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1 Introduction

Encryption is the process of transforming information to make it unread-
able to anyone except those possessing special knowledge, usually referred to
as a key.

Modern encryption algorithms depends heavily on number theory,with primali-
ty testing, factoring, discrete logarithms and elliptic curves being perhaps the
most prominent subject areas. Encryption of electronic messages currently is
applied in many areas of human life, such as the signature of digital documents,
the implementation of electronic money, copyright protection, bank electronic
transactions, ATM machines, Smart cards, etc. Because of these important
applications I would like to explain in this article the mathematical foundation
of one famous encryption algorithm : RSA algorithm. I assume the reader has
some basic knowledge on number theory and computer science terminology,
the rest is explained and proved here.

2 Divisibility and GCD Algorithm

Definition 2.1 Let a,b € Z with a # 0. We say a divides b, denoted by a | b,
if 3 ¢ € Z such that b = ac. When a divides b, we say that a is a divisor (or
factor) of b, and b is a multiple of a. If a does not divide b, we write a 1 b. If
alband0 < a < b, then a is called a proper divisor of b.

Theorem 2.1 Let a,b and c be integers. Then
e ifalbanda|c thenal (b +c).
e ifa|b, then a| bc, for any integer c.
e ifalbandb|c, thena|c.

Theorem 2.2 (Euclid’s Division Algorithm)
Leta, beZ, b+ 0. Then there exists unique determined q,r € Z such that

a=qb+r where 0<r<|b Q)]
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The number q is called the quotient and r is called the remainder.
Proof: Consider the arithmetic progression
-+, =3b,-2b,-b,0,b6,2b,3b, - --
Then there must be an integer g such that
gh<a<(g+ Db

Let a — gb = r, then a = bg + r with 0 < r < b. To prove the uniqueness of ¢
and r, suppose there is another pair ¢; and r; satisfying the same condition in
equation (1), then

a=bgq +r, 0<r <b

We first show that r| = ». For it not, we may presume that r < rj, so that
0 < r; —r < b, and then we see that b(g ~q,) = r; —r, and so b | (r; —r), which
is impossible. Hence, ¥ = r;, and also g = q;. [ ]

Algorithm 2.1 (Euclid’s Division Algorithm)

Input :a,beZ, b+0
Output : q,r suchthata=q-b+randr=00rr<b

Method :
qg:=0
ri=a
While r # 0 and b < r Do
u:=r/b
g:=q+u

ri=r—u-b

Definition 2.2 A number p € Z is called prime if its only positive divisors are
1 and p (itself). Numbers which are not prime are called composite.

Theorem 2.3 Every integer n > 1 has a prime divisor
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Proof: The integer » has a divisor that is greater than 1, namely n. Among
all divisors of n that are greater than 1, let p be the smallest. Then p must be
prime. Otherwise, p would have a divisor m with

l<m<p<n

this contradicts the assumption that p is the smallest divisor of n greater than
1. ]

Theorem 2.4 (Euclid) /n the ring Z the number of primes is infinite.

Proof: The proof is by contradiction. Obviously there is at least one prime,
namely 2. Suppose that the largest prime is p. Form the number

N=2-3-5--p+1. )

Obviously N > p, so by assumption N cannot be prime. Since N € Z for
the above theorem, then N has a prime factor, say ¢, and clearly g cannot be
among 2,3,..., p, for no such ¢ < p can divide the right side of equation (2).
So g > p, a contradiction. We conclude that there is no largest prime number.
]

Theorem 2.5 [f'n is composite, then n has a prime divisor p such that p < \n

Proof: Let p be the smallest prime divisor of n. If n = rs, then p < r and
p < s. Hence, p* <rs=n. Thatis, p < vn. n

This theorem can be used to find all the prime numbers up to a given
positive integer n, this procedure is called the Sieve of Eratosthenes, assuming
that » is relatively small.

Algorithm 2.2 (Sieve of Eratosthenes)
Input :n>1,neZ

Output : All prime numbers up to n.
Method :
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1. Create a list of integers from 2 to n

2. For prime numbers p; (i = 1,2,...) from 2,3,5, up to | \nl, delete all the
multiples p; < p;m < n from the list;

3. Print the integers remaining in the list.

2.1 Greatest Common Divisors

Definition 2.3 Let a and b be integers, not both zero. The largest divisor d
such thatd | a and d | b is called the Greatest Common Divisor (gcd) of a and
b. Such d is denoted as :

d = gcd(a, b)

Definition 2.4 We say that a and b are relatively prime or in short coprime
ifged(a,b) =1

