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1 Introduction 

Encryption is the process oftransforming information to make it unread­
able to anyone except those possessing special knowledge, usuaiiy referred to 
as a key. 

Modem encryption algorithms depends heavily on number theory,with primali­
ty testing, factoring, discrete logarithms and elliptic curves being perhaps the 
most prominent subject areas. Encryption of electronic messages currently is 
applied in many areas ofhuman Iife, such as the signature of digital documents, 
the implementation of electronic money, copyright protection, bank electronic 
transactions, ATM machines, Smart cards, etc. Because of these important 
applications 1 would like to explain in this article the mathematical foundation 
of one famous encryption algorithm: RSA algorithm. 1 assume the reader has 
sorne basic knowledge on number theory and computer science terminology, 
the rest is explained and proved here. 

2 Divisibility and GCD Algorithm 

Definition 2.1 Let a, b E Z with a =F O. We say a divides b, denoted by a 1 b, 

if3 e t; Z such that b = ac. When a divides b, we say that a is a divisor (or 
factor) of b, and b is a multiple of a. Jf a does not divide b, we write a 1' b. lf 
a 1 b andO < a < b, then a is called a proper divisor of b. 

Theorem 2.1 Let a,b ande be integers. Then 

• if a 1 banda 1 e, then a 1 (b +e). 

• if a 1 b, then a 1 be, for any integer c. 

• if a 1 b and b 1 e, then a 1 c. 

Theorem 2.2 (Euclid's Division Algorithm) 
Let a, bE Z, b =F O. Then there exists unique determined q, rE Z such that 

a = q.b + r where O :::; r < lbl (!) 
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The number q is called the quotient and r is called the remainder. 

Proof: Consider the arithmetic progression 

· · ·, -3b, -2b, -b, O, b, 2b, 3b, · · · 

Then there must be an integer q such that 

qb:s;a:s;(q+1)b 

Let a- qb = r, then a = bq + r with O ::; r < b. To prove the uniqueness of q 
and r, suppose there is another pair q1 and r 1 satisfying the same condition in 

equation (1), then 

We first show that r 1 = r. For it not, we may presume that r < r 1, so that 
O < r 1 - r < b, and then we see that b(q -q1) = r 1 - r, and so b 1 (r1 - r), which 

is impossible. Hence, r = r 1, and also q = q1• 

Algorithm 2.1 (Euclid's Division Algorithm) 

Input: a, bE Z, b * O 
Output: q, r such that a= q · b + r and r =O or r < b 
Method: 

q :=o 
r :=a 
While r * O and b < r Do 

u:= r/b 
q := q +u 
r := r- u· b 

• 

Definition 2.2 A number p E Z is called prime if its only positive divisors are 

1 and p (itselj). Numbers which are not prime are called composite. 

Theorem 2.3 Every integer n > 1 has a prime divisor 
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Proof: The integer n has a divisor that is greater than 1, namely n. Among 
aii divisors of n that are greater than 1, Jet p be the smailest. Then p must be 
prime. Otherwise, p would have a divisor m with 

l<m<pS,n 

this contradicts the assumption that p is the smallest divisor of n greater than 
l. • 

Theorem 2.4 (Euclid) In the ring Z the number of primes is infinite. 

Proof: The proof is by contradiction. Obviously there is at Ieast one prime, 
namely 2. Suppose that the largest prime is p. Form the number 

N=2·3·5···p+l. (2) 

Obviously N > p, so by assumption N cannot be prime. Since N E Z for 
the above theorem, then N has a prime factor, say q, and clearly q cannot be 
among 2, 3, ... , p, for no such q s, p can divide the right side of equation (2). 

So q > p, a contradiction. We conclude that there is no largest prime number . 

• 

Theorem 2.5 Jf n is composite, then n has a prime divisor p such that p S, yn 

Proof: Let p be the smallest prime divisor of n. lf n = rs, then p S, r and 
p S, s. Hence, p2 S, rs = n. That is, p S, yn. • 

This theorem can be used to find aii the prime numbers up to a given 
positive integer n, this procedure is caBed the Sieve of Eratosthenes, assuming 
that n is relatively small. 

Algorithm 2.2 (Sieve of Eratosthenes) 
Input: n > l,n E Z 
Output: Al! prime numbers up ton. 

