfJ, (14) 

which says that y is the inverse Fourier transform off. 

Expressions (13) and (14) reveal sorne differences between discrete and 

continuous processes. This phenomenon is known as the aliasing problem. 

In most practica! circumstances, observations on X = {X(t)}tEIR are made at 

discrete intervals of time, even though the underlying process is continuous. 

This focusses the attention on the discrete observed process Y = {Y1}, where 

Y1 = XU(),) and j E Z. Due to the differences between the autocovariances 

functions of X and Y one may ask about the relation between their corre­

sponding spectral densities. To elucidate this, we can start writing the auto­

covariance function of Y at lag n E Z as 

Yr(n) = Cov(YJ, YJ+n) = Cov(XU(),),X(U + n)(),.)) 

1: exp(in/),fJ)j(fJ)dfJ 

= 
~ ( 1 {} + 2hrr 
LJ j

1
_ exp(infJ)- f( (),. )dfJ 

h=-oo ]-1r,1r] ¡'), 

= 
( 1 ~ {} + 2hrr 

j
1
_ exp(infJ)(~ LJ f( (),. ))dfJ. 

]-7r,7r] h=-00 
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Then, the spectral density of the process Y is given by 

1 ~ ¡'}- 2hn 
jy(f}) = ~ ~ f( f:,. ), -lr < ¡'} :5_ lr. 

h=-00 

(15) 

5.3 The Mínimum Contrast Whittle Estimator 

Given a strictly stationary zero-mean stochastic process X= {X(t)), we 

introduce the p-th order cumulant function ofthis process by 

cp(t1, t2, ... , tp-l) = cum(X(t),X(t + t1), ••• ,X(t + tp_¡)), 

whenever the right hand side exists. By the stationarity property, this function 

does not depend on t. Similar! y to the (second order) spectral density f of X, 

we define the p-th order spectral density, /p, of X as the Fourier transform of 

the p-th order cumulant function of X. In other words, fp satisfies 

and is explicitly given by 

p-1 

-( 
1 

_1 
( exp(-i~01t1)cp(t1 , ••• ,tp-l)dt1 ••• dtp-J· 

2n)P JJRri ~ 
j=l 

IfX is discretely observed, the p- th order cumulant ofY = /XUt:.)) tums out 

to be for any integers k1, ••• , kp : 
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This yields thc p - th order spectral density of Y 

p-l 

/p(fJ 1, ... ,t'JP_¡) = (
2

rr;p-l I ... I exp(-i I fJ1k1) 
k¡EZ kp-¡EZ j=l 

Cp(k¡, ... , kp-l ). 

Following Leonenko and Sakhno [2006] we will work in this thesis with 

the Whittle mínimum contrast estimator 

(16) 

being 0 e IR. m a compact set, 

Ur(8) = _!__ ( (log(f(fJ; 8)) + flr(fJ) )w(fJ)dfJ, 
4rr JA (fJ; 8) 

w an absolutely integrable symmetric weight function, j(fJ; 8) the spectral den­

sity (12) or (15) and 
1 2 

Ir({})= -ldr(fJ)I 
2rrr 

the periodogram ofthc second order with 

A= IR., T = T and dr(fJ) = lr exp(-ifJs)X(s)ds, 

if X is continuously observed; or 

r 

A =]- rr, rr], T = n and dr(fJ) = I exp( -i{} j)YJ, 
J=l 

if X is discretely observed via the process Y = {Y1} = {XU!l)}J=l.2, ... ,n with 

T = nll. 

We mention, howevcr, that Leonenko and Sakhno [2006] were mainly 

concemed with the continuous case and they ha ve analyzed ( 16) only for the 

case 11 = l. 
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To study the consistency of eT we will need of the following proposition. 

Proposition 5.1 Let cp 1 and cp2 be two real symmetric non-random fimctions 

and consider the second andfourth-order spectral densities ofthe processes X 

and Y. Suppose that thefollowing two conditions hold 

(1) G(u;cp1) = .Í,f(O- u)cp1(0)d0 is bounded and continuous at u= O. 