Theorem 2.6 Let a, b be integers not all zero then gcd(a,b) exists and is unique.
As a consequence there exist integers x,y such that

d = gcd(a,b) = ax + by

Proof: Consider the set 4 = {au + bv, where u,v € Z}. Clearly 4 contains
positive, negative values as well as 0. Choose x and y such that m = ax + by
is the smallest positive integer in 4. Use the Division algorithm, to write a =
mq + r, where 0 < r < m then

r=a-mq=a-q(ax +by) = (1 ~ gx)a + (-qy)b

and hence r € A. But r < m, so it follows from the definition of m that » = 0.
Thus a = mg, that is m | a; similarly, m | b. Therefore, m is a common divisor
ofaand b. Sinced | aand d | b, d < m. Since d = gcd(a, b), we must have
d = m. Uniqueness: [f there are two greatest common divisors d; and d; then
it follows from its definition that gd, = 4> and hd, = d; for some g, h € Z*;
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hence d) = ghd, thus 1 = gh, andso g = A = 1. We conclude thatd; =d,. m

We will see later in Theorem (2.10) how the values of x and y can explic-
itly be calculated.

Theorem 2.7 [f a prime number divides the product of two integers, then it
divides at least one factor

Proof: Suppose the prime number p divides ab but not a. Since p is a prime
number, we must have ged(a, p) = 1. By Theorem(2.6) there are x,y with
1 = ax + py. This implies

b = abx + pby

Since p divides abx and pby, then by Theorem(2.1) we can conclude that p is
a divisor of b. |

2.2 Euclid’s GCD Algorithm

Euclid’s algorithm for finding the greatest common divisor of two in-
tegers is probably the oldest nontrivial algorithm that has survived up to the
present day. It is based in the Division algorithm (eq (1)) and in the following
theorem.

Theorem 2.8 Leta,b,q,r € Zwithb > 0and 0 < r < b such that a = bgq + r.
Then ged(a, b) = ged(b,r)

Proof: Let X = ged(a, b) and Y = ged(b, r), it suffices to show that X = Y. If
integer ¢ is a divisor of a and b, it follows from the equation a = bg + r and
divisibility properties that c is also a divisor of r. By the same argument, every
common divisor of b and 7 is a divisor of a. .

Theorem 2.9 [Euclid’s GCD method]
Leta,b € Z* with a > b. ifb | a then gcd(a,b) = b. If b & a, then apply the
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division algorithm repeatedly as follows:

a = ¥

b = 8|

ro = rq +n 0<ry<r,

A = rgqt+n O0<ry<rm, (3)
13 = gz t+ra 0<ry <vrs,

Pz = Fpei et e 0 <y <rp,

Foey = Fagn +0 (o1 = 0)

Then ry, the last nonzero remainder, is the greatest common divisor of a
and b. That is,
ged(a, b) = r,

Values for x,y in gcd(a, b) = ax + by can be obtained by writing each r; as a
linear combination of a, b.

Proof: The chain of cquations is obtained by dividing r;.; into ;. (Note that
we have written the inequalities for the remainder without an equality sign).
The process stops when the division is exact, that is, whenever r;,; = 0 for
i=1,2,...,n

We now prove that #, is the greatest common divisor of a and b. One sees
that fori := 1,...,n, we have r,_| := r;q; + ri.y, from Theorem(2.8) it follows
that the common divisors of #;; and r; are the same as the common divisors of
r; and r;,(, and hence

ged(ri-y, r;) = ged(ry, Fis1)
Then by mathematical induction, we have

ged(a, b) = ged(ro, r1) = ged(r1, 7)) = -+ = ged(Fu-1, 1)
= gcd(r,, 0) =1y

To see that r, 1s a linear combination of a and b, we argue by induction that
each r; is a linear combination of @ and b. Clearly r; is a linear combination of
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a and b, since ¥, = a — bgy, so does 3. In general, r; is a linear combination
of r;_y and r;_; (by definition). By inductive hypothesis we may suppose that
these latter two numbers are linear combinations of @ and b, and it follows that
#; is also a linear combination of « and b. [ |

Euclid’s GCD Algorithm
Input :a,beZ, b>0
Output = r 1= gcd(a, b)
Method :

While (6 > 0) Do
r:=amodb
a:=b
b:=r

Let a and b be non-negative integers, and let d := gcd(a, b). Then we know
from Theorem (2.6) that there exist integers x and y such that ax + by = d.

If during the computation of the gcd(a, b) by means of the Euclidean al-
gorithm we keep track of additional values then we can efficiently compute x
and y. This algorithm is called the extended Euclidean algorithm and will
allow us later in the computation of the inverse of a number modulo another.