Method: 
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l. Crea te a list of integers from 2 to n 

2. For prime numbers p¡ (i = 1, 2, ... ) from 2, 3, 5, up to L -Yn J, dele te all the 
multiples p¡ < p;m ::; n from the list; 

3. Print the integers remaining in the list. 

2.1 Greatest Common Divisors 

Definition 2.3 Let a and b be integers, not both zero. The largest divisor d 
such that d 1 a and d 1 b is called the Greatest Common Divisor (gcd) of a and 

b. Such d is denoted as : 

d = gcd(a, b) 

Definition 2.4 We say that a and b are relatively prime or in short coprime 
ifgcd(a,b) = 1 

Theorem 2.6 Let a, b be integers not all zero then gcd(a,b) exists and is unique. 
As a consequence there exist integers x,y such that 

d = gcd(a, b) = ax +by 

Proof: Consider the setA = {au + bv, where u, vEZ}. Clearly A contains 
positive, negative va1ues as well as O. Choose x and y such that m = ax +by 

is the smallest positive integer in A. Use the Division algorithm, to write a = 
mq + r, where O ::; r < m then 

r =a- mq =a- q(ax +by)= (1- qx)a + (-qy)b 

and hence r E A. But r < m, so it follows from the definition of m that r = O. 
Thus a= mq, that is m 1 a; similarly, m 1 b. Therefore, mis a common divisor 

of a and b. Since d 1 a and d 1 b, d ::; m. Since d = gcd(a, b), we must have 
d = m. Uniqueness: lf there are two greatest common divisors d1 and d2 then 
it follows from its definition that gd1 = d2 and hd2 = d1 for sorne g, h E z+; 
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hence d2 = ghd2 thus 1 = gh, and so g = h = l. We conclude that d1 = d2 • • 

We will see la ter in Theorem (2.1 O) how the values of x and y can explic­
itly be calculated. 

Theorem 2. 7 If a prime number divides the product of two integers, then it 
divides at least one factor 

Proof: Suppose the prime number p divides ab but not a. Since p is a prime 
number, we must have gcd(a, p) = l. By Theorem(2.6) there are x,y with 
1 = ax + py. This implies 

b = abx + pby 

Since p divides abx and pby, then by Theorem(2.1) we can conclude that p is 
a divisor of b. • 

2.2 Euclid's GCD Algorithm 

Euclid's algorithm for finding the greatest common divisor of two in­
tegers is probably the oldest nontrivial algorithm that has survived up to the 
present day. lt is based in the Division algorithm (eq (!)) and in the following 
theorem. 

Theorem 2.8 Let a, b, q, r E Z with b > O andO :s:; r < b such that a = bq + r. 
Then gcd(a, b) = gcd(b, r) 

Proof: Let X= gcd(a, b) and Y= gcd(b, r), it suffices to show that X= Y. lf 
integer e is a divisor of a and b, it follows from the equation a = bq + r and 
divisibility properties that e is al so a divisor of r. By the same argument, every 

common divisor of b and r is a divisor of a. • 

Theorem 2.9 [Euclid's GCD methodj 

Let a, b E z+ with a > b. if b 1 a then gcd(a, b) = b. Jf b {' a, then apply the 
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division algorithm repeatedly as follows: 

a ro 

b = rl 

ro r1q1 + rz 
rl = rzqz + r3 

rz r3q3 + r4 

0<r2 <r1, 

O< r3 < rz, 

O < r4 < r3, 

rn-2 = rn-lqn-1 + rn O< rn < rn-1, 

rn-1 r"q" +O (r,z+l = O) 

(3) 

Then r11 , the last nonzero remainder, is the greatest common divisor of a 

and b. That is, 

gcd(a, b) = rn 

Values for x,y in gcd(a, b) = ax +by can be obtained by writing each r¡ as a 

linear combination of a, b. 

Proof: The chain of cquations is obtained by dividing ri-1 into r¡. (Note that 

we have written thc inequalities for thc remainder without an equality sign). 

The process stops when thc division is exact, that is, whenever ri+l = O for 

i = 1, 2, ... , n. 