(2) G4(u¡, u2, U3; cp¡, cpz) = 2 .Í, f(O +U¡ )f( -0 + u3)cp¡ (O)cp2(u¡ + uz + {J) dO+ 

JA2 ./4( O¡ +U¡, -0¡ + u2, Oz + u3)cp¡ (O¡ )cp2(02)dO¡ d02 is boundedfor any 

(u¡, u2, u3) and it is continuous at (0, O, O). 

Then 

lr(cp¡) = l Ir(O)cp¡(O)dO.!, J(cp¡) = l f(O)cp¡(O)dO as T --too. 

Proof: Let a 1, . .. , ap be arbitrary real numbers. Since cumulants are multilin­

eal, we have for the continuous case 

122 

p 

= r exp(-i I a¡t¡)cp(f¡ - ,p, ... , fp-1 - tp)dt¡ ... dtp 
j[O.T]P J=l 

p-I 

=l fp(O¡, ... ,Op-I)X ( nexp(it¡(O¡-a¡)) 
AP-1 j[O.T]P j=i 

p-i 

exp(itp(- I 01 - ap))dt1 ... dtpd0 1 ... dO p-I 
.i=l 
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where 

l r 2sin(TA) TA. 
<Df (.1) = cxp(ittl)dt = 2 exp(i-) and A = R. 

o A. 2 

The same applies if X is discretely observed. In this case we just need to set 

A=]- JT,JT], T = n and considcr 

" sin( !!d) ( n + 1 )A. 
<D7(A.) = /:1,. _L cxp(ikA.) = ~ exp(i ) 

k=I sm(2) 2 

in place of <Df(tl.). Note that if Lj=l A¡ = O, then (2rr)~•-lr nj=l <DI(A.j) 

equals to the multidimensional kernel of Féjer type 

1 nP 2sin(r;1) .TA.¡ 1 nP 2sin(r;,) 
- exp(z-) - -,--.,---..,--
-(2JT)P-1T A 2 -(2JT)P-IT tl 

}=! J }=1 J 

or 

1 np sinC~ 1 ) .(n + 1)A¡ 1 np sinC~1 ) = --- exp(z ) = -,-.....,.-
(2JT)P-In J=! sin(j) 2 (2JT)P-1n J=I sin(,¡i"') 

if, respectively, X is continuously or discretely observed. Provided that G is 

bounded and continuous in the first argument at O, we have in each case 

hm <Df(u)G(u;cp1)du = hm- (-)2G(-;cp1)dx = G(O;cp1) 
. l . 1 loo sin x 2x 

T ->OO A T ->OO JT -00 X T 
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or 

. l . 1 J"f sin x 1 2x hm <D~(u)G(u; cp¡)du = hm - (--)2 
11 

• x 
2 

G( -; cp¡)dx 
11-->00 A n->oo 1r _!E!! x (- sm(- )) n 

2 x n 

1 loo sinx = G(O;cp 1)- (-)
2dx = G(O;cp 1) 

7r -oo X 

Similarly, if G4 satisfies the conditions on the theorcm, thcn we have for the 

continuous case 

3 . . 
- ¡· 1 len SJnX¡)sm(X¡ + Xz + X3) (2X¡ 2x2 2X3. ) 
- 1m- -- G4 -,-,-,cp¡,cp2 

T-.oo 1r3 JR3 J=I x; x 1 + x2 + x3 T T T 

dx¡dx2dx3 

1 l n3 
sin X¡ sin(X¡ + X2 + X3) 

= G4(0,0,0;cp¡,cp2) 3 ( --) dx¡dx2dx3. 
7r JR3 J=l X¡ X¡ + X2 + X3 

In arder to evaluate 

H = r <rl sinx¡) sin( X¡ + X2 + X3) dx¡dx2dX3 
JJR3 J=l X¡ X¡ + X2 + X3 

we rewrite it as 

f oo [ sin X¡ sin Xz 
H = ----g(x¡ + x2)dx¡dx2, oo -oo X¡ Xz 

with 
g(x) = loo sin u sin( u+ x) du. 