Theorem 2.10 [Euclid’s Extended GCD method]
Leta,b,rg,...,Fue1:G4,- - -»qn as in Theorem (2.9). Define integers g, ..., Sps1,
to,-..,Ins1 as follows :

so:=1 t:=0,

4
s1:=0 f:=1 “)

And for i

1l
=

Siel 1= Sic1 = S i 2= iy — GG %)
Then

(i) Fori :=0,...,n+ 1, we have s;a + t;b = r;; in particular, s,a + t,b =
ged(a, b)
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(i) Fori:=0,...,nwe have siti.1 — t;siy1 = (—1)'
(iii) Fori:=0,...,n+ 1 we have gcd(s;, t;) = 1

(iv) Fori:=0,...,nwehave tit;;y < 0and |t < |tis]
Fori:=1,...,nwehave s\si;1 <0 and|s;| <|si41]

) Fori:=0,...,n+ 1lwehaver,_|t;l <aandr_|s)j < b

Proof: (i) is easily proved by induction on i. Fori := 0, ] the statement is clear.
Fori:=2,..,n+ 1, we have:
sia + tb (Sic2 = Sim1gi-na + (tia — ti1gi-1)b
= (si2a+ tigh) — (sima + fi1b)g;
Fiz — ric1qg;-1 (by induction)

(©)

(11) is also casily proved by induction on i. Fori := 0, the statement 1s
clear. Fori:=1,...,n, we have

Sitier — isir = Sfllioy — 690) — t(Si21 — $iq;)
= —(S,'_lt,' =ty S,‘) (after expanding and simplifying)
= -1y ?

= (=1Y (by induction)

(111) follows directly from (iv).

For (iv) one can easily prove both statements by induction on i. The statement
involving the t; 1s clearly true for i := 0. Fori := 1,...,n, we have ¢, :=
t;_| — t;q;, and since by induction hypothesis #;,_; and ¢; have opposite signs and
It;] = t;i-y), it follows that |t;,1] = |f;-1] + ft:lg; = |4, and the sign of ¢, is the
opposite of that of 7;,. The proof of the statement involving the s; 1s the same,
except that we start the induction at i := 1.

For (v), one considers the two equations:

Sija+ ti1b
sia+tb =

1
o2
T

®)
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Subtracting #,_| times the second equation from ¢ times the first, applying
(i1), and using the fact that ¢; and #,_, have opposite sign, we obtain:

a = tiricy — izl 2 tlria)

from which the inequality involving #; follows. The inequality involving s;
follows similarly, subtracting s,_; times the second equation from s; times the
first. [ |

Extended Euclid’s GCD Algorithm
Input :a,beZ, b>0
Output : v =(d, s, t)

Method -
Letiu :=(qa,1,0)
Letv:=(b,0,1)

While (v > 0) Do
Letw:=a—lu /v v

Example 2.1 Suppose a := 100, b := 35 then the numbers s; and t; are easily
computed from the q;:

i|] 0| 1]2]13] 4
r 10013530 5| 0
q: 2116

s |1 1 |01 |-1|7
n] 0 | 1 ]-213]-20

So we have gcd(a,b) :=5 = —a +3b

This is the code in Maple:

> restart;
> extended_gcd:=proc(a,b)
> local r®,rl,s®,sl,t0,tl,temp,q;
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r®:=a; rl:=b;

s@:=1; s1:=0;

t0:=0; tl:=1;

while r1>8 do
q:= floor(r®/rl);
temp:= r@-ri*q; r®:=rl; rl:=temp;
temp:= s0@-sl*q; s@:=sl; sl:=temp;
temp:= t0-tl*q; tO:=tl; tl:=temp;

od;

print(ro,sd,t0);

end:

VvV V. V. ¥V V V V V V V V VvV V

extended_gcd(169,35);

5, -1,3
There are more efficient ways to compute the values s; and ¢; see for example
[6](pag. 61)

3 Modular Inverses and the CRT

One application of the Extended Euclidean Algorithm is to the problem
of computing multiplicative inverses in Z,, where n > 1. It also is used in the
CRT (Chinese Remainder Theorem) which 1s part of the RSA algorithm, as we
explain later in detail.

3.1 Fundamental Theorem of Arithmetic

The Fundamental Theorem of Arithmetic states that all numbers are
expressible as a unique product of primes. It may seem obvious—how could
it be any other way?. In fact there are other “number systems” which look like
the integers (with primes, factorization, etc.) but for which unique factorization
fails. Here is a simple example: Let 2Z denote the set of even integers. You
can easily verify that 2Z is closed under addition and multiplication. Call a
number n € 27 composite if it’s a product of two other numbers in 2Z, prime
otherwise. It is easy to think of some primes in 2Z: 2,6, 10,.... In fact, you
can check that anything of the form 44 + 2 is prime. Similarly, anything of the
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form 4k is composite. Now notice that 60 factors into primes in two ways, as
60=6-10=2-30.