We now prove that r11 is thc greatest common divisor of a and b. One sees 

that for i := 1, ... , n, we ha ve ri-1 := r¡q¡ + ri+l, from Theorem(2.8) it follows 

that the common divisors of ri-1 and r; are the same as the common divisors of 
r; and r¡+ 1, and hence 

gcd(r¡_ 1, r¡) = gcd(r¡, r;+ 1) 

Then by mathematical induction, we have 

gcd(a, b) = gcd(ro,rl) = gcd(r1, rz) = · · · = gcd(rn-l, r11 ) 

= gcd(r11 , O) = rn 

To see that r11 is a linear combination of a and b, we argue by induction that 

each r; is a linear combination of a and b. Clearly r2 is a linear combination of 
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a and b, sin ce r2 = a- bq1, so does r3 . In general, r; is a linear combination 

of r;_ 1 and r;_2 (by definition). By inductivc hypothesis we may suppose that 

these latter two numbers are linear combinations of a and b, and it follows that 

r; is al so a linear combination of a and b. • 

Euclid's GCD Algorithm 
Input: a, bE Z, b >O 
Output: r := gcd(a,b) 

Method: 

While ( b > O ) Do 
r :=a mod b 

([ := b 
b := r 

Let a and b be non-negative integers, and Jet d := gcd(a, b). Then we know 

from Theorem (2.6) that there exist integers x and y such that ax + by = d. 

If during the computation of the gcd( a, b) by means of the Euclidean al­
gorithm we keep track of additional values then we can efficiently compute x 

and y. This algorithm is called the extended Euclidean algorithm and will 

allow us later in the computation ofthe inverse of a number modulo another. 

Theorem 2.10 [Euclid's Extended GCD method} 

Let a, b, ro, ... .rn+J, q¡, ... , qn as in Theorem (2.9). Define integers so, ... , sn+l· 

lo, ... , tn+J asfollows: 

Andfori := 1, ... ,n 

Then 

so := 1 t0 := O, 
S¡ := 0 (¡ := 1 

(4) 

(5) 

(i) For i := O, ... , n + 1, we have s¡a + t;b = r¡; in particular, sna + tnb 

gcd(a, b) 
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(ii) For i :=O, ... ,n we have s;t;+I- f;s;+I = (-1/ 

(iii) For i := O, ... , n + 1 we have gcd(s;, t;) = 1 

(iv) For i := O, ... , n t~'e ha ve t1t1+ 1 ::; O and !t1! ::; !t1+ 1! 

For i := 1, ... , n we have s1s1+1 ::; O and !s1!::; !s1+t! 

(v) For i := O, ... , n + 1 we have r1_¡!t1! ::; a and r;-I!s1! ::; b 

Proof: (i) is easily provcd by induction on i. For i := O, 1 the statement is clear. 

For i := 2, ... , n + 1, wc havc: 

s1a + t;b = (s1_2 - s1_ 1q1_ 1)a + (t1_2 - t1_ 1q1_ 1)b 

(s1_2a + t1_2b)- (s1_ 1a + t1_ 1b)q; 

r1_2 - r1_ 1q1_ 1 (by induction) 

r; 

(6) 

(ii) is also casily proved by induction on i. For i := O, the statement is 
clear. For i := 1, ... , n, wc have 

S¡(t¡_¡ - l¡q¡)- !¡(S¡_¡ - S¡q¡) 

-(S¡_¡ l¡ - l¡_¡ S¡) (after expanding and simplifying) 

= -(-Iy-1 
(7) 

= (-1)1 (by induction) 

(iii) follows directly from (ii). 
For (iv) one can easily prove both statements by induction on i. The statement 

involving the t; is clearly true for i := O. For i := 1, ... , n, we have t1+1 := 
t1_ 1 - t1q1, and since by induction hypothesis t1_ 1 and t1 have opposite signs and 

!t1! ~ !t1_t!, it follows that !t1+t! = !t1_J! + !t;lq1 ~ !t1!, and the sign of !1+1 is the 
opposite of that of t1• The proof of the statement involving the s; is the same, 

except that we start the induction at i := l. 

For (v), one considcrs thc two equations: 

s1_ 1a + t1_ 1b = r1_ 1 

s1a + t1b = r1 
(8) 
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Subtracting f;_ 1 times the second equation from f; times the first, applying 

(ii), and using the fact that t; and !¡_ 1 have opposite sign, we obtain: 

from which the inequality involving t¡ follows. The inequality involving s; 

follows similarly, subtracting s;_ 1 times the second equation from s; times the 

first. • 

Extended Euclid's GCD Algorithm 
Input: a, b E Z, b > O 
Output : v = (d, s, t) 

Method: 