-oo u(u + x) 
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Because gis the convolution ofthe sinc(x) = si~x function with itself, g can be 

easily evaluated with the help ofthe convolution theorem. Indeed, the Fourier 

transform of g equals 

r[g](O) = 2n(r[sinc](0))2 = {~' 
O, 

if 101 < 1 

otherwise 

and so 

g(x) = r-1 [r[g]](x) = 7r Sin X. 
X 

Plugging this expression into H, we obtain 

1
00100 n2 

SÍnXj sin(x¡ + X2) H = n ( --) dx 1dx2 oo -oo J=l X¡ X¡ + X2 

1
oo sin x 1 1oo sin x 

= n --g(x¡)dx1 = ~ (--)2dx = n3 
oo X¡ -oo X 

and consequently 

Jim ( cJ>;(u¡,U2,u3)G4(u¡,ll2,u3;cp¡,cp2)du¡du2du3 T-->oo jA3 
= G4(0, O, O; cp¡, cp2). 

The discrete counterpart relation 

lim ( cJ>~(u 1 , u2, u3)G4(u¡, u2, u3; cp¡, cp2)du¡du2du3 
n-+oo JA3 

= G4(0, O, O; cp¡, cp2) 

can be easily verified as before. 

Under the condition L,j= 1 a1 = O, the dr cumulant reduces to 
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=(2n)P- 1r ( fp(l'f¡, ... ,Op-I)<I>;(o¡-a¡, ... ,OP_¡-ap-I) 
J/\.P-1 

dO¡ ... dOp-1 

=(2n)P- 1
T ( <~>;(u¡, ... ,Up-I)/p(u¡ +a¡, ... ,up-1 +ap-I) 

JA_p-1 

du 1 ... dup-1· (17) 

In particular, for p = 2, (17) yields 

E[fr(O)] = cum(dr(O), dr( -0)) = ( <I>;(u)f(u + O)du 
2JrT JA 

and so 

E[Jr(fP¡)] E[llr(O)¡p¡(O)dO] 

In other words, 

= l ¡p¡(O)(l <I>;(u)f(u + O)du)d¡J 

l <I>;(u)(l f(u + O)¡p¡(O)dO)du 

= l <I>;(u)G(u;¡p¡)du ~ l j({})¡p 1(0)d1'f as T ~ oo. 

l (E[ Ir( O)]- f(O))¡p¡ (O)d¡J ~ O as T ~ oo. 

On the other hand, 
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By the Leonov-Shiryaev formula and (17), the integrand function above equals 

Hence 

cum(dr(1'J¡ ), dr( -¡'}¡ ), dr( 1'Jz), dr( -1'Jz)) 

+ cum(dr(1'J¡), dr( 1'Jz))cum(dr( -1'J¡), dr( -1'Jz)) 

+ cum(dr(1'J¡ ), dr( -1'Jz))cum(dr( -1'J¡), dr(1'Jz)) 

(2n)3r .[..3 <I>~(u¡, Uz, u3)./4(u¡ + 1'J1, u2 - 1'J1, u3 + 1'Jz)du¡ duzdu3 

+(2n)3r .[.., <I>~(s¡- 1'J¡, -s¡- {}z, sz + 1'J¡)f(s¡)f(sz)ds¡dsz 

+(2n)3r .[.., <I>~(s¡ - 1'J¡, -s¡ + 1'Jz, s2 + 1'J¡)f(s¡)f(sz)ds¡dsz. 

Furthermore, since 

the Markov inequality yields 

and we have in the limit 

lr(cp¡)- J(cp¡) = l Ur(1'J)- f(1'J))cp¡(1'J)d1'J 

= l Ur(1'J)- E[/r(1'J)])cp¡(1'J)d1'J + l (E[/r(1'J)]- f(1'J))cp¡(1'J)d1'J ~O. 
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Theorem 5.2 Let X= {X(t)}1E[O,TJ be a strictly stationwy zero-mean Lévy pro­

cess with second and fourth finite moments and corresponding spectral densi­

ties j({}; e) and }4({}1, {}2, {}3 ; e). Let e0 be the true parameter val u e and define 

cp( {};e) = /(,~;e) w( {}). If the following conditions apply: 

(1) j({}; e¡) ::f:. j({}; e2)for e 1 ::f:. e2. almost everywhere in R 

(11) Condition (1) in proposition 5.1 holdsfor cp¡({}) = cp({};e) and j({}) = 

j({}; eo). 

(III) Condition (2) in proposition 5.1 holdsfor cp 1({}) (/)2({}) = cp({};e), 

j({}) = j({}; eo) and }4({}¡, {}2, {}3) = }4({}¡, {}2, {}3; eo). 