Theorem 3.1 Let a € Z \ {0, 1,1}, there exist determined prime numbers
Ply--sPn Pl < ... < pyand a; € N* with:

n
a = sgn(a) H ;"
i=1

Proof: (Based on [3]) First we’ll show that any integer can be factored. Start
with some integer n > 1. If n is prime, we are done. Otherwise n = ab where
a,b > 1. If a and b are prime, we are done. If one or both are not prime apply
the same argument to each piece. For example, if a is prime but b 1s not then
we can write b = b b,, and so n = ab,b,. If all pieces are prime we are done,
otherwise apply the argument again to any composite factor. At each stage the
composite factors decrease by at least a factor of 2. It is clear this can continue
for only a finite number of steps before all of the factors are prime.

Proving that the factorization is unique is a little harder. The proof is by
contradiction. Suppose that at least one integer greater than onc can be factored
in TWO ways. Then there is a smallest integer which factors in two ways—Ilet
n be that integer, and suppose

R=pip2 Pr=q1g2- - qs

where all p’s and q’s represent primes. Of course ali of the p’s and q’s must be
distinet, for if, for example, p; = ¢ for some & then we could divide both sides
by p; and find a smaller n with two distinct factorizations. We can suppose
that p; < q. Start with pyp2---p, = g192--- g and subtract p;g2q3 -+ - g
from both sides to obtain

pUD2p3 Pr— Q293 qy) = (q1 — P1)9293 g 9

Define a new integer N by N = (g, — p1)g293 - - - q5s (N equals both sides of
the above equation). Obviously 1 < N < n, so N must factor uniquely into
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prime numbers. Now, we can find a prime factorization of N which contains
the prime p;——just finish factoring the remaining stuff in the parentheses on the
left side of equation (9). But if we finish the factorization of N using the right
side of (9) (by factoring ¢, — p,), this leads to a factorization which cannot in-
clude py, since ¢y — py 1s not divisible by p,. This means that N < n factorizes
into primes in two different ways, contradicting our choice of # as the smallest
such example. Thus the unique factorization must be true for all integers. ®

With the Fundamental Theorem at our disposal we can now prepare the
demonstration of the Chinese Remainder theorem.

3.2 Modular Arithmetic and CRT

Modular Arithmetic plays a crucial role in the RSA algorithm as we
will see later. This notion was first introduced by Gauss in his Disquisitiones
Arithmeticae in 1801, though the ancient Greeks and Chinese had already had
the idea.

Definition 3.1 Lefa € Zand n € Z*,n > 1. We define “a mod n” to be the
remainder v € Z when a is divided by n, that is

r=amodn=a-|a/nln
We may also say that “r is equal to a reduced modulo n”’

Given the well-defined notion of the remainder of one integer when di-
vided by another, it is convenient to provide a special notion to indicate equality
of remainders.

Definition 3.2 Let a,b € Z and n € Z*. We say that “a is congruent to b
modulo n”, denoted by
a = b (mod n)

if nis a divisor of a — b, or equivalently, if n | (a — b).
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Similarly, we write
a & b (mod n)

If a is not congruent (or incongruent) to b modulo n, or quivalently, if n ¢

(a - b).

Definition 3.3 [fa = b (mod n), then b is called a residue of a modulo n. If
0 <b <n-1,bis called the least nonnegative residue of a modulo n.

From these two definitions the following equivalences are valid:
a=b(modn) < amodn = bmodn

Theorem 3.2 Ifa,b,candd € Z (c £ 0), the following statements hold (Equi-
valence Relation).

e Reflexive: a = a ( mod ¢)

o Symmetric: if a = b (mod ¢), then b = a (mod ¢)

e Transitive: ifa = b (mod c) and b = d (mod c) then a = d (mod ¢)
Theorem 3.3 Suppose a = b ( mod n) and ¢ = d ( mod n) Then :

e a+rb=cxd(modn)

e ab = cd ( mod n)

e ifa=b (mod n) thenfor k € Z, a* = b* ( mod n)
Theorem 3.4 (Chinese Remainder) if p,q € Z prime numbers such that

m=a(modp) and m=a(modgq)

then

m = a ( mod pg)
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Proof: m = a ( mod p ) if and only if m — a = kp, for some k € Z. By
Theorem(3.1) m — a can be expressed as p;.p2.ps .... If m — a is divisible by
both p, g and GCD(p, q) = 1 then p and g must be one of p;.p2.ps . ... There-
fore, m — a is divisible by p.g. |