Let u := (a, 1, O) 
Let v := (b, O, 1) 
While ( v1 > O ) Do 

Let w := u- Lu 1 jv 1 jv 

Let u:= v 
Let v := w 

Example 2.1 Suppose a := 100, b := 35 then the numbers s; and t; are easily 

computedfrom the q¡: 

i o 1 2 3 4 

r; 100 35 30 5 o 
q¡ 2 1 6 

S¡ 1 o 1 -1 7 

t¡ o 1 -2 3 -20 

So we have gcd(a, b) := 5 =-a+ 3b 

This is the code in Maple: 

> restart; 
> extended_gcd:=proc(a,b) 
> local r~,rl,s~.sl,t~,tl,temp,q; 
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> rtSl:=a; rl:=b; 
stSl:=l; sl:=tSl; 

> ttSl:=tSl; tl:=l; 
> while rl>tSl do 
> q:= floor(rtSl/rl); 
> temp:= rtSl-rl"q; rtSl:=rl; rl:=temp; 
> temp:= stSl-sl*q; stSl:=sl; sl:=temp; 

temp:= ttSl-tl*q; ttSl:=tl; tl:=temp; 
> od; 
> print(rtSl,stSl,ttSl); 
> end: 
> 

> extended_gcd(ltSltSl,35); 
5, -1, 3 

Therc are more efficient ways to compute the values s; and t; sce for example 

[6](pag. 61) 

3 Modular Inverses and the CRT 

One application of the Extended Euclidean Algorithm is to the problem 
of computing multiplicativc inverscs in Zn, where n > l. It also is used in the 
CRT (Chincse Rcmainder Theorcm) which is part ofthe RSA algorithm, as we 
explain later in detail. 

3.1 Fundamental Theorem of Arithmetic 

The Fundamental Theorem of Arithmetic states that all numbers are 
expressible as a unique product of primes. It may secm obvious--how could 
it be any other way?. In fact there are othcr "number systems" which look like 
the integers (with primes, factorization, etc.) but for which unique factorization 

fails. Hcre is a simple examplc: Let 2Z denote the set of even integers. You 
can easily vcrify that 2Z is closcd under addition and multiplication. Call a 
numbcr n E 2Z composite if it's a product oftwo other numbers in 2Z, prime 

otherwise. It is easy to think of sorne primes in 2Z: 2, 6, 10, .... In fact, you 
can check that anything ofthe forro 4k + 2 is prime. Similarly, anything ofthe 
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fom1 4k is composite. Now notice that 60 factors into primes in two ways, as 

60 = 6 . 1 o = 2 . 30. 

Theorem 3.1 Let a E Z ' {0, 1, -1}, there exist determined prime numbers 
p¡, ... ,pn. p¡ < ... < Pn anda; E N+ with: 

ll 

a= sgn(a) n p;'; 
i=l 

Proof: (Based on [3]) First we'll show that any integer can be factored. Start 

with sorne integer n > l. If 11 is prime, we are done. Otherwise 11 = ab where 

a, b > l. If a and b are prime, we are done. If one or both are not prime apply 

the same argument to each piece. For example, if a is prime but b is not then 

we can write b = b1b2, and son= ab 1b2 . Ifall pieces are prime we are done, 

otherwise apply the argument again to any composite factor. At each stage the 

composite factors decrease by at least a factor of 2. It is clear this can continue 
for only a finite number of steps before all of the factors are prime. 

Proving that the factorization is unique is a little harder. The proof is by 

contradiction. Suppose that at least one integer greater than one can be factored 

in TWO ways. Then there is a smallest integer which factors in two ways-let 

n be that integer, and suppose 

where all p's and q's represent primes. Of course all ofthe p's and q's must be 

distinct, for if, for example, p 1 = qk for sorne k then we could divide both si des 

by p 1 and find a smaller n with two distinct factorizations. We can suppose 

that p¡ < q¡. Start with P1P2 · · · p,. = q¡q2 · · · qs and subtract p¡q2q3 · · · qs 
from both sides to obtain 

(9) 

Define a new integer N by N = (q 1 - p 1 )q2q3 · · · q_,. (N equals both si des of 
the above equation). Obviously 1 < N < n, so N must factor uniquely into 
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prime numbcrs. Now, we can find a prime factorization of N which contains 
thc prime p 1--just finish factoring the remaining stuff in the parentheses on the 

left si de of equation (9). But if we finish the factorization of N using the right 

side of(9) (by factoring q1 - p 1), this leads toa factorization which cannot in­

elude p 1, since q1 - p 1 is not divisible by p 1• This mcans that N < n factorizes 

into primes in two differcnt ways, contradicting our choice of n as the smallest 

such example. Thus the unique factorization must be true for all integers. • 

With the Fundamental Theorem at our disposal we can now prepare the 
demonstration ofthe Chinesc Remainder theorem. 