(IV) There exists a function v : R ~ R such that the function h({}; e) = 

/(J;o) v({}) is uniformly continuous in Rxe and (1) and (2) in proposition 

5.1 hold for cp¡ ( {}) = (/)2 ( {}) = ~f,~j. 

' p 
Then (16) defines a consistent estimator oje0, that is, er ~ e0 as r ~ oo. 

Proof: To simplify, all limits below will be understood to be taken as T ~ oo. 

Conditions (11), (111) and proposition 5.1 imply that 

= _.!._ r (log(j({}; e))+ flr({}) )w({})d{} 
47r J A. ({};e) 

~ U( e)= 4~ l (log(j({}; e))+ ·j~;;e;¡)w({})d{}. (18) 

Hence 

where 

is a non-negative function by virtue ofthe inequality 

x- 1 ~ log(x), Vx > O. 

128 Pro Mathematica, 21, 41-42 (2007), 107-143. /SSN 1012-3938 



Fractionally integrated processes ofOrnstein-Uhlenbeck type 

Furthermore, by condition (1), this inequality is strictly if e -:f- Bo. Thus, given 

E > O there exists l] > O such that for lB - Bol :<: E: 

U(eo) < U(e) -1]. 

We claim that if (18) holds uniformly in e E 0, then eT will be a consistent 

estimator of 80 . Indeed, the uniform convergence implies that 

U(Br)- U(8o) = U(Br)- Ur(Bo) + Ur(8o)"""'" U(Bo) 
' ' p 

::;; U(Br)- Ur(Br) + Ur(Bo)- U(Bo) --7 O 

and so 

To justify the uniform convergence, we invoke condition (IV) and proposition 

5.1 to write 

Given E > O, Jet l]( E) denotes the modulus of continuity of the uniformly con­

tinuous function h. Then for any 8¡, e2 E 0 such that lB¡ - 821 ::;; E: 

and the proof is complete. • 
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6 Estimation of the FIOUL Process 

As seen in the previous section the mínimum contrast estimator ( 16) is 

quite general and can be applied to any strictly stationary zero-mean process 

satisfying the conditions in theorem 5.2. In this section we study thc possibility 

to apply this methodology to the FIOUL process Xd = {XJ(t)}. As shown 

in proposition 4.1, this process has a symmetric and strictly positive spcctral 

density 
(T2 

f(O; e) = 2niOI2d(,t2 + oz), 

where e= (-1, d, CT) and CT2 = E[Z(1)2] is the variance ofthe BDLP Z = {Z(t)} 

of Xd. We remark that ~ may depend in tum on the inner paramcters of the 

BDLP. 

Similarly to f, we can evaluate the fourth order spectral density, f4, of 

Xd. This is given by the Fouricr inverse transform ofthe fourth ordcr cumulant 

function 

c4(t,, tz, t3) = cum(Xd(O),Xd(t, ), Xd(tz), Xd(t3)) 

84C(O,, Oz, 03, 04) 
= ao,ao2ao3ao4 I<J?,.o,.o3·'7•>=<o.o.o.o), 

where C({} 1, {}2 , 03 , 0 4 ) is the cumulant function (9) with g = gd at the points 

O:::; t1 :::; t2 :::; t3• This yields 

and thc fourth order spectral density 

!4( o,, Oz, 03; e) 
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where 

2nCi~l1 ¡(0) Un l"" cxp(-i0 1 u)gc~(u)du) 

X ( 2~ l"" exp( -i02u)gc~(u)du) ( 2~ loo exp( -W3 u)gc~(u)du) 

x ( 
2

1
7r l"' exp(is(t'f 1 + 0 2 + 03 ))gc~(s)ds) 

3 

?(A., O¡, 02, 03) = n (A.+ iOk)(A.- i( O¡ + 02 + 03)) 
k=l 

and g" is the Fourier transform ofthe kernel g" that was derived in proposition 

4.1. 

Wc examine now thc conditions in theorem 5.2 to ensure the consistency 

of (16). As in Gao [2004], wc will work hereafter with the weight function 

1 
w(O) = 1 +02 

and assume that X is continuous1y observed. See however, remark 6.1. 