Theorem 3.5 Ifa = b ( mod n) and gdc(a,n) = 1 then gcd(b, n) = 1

Proof: There dk € Z such that a = b + kn. Since gdc(a,n) = 1 then by
Theorem(2.6) Ix,y € Z such that xa + yn = 1 so ‘

1 =x(b+kn)+yn=xb+ (xk+y)n=xb+yn, wherey €Z

therefore ged(b,n) = 1. n

Definition 3.4 [fad = 1 ( mod n), we say that d is the inverse of a modulo n.
Theorem 3.6 [fgcd(a,b) = 1 then a has a unique inverse d modulo b

Proof: We have that gcd(a,b) = | = ax + by for some x,y € Z. Therefore we
have: ax = 1 —by = 1 + by, making y; = —y). Soax =1 ( mod b ) and as
consequence x is the inverse of a modulo . Now, let us assume that a has two
inverses @’ and @” thenaa’ = 1 ( mod b ) and aa” = 1 ( mod b ). Therefore
a(@’ —a’)y=0(mod b) [

We are now in the position to provide a method to compute the multiplica-
tive inverse of an integer in Z,,.

Algorithm 3.1 [Multiplicative inverses in Z,|

Input - a € Z,
Output: a~' mod n, provided it exists
Method:

1. Use the Extended Euclidean algorithm (Theorem 2.10) to compute x,y €
Z such that d = ax + ny where d := gcd(a, n)
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2. Ifd # 1 then a™! mod n does not exist. Otherwise, Return(x).

Modular exponentiation can be performed efficiently with the repeated
square-and multiply algorithm , which is crucial for many cryptographic pro-
tocols. One version of this algorithm 1s based on the following observation.
Let the binary representation of & be Zi::o k2" where k; € {0, 1}:

t
= l—]ak,z' — (az")k(,(az')k, ”_(azf)kf
=0

Algorithm 3.2 [Fast exponentiation algorithm in Z,]

Input : a € Z, and 0 < k < n with binary representation: ¥\, _, k2!
Output : a* mod n

Method :
1. Set b := 1. If k = O then return(b)
2.8t A:=a

3.Ifky=1thenseth:=a
4. For i from I to t do the following:
4.1 Set A := A> mod n
4.2 If k;=1 then set b := A.b mod n
5. Return(db)

Definition 3.5 (Euler Totient ¢ function)
Let n € Z*, the Euler phi-Function ¢(n) is defined to be the number of non-
negative integers b less than n which are prime to #:

dn)y=beN,0<b<n: gedb,n) =1}
Theorem 3.7 If p is a prime number, then $(p) = p — 1

Proof: Since pisprime, thenVk:=1,...,p—1 : ged(k, p) = 1. So it follows
from the definition of Euler’s ¢-function that ¢(p) = p — 1. |

Theorem 3.8 If p, q are prime numbers, then ¢(p.q) = (p— (g —1)
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Proof: We count the numbers from 1 to p.g which share factors with p.q :
l.p, 2.p, ....(¢g - Dyp

lg, 2.q, ....(p—1)q

pq

The rest are coprime to p.q. This count results in:

pg)=pq-p-1D-(@g-H-1=pE-1)g-1)

Theorem 3.9 [f p is prime and k > 0 then ¢(p*) = p* — pF!

Proof: Only numbers that are a multiple of p have a common factor with p*:

1p, 2.p, ..., pFp

and the rest do not share any factors, so are coprime. Therefore

¢(p") = p* - P!

Theorem 3.10 if m, n are coprime, i.e. gcd(m,n) = 1 then ¢(m.n) = Pp(m).¢(n)

Proof: Organize into a matrix of m columns, and n rows

1 2 3 r e m
m+ 1 m+2 m+3 m+r cee 2m
2m+ 1 2m+2 2m+3 2m+r -~ 3m

n-Dm+1 m-Hm+2 w-Dm+3 - (n=Dm+r -+ nm
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Step(1) Eliminate columns: if ged(m,r) = 1 then ged(m,km +v) = 1 ¥k :=
1,...,n (see Theorem(3.5)) therefore all cells under that #* column have no
common factors with m. So, others have a common factor with m.n and can be
eliminated, as consequence ¢(m) columns survive.

Step(2) Examine cells in remaining columns: No two cells in a column are con-
gruent mod n (otherwise if im+r = jm+r ( mod n) thenim+r—jm—r = kn
then nj(i — j), which is not possible because i — j < n). As there are n (non-
congruent) cells in each column, label them as 0, 1,2,..., 7 — 1 in some order.
Then ¢(n) cells in each column coprime to n therefore ¢(n).¢(m) cells left that
are coprime to both m and n. ]

Theorem 3.11 [f gcd(a,n) = 1 and x1,x,,..., Xy are coprime to n, then
a.x1,8.X2,...,d.Xyn)y Qre CONGruent 10 Xy, Xz, . . ., Xg(n) in some order.