3.2 Modular Arithmetic and CRT 

Modular Arithmetic plays a crucial role in the RSA a1gorithm as we 

will see 1ater. This notion was first introduced by Gauss in his Disquisitiones 

Arithmeticae in 1801, though the ancient Greeks and Chinese had a1ready had 
the idea. 

Definition 3.1 Let a E Z and n E z+, n > l. We define "a mod n" to be the 

remainder r E Z when a is divided by n, that is 

r =a mod n =a- La/nJn 

We may also say that "r is equal toa reduced modulo n" 

Given thc wcll-defined notion of thc rcmainder of one integer when di­
vided by another, it is convenient to pro vide a specia1 notion to indicatc cquality 

of rcmainders. 

Definition 3.2 Let a, b E Z and n E z+. We say that "a is congruent to b 

modulo n ", denoted by 

a= b (mod n) 

if n is a divisor of a - b, or equivalently, if n 1 (a - b ). 
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Similar/y, we write 

a$ b (mod n) 

1f a is not eongruent (or i11eongruent) to b modulo n, or quivalently, if 11 f 
(a- b). 

Definition 3.3 1f a = b (mod n), then bis ealled a residue of a modulo 11. 1f 
O ::::: b ::::: n - 1, b is cal!ed the least nonnegative residue of a modulo n. 

From these two definitions the following equivalenccs are valid: 

a= b (mod n) ~a mod n = b mod n 

Theorem 3.2 1f a, b, e and dE Z (e ;f. 0), the following statements hold (Equi­

valenee Relation): 

• Rejlexive: a= a ( mod e) 

• Symmetrie: if a= b (mod e), then b =a (mod e) 

• Transitive: if a = b (mod e) and b = d (111od e) then a= d (mod e) 

Theorem 3.3 Suppose a= b ( 1110d n) ande= d ( 111od n) Then: 

• a ± b = e ± d ( mod n) 

• ab = ed ( mod n) 

• if a = b ( mod n) then for k E Z, ak = bk ( mod n) 

Theorem 3.4 (Chinese Remainder) if p, q E Z prime numbers sueh that 

111 = a ( mod p ) and 111 = a ( 111od q ) 

then 

m= a ( mod pq) 
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Proof: m = a ( mod p ) if and only if m - a = kp, for sorne k E Z. By 
Theorem(3.1) m- a can be expressed as p 1 .p2 .p3 .... If m- a is divisible by 

both p, q and GCD(p, q) = 1 then p and q must be one of p¡ .pz.p3 .... There­

fore, m- a is divisible by p.q. • 

Theorem 3.5 lf a = b ( mod n) and gdc(a, n) = 1 then gcd(b, n) = 1 

Proof: Therc 3k E Z such that a = b + kn. Since gdc(a, n) = 1 then by 
Theorcm(2.6) 3x,y E Z such that xa + yn = 1 so 

1 =x(b+kn)+yn=xb+(xk+y)n=xb+y1n, wherey1 EZ 

thercfore gcd(b, n) = l. • 

Definition 3.4 lf aa = 1 ( mod n ), we say that a is the inverse of a modulo n. 

Theorem 3.6 lf gcd(a, b) = 1 then a has a unique inverse a modulo b 

Proof: Wc havc that gcd(a,b) = 1 = ax +by for sorne x,y E Z. Thcrcfore we 

havc: ax = 1- by= 1 + by1 makingy1 =-y). So ax = 1 ( mod b) andas 
conscqucncc x is the inversc of a modulo b. Now, lct us assume that a has two 

inverses a' and a" thcn aa' = 1 ( mod b ) and aa" = 1 ( mod b ). Therefore 
a( a'- a") =O ( mod b) • 

Wc are now in thc position to provide a method to compute the multiplica­
tive inverse of an integer in Zn. 

Algorithm 3.1 (Multiplicative inverses in Znl 
Input: a E Zn 
Output: a- 1 mod n, provided it exists 

Method: 

l. Use the Extended Euclidean algorithm (Theorem 2.10) to compute x,y E 

Z such that d = ax + ny where d := gcd(a, n) 
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2. !f d ;f. 1 then a-1 mod n does not exist. Otherwise, Return(x). 