Condition (1): 

This is an identifiability condition that restrict the estimation ofthe whole 

set ofparameters to the estimation ofthe vector parameter e= (,1, d, tT), where 

~ = E[Z(l)2] = tT2(81). Unfortunately, the mínimum contrast estimator (16) 

does not providc information about the BDLP vector parameter 81• 
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Condition (JI): 

By the monote convergence theorem, this condition is satisfied ifwe prove 

that 

j({};eo)w({}) E L 1 ve E e 
f({}; e) , . 

Let 

where a= 2(d- d0 ). Because d E]O, H, lal < l. Making the change ofvariable 

x = & and using the identity (see Gradshteyn and Ryzhik [1994], pag. 337) 

l "' _x-~L-I~ + fJ) /X= 7TCSC(j17T) (e y- fJ)¡-P-I + ( 0 - f3 )01-J-I), 
0 (x + y (x +o y- o o- y 

with O < J1 < 1, we obtain 

<oo 

This is true even if ;!0 = 1, sin ce the last function tends to 

~7T 2 

2 (m') (a+ 1 -A (a- 1)) as ;!0 --? l. 
2cr cos 2 

Condition (111): 

Sine e 

G4(0, O, O; 1,0, 1,0) = 21: j({}; e0 )
21,0({})2d{} 

+ [ [ f4({}1, -{}1, {}2; eo)IP( {JI )1,0({}2)d{}1 d{}2, 
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where 

E [Z(1)4] 3E [Z(1)2] 2 
Oo - Bo }({} • e )j({} . e ) 

2nEeo[Z(l)2]2 '' o 2• o' 

this condition will be satisfied if we prove that 

j({};eo)w({}) EL2 VeE8 
j({}; e) ' . 

We will show this by restricting the vector parameter e= (A, d, cr) to satisfy the 

condition Id- dol ~ ±· 
Let 

1= roo j({};eo)w({}) 2d{}=2cró roo {}"(A2+{}2? d{} 
j_oo ( j({}; e) ) cr4 j 0 (A~+ {}2)2(1 + {}2)2 ' 

where a= 4(d- dO), satisfy lal < l. By Gradshteyn and Ryzhik [1994], pag. 

335, we have the identity 

l
oo Xr-1 

)
2 2 

dx = B( 4 - r, r)2F1 (2, 4 - r, 4, 1 - {3), for O < r < 4. 
0 ( 1 + x (x + {3) 

Here B denotes the Beta function and 2F1 the Gaussian hypergeometric func­

tion. 

An application ofthis formula and the change ofvariable x = & yield 

1 =ero x 2 + x dx = ~ x 2 dx 
4100 a+l_l(J2 )2 A4 4loo !Ct.l_I 

cr4 o (1 + x)2(x + ,l~)2 cr4 o (1 + x)2(x + A~)2 · 
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2,12 o-6,14 5 - a a + 3 5 - a 2 + a-4 B(-
2
-, -

2
-)2F1(2, -

2
-,4,1- ,10) 

o-6,14 3 - a a + 5 3 - a 2 +--;;::¡--B(-
2
-, -

2
-)zF¡(2, -

2
-,4,1- ,10)) < oo, 

provided that IAol :f:. l. However, if IAol = 1, the idcntity 

------:-dX - --(-) ~ V V l oo xJ1-I 1 p ,r(~)f(l+n-~) 

o (p + qx")"+I - vpn+I q f(l + n) 

where O < ~ < n + 1, p :t O and q :t O (see Gradshteyn and Ryzhik [1994], 

pag. 341) implies that 

= - 0 
,,4f(-)f(-) + 2,,2r(-)r(-) + f(-)r(-) 

o-4 
( a + 1 7 - a a + 3 5 - a a + 5 3 - a ) 

6a-4 2 2 2 2 2 2 

is also finite. 

Condition (IV): 

As a simple choice we could take v(O) = l. Then depending on the vari­

ance of the BDLP, the uniform continuity of 

seems easy to be guaranteed. Moreover, by the previous analysis, it is easy to 

verify that conditions (1) and (2) in proposition 5.1 hold for <p¡ (O) = <p2(1'J) = 
w(O). 
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Remark 6.1 The previous analysis also holds ifXd is discretely observed. We 

show for instance condition (11). Let fy be the spectral density (15) and let 

f = /d be the spectral density (12) o/Xd. Then 

and 
1 = r fy(~; eo:w(1'J) d{} :<:;t. r fy(1'J; ~~)w(1'J) d1'J. 