Proof: a.x; # a.x; ( mod n ), otherwise a(x; — x;) = k.n, but ged(a, n) = 1 then
nl(x; — x;), which is impossible because x; — x; < n. Using Theorem(3.5) let
a.x; = b (mod n), since gcd(a.x;,n) = 1 then ged(b, n) = 1. Therefore b must
be one of x;. ]

Theorem 3.12 (Euler)
Letne N, n>2then

YaeN, gecd(a,n)=1: a®™ =1 mod n

Proof: Let x1,x;,...,x4n < n and coprime to n. Since a is also coprime to
n, from Theorem (3.11) Ix;, x; : a.x; = x; (mod n ) which are unique. Since
there are ¢(n) of the a.x; and ¢#(n) of the x;. Thus

ax1.axz....a.Xppn = X1.X2..... Xg(ny (mod n')
Hence, if R := x1.x5..... Xg(n), then

a®™ R =R (modn)
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since n 1 R (because R 1s the product of integers each of which is relatively
prime to #1) then al(a®™ — 1) n

Theorem 3.13 (Fermat’s Little Theorem)
Let p € N be a prime number, then

YaeZ, a”!' = 1 mod p

Proof: Since p is prime then ¢(p) = p — 1. Now apply the Theorem (3.12) =

4 The RSA Algorithm

In 1977, three MIT researchers Ronald Rivest, Adi Shamir and Leonard
Adieman proposed the first practical public-key cryptosystem (i.e a mechanism
through which people can send secret messages without the need of exchanging
previously a secret key). The RSA cryptosystem is based on the following
assumption:

RSA Assumption: It is not difficult to find two large prime numbers, but
it is very difficult to factor a large composite into its prime factorization form.

4.1 How to choose the keys

It is important to define the appropriate keys because they will the de-
termine how the message will be encrypted and decrypted.

Theorem 4.1 (Choosing Key)
Given p, g prime numbers and e € Z™, such that gcd(e, ¢(p.q)) = 1, then

AdeZ : ed=1(mod ¢(p.q))

Proof: This follows directly from Theorem (3.6). Let b := ¢(p.q) and a := e.
Also recall, that in this case since p, g are prime numbers then by Theorem
B8 epg)=(p-1)g~1 L
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Theorem 4.2 (RSA Encryption)

Given p,q € Z* prime numbers. Take n := p.q and e and d as in Theorem
(4.1), then

YMeZ" - M= M(modn)

Proof: Since e.d = 1 ( mod ¢(p.q) ) then ed = 1 + k.¢(p.q) for some integer
k. Thus:

Mend — M1+k4¢(p.q) — Ml+k.(p—]).(q—l) — M_(M(p—l).(q—l))k
If M is relatively prime to p then by Fermat’s little theorem (Theorem 3.13):
Mo = M(MPTYD = MDD = M (mod p) (10)

If M is not relatively prime to p, i.c. multiple of p then equation (10) still holds
because both sides will be zero, modulo p. By exactly the same reasoning

M4 = M(Mq—l)k.(p-l) = M.(l)k.(l?-l) = M(modq) (11)

If we apply the Chinese remainder Theorem (3.4) to equations (10) and
(11), we obtain the result we want: MY = M ( mod n) ]

Algorithm 4.1 (RSA Key Generation Algorithm)
Summary: Each entity (4 and B) creates an RSA public key (n,e) and corre-
sponding private key(n,d). Each entity A should do the following:

Input : None
Output . Public Key (n, e) and Private Key (n,d)
Method :
1. Generate p,q : two large (random) and distinct primes
2. Compute n,p: n:= p.gand ¢ .= (p—-1)(g—1)
3. Choose e. Such that gcd(e, ¢) = 1
4. Compute d : Use Algorithm (3.1) to compute d := e~ (mod ¢)
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Algorithm 4.2 (RSA Public Key Encryption Algorithm)
Summary: B encrypts a messege m for A, which A decrypts
L. Encryption. B should do the following
Input : A’s Public Key (n, e) and Message m
QOutput : Encrypted Message ¢ for A
Method :

1. Obtain A’s Public Key (n, )

2. Compute ¢ := m® mod n

3. Send the encrypted message ¢ to A

I1. Decryption. To recover the text m from ¢, A should do the following:
Input . A's Private Key (n, d), encrypted message ¢

Qutput : Original message m for A

Method :