Modular exponentiation can be performed cfficiently with the rcpeated 

square-and multiply algorithm , which is crucial for many cryptographic pro­

tocols. One version of this algorithm is based on thc following observation. 

Let the binary representation of k be ¿;:=O k¡2¡ where k¡ E {0, 1 }: 

t 

ak = n ak,2' = (a2o)k{'(a2' )k' ... (a2't 

i:=O 

Algorithm 3.2 [Fast exponentiation algorithm in Znl 

Input : a E Zn andO ,:<; k< n with binary representation: L;:=O k¡2¡ 
Output : ak mod n 

Method: 

l. Set b := l. !fk =O then return(b) 

2. SetA:= a 

3. !fk0 = 1 then set b :=a 

4. For i from 1 to t do the following: 

4.1 SetA := A2 mod n 

4.2 /fk¡=l then set b := A.b mod n 

5. Return(b) 

Definition 3.5 (Euler Totient cp function) 
Let n E z+, the Euler phi-Function cp(n) is dcfined to be thc number of non­

negativc integers b less than n which are prime to n: 

cp(n) := 1{ bE N, O,:<; b < n : gcd(b, n) = l JI 

Theorem 3. 7 !f p is a prime number, then cp(p) = p - 1 

Proof: Since pis prime, then V k:= 1, ... , p- 1 : gcd(k, p) = l. So it follows 

from the definition ofEuler's cp-function that cp(p) = p- l. • 

Theorem 3.8 !f p, q are prime numbers, then cp(p .q) = (p - 1 )( q - 1) 
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Proof: We count the numbers from 1 to p.q which share factors with p.q : 

I.p, 2.p, ... , (q- 1)p 

I.q, 2.q, ... , (p- 1)q 

p.q 

The restare coprime to p.q. This count resu1ts in: 

cp(p.q) = p.q- (p- 1)- (q- 1)- 1 = (p- 1)(q- 1) 

• 

Theorem 3.9 {f p is prime and k > O then cp(pk) = pk - pk-l 

Proof: Only numbers that are a multiple of p have a common factor with pk: 

I.p, 2.p, ... , pk-l.p 

and the rest do not share any factors, so are coprime. Therefore 

• 

Theorem 3.10 ifm, n are coprime, i.e. gcd(m, n) = 1 then cp(m.n) = cp(m).cp(n) 

Proof: Organize into a matrix of m columns, and n rows 

m+ 1 
2m+ 1 

2 

m+2 

2m+2 

3 

m+3 
2m+3 

r 
m+r 

2m +r 

(n-1).m+l (n-1).m+2 (n-l).m+3 (n-!).m+r 
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Step(l) Eliminate columns: if gcd(m, r) = 1 then gcd(m, km + r) = 1 V k := 

1, ... , n (see Theorem(3.5)) therefore aii ce lis undcr that r1
" column have no 

common factors with m. So, others have a common factor with m.n and can be 

eliminated, as consequence rjJ(m) columns survive. 

Step(2) Examine ceiis in remaining columns: No two cells in a column are con­
gruent mod n (otherwise ifi.m+r = j.m+r ( mod n) then i.m+r- j.m-r = k.n 

then nj(i- )), which is not possible because i- j < n). As thcre aren (non­
congruent) cells in each column, !abe! them as O, l, 2, ... , n - l in sorne order. 
Then rjJ(n) cells in each column coprime ton therefore rjJ(n).rjJ(m) cells left that 
are coprime to both m and n. • 

Theorem 3.11 If gcd(a, n) = 1 and X¡, x2, ... , x</>(n) are coprime to n, then 

a.x¡ ,a.x2, ... , a.x</>(n) are congruent to X¡, x2, ... , Xf(n} in some arder. 

Proof: a.x¡ 01= a.x¡ ( mod n ), otherwise a(x;- x¡) = k.n, but gcd(a, n) = 1 then 
nj(x; - x1), which is impossible because x; - x¡ < n. Using Theorem(3.5) let 

a.x¡ = b ( mod n ), since gcd(a.x¡, n) = 1 then gcd(b, n) = l. Thcreforc b must 
be one of x1. 