J]-rr.rr] jy(O,B) J]-rr,rr] /(4,8) 

Because the function ;i;; is continuous at ¡'} on the interval [ -rr, rr ], we can 

find afinite constante such that 

1 :<:; Ct. r fy(1'J; Bo)d{} = Ct.y(O) < OO. 

j]-u] 

Note that the same result holds without the weight function; i.e, by taking 

w( 1'J) = l. This also holds for the other conditions. 

In order to imp1cment the Whitt1e methodology, Jet us assume that Xd is 

discretely observed via the process Y= {XdUt.)) = {Y1). Then, an approxima­

tion ofthe objective function 

1 (rr In( 1'J) 
Un( 1'J) = 4rr j _}1og(fy( 1'J; 8) + fr( 1'J) )w( 1'J)d1'J 

1 (rr 1n(1'J) 

2rr Jo (1og(fy(1'J;8) + fy(1'J))w(1'J)d1'J 

is obtained by first considering the partition 

2rrk 
{{}k=-}, 

n 

with k running from 1 to m= [n2l ], and then using the right-hand side rectan­

gular rule 

(19) 
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where the weight function w can be omitted. Recall that the spectral density 

fr in (12) is an infinite sum. Therefore it needs to be truncated toa sufficiently 

large integer value M. This givcs the approximation 

1 M {}- 2hrr 
fr({}) = Li" I f( L1 ), -re < {} S. re. 

h~-M 

On the other hand, we observe that the periodogram points 

can be readily calculated by an application of the discrete fast Fourier trans­

form. 

One ni ce feature of the present model is that the minimization of ( 19) can 

be simplified by rewriting the objective function as 

(20) 

where 

M 
2rrL1fr({}) '\:' 1 

g({}) = g({}; J,d) = cr2 = ~ I~J2d(J2 + (u-zh")z)· 
h--M !!. !!. 

Then, differentiating (20) with respect to cr2 and equating to zero gives 

(21) 

Substituting (21) in (20) yields 
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As a consequence, the Whittle estimator can be defined as (A, d, 6-), where 

and 8 is a compact set in [0, oo[x[O, 0.5]. 

7 Simulation of a FIOUL Process with Symmetric 

CGMYBDLP 

We will consider in this work a FIOUL process Xd with BDLP Z = {Z(t)) 

given by a symmetric CGMY(C, M, M, a)-Lévy process with fixed parameter 

a E]O, 1 [. This process, which refers to the Car, Geman, Madam and Yor model 

in Carr et al. [2002], can be seen in tum as a particular tempered a-stable 

process. The family oftempered stable processes has been extensively studied 

by Rosinski [2007] and Cohen and Rosinski [2007]. Following these authors, 

we present the next series representation for Z = {Z(t)}1E[O,TJ: 

where E> O is small, AE = E1-1 ~2C( 2~a), W = {W(t)) is a standard Brownian 

motion, 

is a compound Poisson process, {B1) is an i.i.d. sequence of Bemoulli ran­

dom variable with parameter 0.5, {u1) is an i.i.d. sequence ofuniform random 

variables in the interval ]0, 1[, {e1) is an i.i.d. sequence ofexponential random 
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variables with parameter 1, r 1 < r 2 < ... are the arrival times of a Poisson 

process with intensity parameter 1 and {r;} is an i.i.d. sequence ofuniform ran­

dom variables in [0, T]. All sequences are assumed independent of each other. 

Detai1s are given in Valdivieso [2007]. 