1. Use A's Private Key (n,d) to compute m = ¢ mod n

Example 4.1 Take p = 47 and ¢ = 71 then n := 3337 The encryption key e,
must have no factors in common with

¢:=(p-1)g-1)=46.70 = 3220
Choose e (at random) to be 79. In that case (using algorithm 3.1)
d:=79"" (mod 3220) = 1019
Publish e and # and keep d secret. Discard p and ¢g. To encrypt the message
m := 6882326879666683

first break it into small blocks. Three-digit block work nicely in this case. The
message is split into six blocks, m;, in which:

m = 688
m, = 232
ms = 687

12
myg = 966 ( )
ms = 668
mg = 003
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The first block is encrypted as
688" mod 3337 = 1570 = ¢,

Performing the same operation on the subsequent blocks generates an encrypted
message:
c:=1570 2756 2091 2276 2423 158

Decrypting the message requires performing the same exponentiation using the
decryption key of 1019, so:

1570 mod 3337 = 688 = m,

The rest of the message can be recovered in this manner.

S RSA using Maple

The first thing to do to use RSA is to find two large primes. For this we
will be looking for primes that are about 60 digits long. We do this with the
rand and nextprime functions in Maple.

> M1 := rand(10°64)();
> M2 := rand(10°64)Q;
> Pl := nextprime(M1);
> P2 := nextprime(M2);
M1 = 90813211106932703436330736974742561435635584587189767467538305
38
M2 = 20857229741217686043056139217455800374092598119526553100754871
63
Pl = 90813211106932703436330736974742561435635584587189767467538308
29
P2 = 20857229741217686043056139217455800374092598119526553100754877
89

Next, we compute the values of # and ¢:

>n := P1*P2;
> phi := (P1-1)*(P2-1);
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n = 1894112007594997081980860359826587859602862500955039020
6055974445413076137506838098333343822758756946185018848
043411606561247081

phi = 1894112007594997081980860359826587859602862500955039020
6055974434246032052691799150394656203538920765212200577
371779549731928464

It seems that the best criterion for mathematical ease is that e represented
base 2 should be almost all zeroes.
> e:= 2716+1; isprime(e); gcd(e,phi);

1= 65537
true

1

Recall that we had to make sure that e is relatively pnime to ¢. That is
casier because we have chosen e to be prime. Now we need to compute d, the
multiplicative inverse of e mod ¢. We could do that directly with the extended
Euclidean algorithm, but we will just use the modular arithmetic of Maple

> d := eval(l/e mod phi);

d = 123510195224944993360166116052289900636477606509778586974
655853555625704529011708911319656508267967545255869459081
58735642369393

We are ready to define encoding and decoding procedures.

> encoder :
> decoder :

(m,e,n) -> Power(m,e) mod n:
(c,d,n) -> Power(c,d) mod n:

Let us suppose the message is m := 5 which encrypted will be erc and
decrypted will be deco

> m:=5:enc := encoder(m,e,n); deco :=decoder(enc,d,n);
enc = 164926180352722020232528091372258157739650458482309069
173777469206093242792477311191860387657435972803889626
35125253599936921806
deco = 5
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Let us take another example. This is another way to show the encryption
and decryption, using :

>m := convert("RSA Algorithm is cool”, bytes);

m = [82,83,65,32,65,108,103,111,114,105,116,104,109,32,105,115,32,99,111,111,108]

Now, let us encrypt this message (i.e each letter), as follows:

> emess := [seq(powmod(m[k], e, n), k=1..nops(m))];

emess = [18701435540339817360101830632921247447464386199104859413%)8729350368696780(629
57560550577225974 70788 1388329460225333909192126865.
83132708405021338220382464260602528586953906896674476439565084348814531227177%
6834758509692627186155388467284676474854126470526,
351068841781410801452568318085248116192930719991549115097931604485505722976613
317745083678836693418833219494421428949874 3488400,
4068546731022738339356584529078593 1552079967731 1507389689693432374854999221899
40027722158580603 [300020052610350989036396221974.