Theorem 3.12 (Euler) 
Let n E N, n ;::: 2 then 

Va EN, gcd(a,n)= 1: 

• 

a<P(n) = 1 mod n 

Proof: Let x 1, x2, ... , X<fJ(n) < n and coprimc to n. Since a is al so coprime to 
n, from Theorem (3.11) 3x;, x1 : a.x¡ = x1 ( mod n) which are unique. Since 

there are rjJ(n) ofthe a.x¡ and rjJ(n) ofthe x1. Thus 

ax¡.ax2 .... a.X<fJ(n) = X¡.X2 ..... X<fJ(n) ( mod n) 

Hence, if R := X¡.X2 ..... Xrft(n), then 

a<P<n).R = R ( mod n) 
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since n { R (beca use R is thc product of integers each of which is relatively 
prime ton) then nl(a\Ó(nJ- 1) • 

Theorem 3.13 (Fermat's Little Theorem) 

Let p E N be a prime number, then 

Va E Z, aP-I = 1 mod p 

Proof: Since pis prime then cp(p) = p- l. Now apply the Theorem (3.12) • 

4 The RSA Algorithm 

In 1977, three MIT researchers Ronald Rivcst, Adi Shamir and Leonard 
Adleman proposed the first practica! public-key cryptosystem (i.e a mechanism 
through which people can send secret messages without the need of exchanging 
previously a secret key). The RSA cryptosystem is based on the following 
assumption: 

RSA Assumption: It is not difficult to find two large prime numbers, but 
it is very diffi.cult to factor a large composite into its prime factorization form. 

4.1 How to choose the keys 

It is important to define the appropriate keys because they will the de­
termine how the message will be encrypted and decrypted. 

Theorem 4.1 (Choosing Key) 
Given p, q prime numbers ande E z+, such that gcd(e, cp(p.q)) = 1, then 

3d E z+ : e.d = 1 ( mod cp(p.q)) 

Proof: This follows dircctly from Theorcm (3.6). Let b := cp(p.q) anda := e. 
Al so recall, that in this case since p, q are prime numbers then by Theorem 

(3.8) cp(p.q) = (p- 1)(q- 1) • 
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Theorem 4.2 (RSA Encryption) 

Given p, q E z+ prime numbers. Take n := p.q and e and d as in Theorem 

(4.1), then 

V M E z+ : Me.d = M ( mod n ) 

Proof: Since e.d = 1 ( mod cp(p.q) ) then e.d = 1 + k.ifJ(p.q) for sorne integcr 
k. Thus: 

Me.d = Ml+k.tf>(p.q) = Ml+k.(p-l).(q-1) = M.(Mp-l).(q-l))k 

If Mis relativcly prime to p then by Fermat's littlc thcorcm (Theorem 3.13 ): 

Me.d = M.(MP-l)k(q-1) = M.(lt(q-1) =M ( mod p) (10) 

If Mis not relatively prime to p, i.e. multiple of p then equation (1 O) still holds 

because both sides will be zero, modulo p. By exactly the same reasoning 

Me.d = M.(Mq-l)k(p-l) = M.(ll(p-l) =M ( mod q) (11) 

If we apply the Chinese rcmainder Theorem (3.4) to cquations (10) and 
(11), we obtain the result we want: Med = M ( mod n) • 

Algorithm 4.1 (RSA Key Generation Algorithm) 

Summary: Each entity (A and B) creates an RSA public key (n,e) and corre­

sponding private key(n,d). Each entity A should do the following: 

Input: None 

Output: Public Key (n, e) and Private Key (n, d) 

Method: 

l. Genera te p,q : two large (random) and distinct primes 

2. Compute n,cp: n := p.q and ifJ := (p- 1)(q- 1) 
3. Choose e: Such that gcd(e, ifJ) = 1 

4. Compute d: Use Algorithm (3.1) to compute d := e- 1 (mod ifJ) 
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Algorithm 4.2 (RSA Public Key Encryption Algorithm) 
Summary: B encrypts a messege m for A, whieh A deerypts 

l. Encryption. B should do the following 

Input: A' s Publie Key (n, e) and Message m 

Output: Enerypted Message efor A 

Method: 

1. Obtain A' s Publie Key (n, e) 
2. Compute e := me mod n 

3. Send the ene1ypted message e to A 

/l. Decryption. To reeover the text m fi'om e, A should do the following: 

Input: A' s Priva te Key (n, d), enCTypted message e 

Output: Original message mfor A 

Method: 