As a result, a direct integration of the previous process gives the next 

simulation scheme to the FIOUL process Xd = {XJ(t)): 

Xd(t) = l~ gd(t- s)dZ(s) = A,B(t) + [ g,¡(t + s)dM'(s) 

+ l 1 

gd(t- s)dM'(s) = A,B(t) + Y1 (t) + Yz(t), 

where B = {B(t) = loogd(t- s)dW(s)) is a stationary Gaussian process with 

autocovariance function y(h) =Jo g,¡(lhl + s)gd(s)ds, Yz = { Y2(t)} is given by: 

Y2(t) = l' g,¡(t- s)dM'(s) 

= 

and Y 1 by 

= 

where the super-tilde means that all these random sequences are generated in­

dependently from the ones of Y 2, { 1'¡} is an i.i.d. sequen ce of uniform random 

variables on the interval [0, K] and K is a truncation constant that can be deter­

mined, for instance, by fixing a small value e and taking K= (tlr(d)e)L. 
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FIOUL processes with symmetric CGMY BDLP 

o 1 00 200 300 400 500 600 700 800 900 1000 
t 

o 
X 

-1 L_ __ L_ __ L_ __ L_ __ L_ __ L_ __ L_ __ L_ __ L_ __ L_ __ ~ 

o 100 200 300 400 500 600 700 800 900 1000 

Figure 1: Samp1c paths of a FIOUL proccss with CGMY(0.1784, 1 O, 1 0,0.5) 

BDLP, J = 0.1 and d = 0.1. The upper proccss was simu1ated with 1'1 = 1 and 

the 1ower process with 1'1 = 0.25. 
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8 Simulation Results 

We present in this section a simulation study of the performance of the 

Whittle estimator for a FIOUL process X with symmetric CGMM BDLP Lévy 

process. We have chosen for this a FIOUL process with damping parameter 

A = 0.1, memory parameter d = 0.1 and CG MY(0.1784, 1 O, 1 O, 0.5) BDLP, 

which has a standard deviation r.r = 0.1. To analyze the contribution of the 

sampling frequency, we have selected observations of X at equidistant points 

with ~ = 1 and ~ = 0.25. The simulation of X was conducted via the direct 

integration scheme in Section 7 with E = 0.001 and T = 1024. Figure 1 

displays two of these simulated paths and Tables 1 and 2 show the estimation 

results based on 100 simulations of X. We in di cate there the mean, median, 

standard deviation, root mean square error and running time in seconds ofthese 

100 estimations. AH the procedures were ran on a PC Pentium IV with 2.4 Mhz 

using a Matlab software. As seen, the Whittle estimator performs not only very 

we11, but also fast. The more accurate results were obtained for the deviation 

parameter r.r. We observe also more efficient results for ~ = 0.25. The mean 

running time in this case is below one minute, while for ~ = 1 is slightly above 

this time. We must indica te, however, that for ~ = 1 more than 70 % of the 

estimations took around 15 seconds. The high variance observed in Table 1 is 

due to the fact that in cases of no convergence we switched from the fmincon 

optimization algorithm in Mat1ab toan hybrid differentia1 evolution algorithm. 

One way to reduce these times is by improving the poor performance observed 

in the initial estimators. These were calculated with the log-periodogram or the 

R/S regression technique (see for details Doukhan et al. [2002]). 
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Table 1: Whittle estimations for the vector parameter (A., d, O") in a FIOUL 

process with CGMY(0.1784, 10, 10, 0.5) symmetric BDLP and ¡'), = l. 

A= 0.1 d = 0.1 0"=0.1 Time 

Mean 0.10542 0.10574 0.10003 70.729 

Median 0.10153 0.10618 0.1002 14.617 

Std. Dev. 0.026434 0.033915 0.0044479 89.953 

RMSE 0.026855 0.03423 0.0044257 

Table 2: Whittle estimations for the vector parameter (A, d, O") in a FIOUL 

process with CG MY(0.1784, 1 O, 1 O, 0.5) symmetric BDLP and ¡'), = 0.25. 

A= 0.1 d = 0.1 (]" = 0.1 Time 

Mean 0.1029 0.099302 0.10117 55.348 

Median 0.10105 0.10001 0.10146 53.195 

Std. Dev. 0.016649 0.013404 0.0046814 8.6153 

RMSE 0.016817 0.013355 0.0048031 
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Resumen 

Se propone una metodología para la estimación de un proceso fraccionado in­

tegrado de tipo Omstein-Uhlenbeck. La metodología se basa en el contraste 

continuo de Whittle. Se presenta un estudio se simulación en el cual este pro­

ceso es conducido por un proceso CGMY de Lévy simétrico. 

Palabras Clave: Procesos de Lévy fraccionados. Dependencia a largo plazo. Esti­

mación en el dominio de las frecuencias. 
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