3510688417814 10801452568318085248116192930719991549115097931604485505722976613
3177490836788366934188332194944214289498743488400,
106630071397633350561952563421419794952192540234543135833319170892910463780214
08371901154694670473283138056073166009835348563193,
8100406408363943835010831279818844924435570743164726202001391945047676828 (3782
4543575261110398665823674544472474791243055757855,
9591908576716557832658656082236765058413668063963589450982734100969014 17953981
94423754384533005215279343 150027826267502025891 82,
134836975718653275869701386470171874726694048133751909125339208330601957623519
322240311610442132955339521272343357579373119631 25,
1716938420138710226369684897987905473522954592554226086406954111244275024 51966
1672252905016638825839491225033306500821 16917017,
340330581880555066861077391408676080210284226277216896048125119002139992375907
2377546031734375680826345389189934471091072995914,

6036695170988754088668 135807(013620405799162254308912373241137618546(14267725404
3440776903238618235584633034910495328523426528041.
183474889679457928219093371225969319740413033916243(139729261291563092274425522
76341136441561657580175862593578867024497281924979,
406854673102273833935658492907859315520799677311507389689693432374854999221899
4002772215858060313000200526 10350989036396221974.
171693842013871022656968489798790547352295459255422608640695411124427502451966
167225290501663882583949122503330650082116917017,
380948481339746064756937128853347176386291872268378378163751384278275797230630
88502292400689163911546688302894873095982817054 14,
406854673102273833935658492907859315520799677311507389689693432374854999221 899
40027722158580603 1300020052610350989036396221974,
1952735727235772307591841430142 1844664971986 78569258202 181385923870632809460749
330487071799388042718369111479793143851036783031.
9591908576716557832658656082236765(584 136680639635894509827341009690141 79539819
442375438453300521527934315002782626750202589182.
95919085767165578326586560822367650584 136680639635894509827341009690141795398194
42375438453300521527934315002782626750202589182,
10663007139763335056195256342141979495219254023454313583331917089291046378021408
571901154694670473283138056073166009835348563193]

> messg := [seq(powmod(emess[k], d, n),k=1..nops(emess))];
messg ;= [82,83,65,32,65,108,103, 111,114, 105,116, 104, 109,32,105,115,32,99,111, 111, 108]
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> writebytes(default, messg):

RS A Algorithm is cool 21

6 On Primality Tests

It is clear that the most important task in the construction of the RSA
algorithm is to find two large prime numbers and the most natural method to
generate a prime number is to generate a random number n of appropriate size,
and check if it is prime.

As we know, this can be performed by checking whether n is divisible by
any of the prime numbers which are < /i as in Theorem (2.5).

Nevertheless more efficient methods are required in practice. Most of the
commercials software in the market use the following approach:

1. Generate as candidate a random odd number # of appropriate size.
2. Test n for primality.
3. If n1s composite, return to the first step.

In step 1, a slight modification is to consider candidates restricted to some
search sequence starting from n; a trivial search sequence which may be used
isn,n+2,n+4,n+6,.. .. Using specific search sequences may allow one to
increase the expectation that a candidate is prime, and to find primes possessing
certain additional desirable properties a priori.

In step 2, the test for primality might be either:

a. A test which proves that the candidate is prime. In which case the out-
come of the generator is called a provable prime for example using the
EHiptic Curve method, or

b. A test which establishes a weaker result, such as that n is probably
prime. In which case the outcome of the generator is called a probable
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prime: Fermat, Solovay-Strassen, Miller-Rabin probabilistic primality
tests. See for example: [4],[6] and [7].

In the latter case, careful consideration must be given to the exact meaning
of this expression. Most so-called probabilistic primality tests are absolutely
correct when they declare candidates n to be composite, but do not provide a
mathematical proof that n is prime in the case when such a number is declared
to be probably so. Such tests are more properly called compositeness tests than
probabilistic primality tests.

Other techniques exist whereby candidates n are specially constructed
such that it can be established by mathematical reasoning whether a candidate
actually is prime. These are called constructive prime generation techniques.

A final distinction between different techniques for prime number genera-
tion is the use of randomness. Candidates are typically generated as a function
of a random input. The technique used to judge the primality of the candidate,
however, may or may not itself use random numbers. If it does not, the tech-
nique is deterministic, and the result is reproducible; if it does, the technique
1s said to be randomized. Both deterministic and randomized probabilistic pri-
mality tests exist.

7 Summary

We have shown one technique to encrypt messages by means of a func-
tion RS A(n, e, x) := x¢ mod n, where the case of interest is that # is the product
of two large prime numbers p and g satisfying ged(e, ¢(n)) = 1. We have seen
RSA is easy to compute but the key is the difficulty of reversing RSA i.e. given
n try to find its factors. If # can be factored then by the CRT we could reverse
RSA easily. Current commercial software in the market make use of RSA and
variations of it simply because there is already an infrastructure in place which
would be very costly to replace (something that is happening but slowly) by
more complex encryption techniques like AES (Advanced Encryption Stan-
dard).
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Resumen

En este articulo tratamos sobre los nimeros primos y su uso actual en algo-
ritmos de cifrado. Estos algoritmos hacen posible el intercambio por internet
de datos sensibles, tales como transacciones bancarias, correos electronicos y
otras transacciones por Internet en las que la privacidad es importante.
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