1. Use A' s Priva te Key (n, d) to compute m := ed mod n 

Example 4.1 Takc p = 47 and q = 71 then n := 3337 The encryption key e, 
must havc no factors in common with 

cp := (p- 1)(q- 1) = 46.70 = 3220 

Choose e (at random) to be 79. In that case (using algorithm 3.1) 

d:=79- 1 (mod3220)= 1019 

Publish e and n and keep d secret. Discard p and q. To encrypt the message 

m := 6882326879666683 

first break it into small blocks. Three-digit block work nicely in this case. The 
message is split into six blocks, m;, in which: 

m¡ 688 

m2 232 

m3 = 687 

m4 966 
(12) 

ms = 668 

m6 003 

Pro Mathematica, 21, 41-42 (2007), 155-181, ISSN 1012-3938 175 



Jorge L. Anicama 

The first block is encrypted as 

68879 mod 3337 = 1570 = c 1 

Performing the same operation on the subsequent blocks genera tesan encrypted 
message: 

e:= 1570 2756 2091 2276 2423 158 

Decrypting the message requires performing the same exponentiation using the 
decryption key of 1019, so: 

15701019 mod 3337 = 688 =m¡ 

The rest ofthe message can be recovered in this manner. 

5 RSA using Maple 

The first thing to doto use RSA is to find two large primes. For this we 
will be looking for primes that are about 60 digits long. We do this with the 
rand and nextprime functions in Maple. 

176 

> Ml := rand(1~"64)(); 
> M2 := rand(1~"64)(); 
> Pl := nextprime(Ml); 
> P2 := nextprime(M2); 

MI .- 90813211106932703436330736974742561435635584587189767467538305 
38 

M2 .- 20857229741217686043056139217455800374092598119526553100754871 
63 

PI .- 90813211106932703436330736974742561435635584587189767467538308 
29 

P2 .- 20857229741217686043056139217455800374092598119526553100754877 
89 

Next, we compute the val u es of n and rp: 
> n := Pl*P2; 
>phi := (Pl-l)*(P2-1); 
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1894112007594997081980860359826587859602862500955039020 
6055974445413076137506838098333343822758756946185018848 
043411606561247081 

phi .- 1894112007594997081980860359826587859602862500955039020 
6055974434246032052691799150394656203538920765212200577 
371779549731928464 

It seems that the best criterion for mathematical ease is that e represented 

base 2 should be almost all zeroes. 

>e:= 2"16+1; isprime(e); gcd(e,phi); 

e:= 65537 
true 

Recall that we had to make sure that e is relatively prime to cp. That is 

easier because we have chosen e to be prime. Now we need to compute d, the 

multiplicative inverse of e mod cp. We could do that directly with the extended 
Euclidean algorithm, but we will just use the modular arithmetic of Maple 

> d := eval(1/e mod phi); 

d 123510195224944993360166116052289900636477606509778586974 
655853555625704529011708911319656508267967545255869459081 
58735642369393 

We are ready to define encoding and decoding procedures. 

> encoder .- (m,e,n) -> Power(m,e) mod n: 
> decoder := (c,d,n) -> Power(c,d) mod n: 

Let us suppose the message is m := 5 which encrypted will be ene and 
decrypted will be deco 

> m:=S:enc := encoder(m,e,n); deco :=decoder(enc,d,n); 

ene := 164926180352722020232528091372258157739650458482309069 
173777469206093242792477311191860387657435972803889626 
35125253599936921806 

deco .- 5 
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Let us take another example. This is another way to show the encryption 
and decryption, using : 

>m:= convert("RSA Algorithm is cool", bytes); 

m:= [82, 83, 65, 32, 65, 108, 103, 111, 114,105, 116.104,109,32,105,1 15,32,99, 11 1,11 l. 108] 

Now, Iet us encrypt this message (i.e each Ietter), as follows: 

178 

> emess := [seq(powmod(m[k), e, n), k=l .. nops(m))]; 

[ 1870 14355403398173601 O 1 !!3063292 124 744 74643 861991 0485941390X7293503ó8696 7800629 

575ó05505 77225974 707881388329400225333909192126865. 

83 !3270840502!3382203824642ó06025285869539068966 744 76439565084348814 5312271 778 

6854 75850969262718615538846 72846 764 748541264 70526. 

35 !06884178141 08014525683!80852481161929307199915491150979316()44855057221}76613 

3 1 77490836 788366934188332194944214289498743488400. 

4068546 731022738339356584929078 5931 55207996 773115073 896!!96934323 7485499Y221899 

400277221 58580Ml3 IJO(Xl200526103509890363lJ6221974. 

35!0688417814 1080\45256831801!524!!11 (Í !929307199915491150979316044!!550572297ó6J 3 

3177490836 7883óó9341 88332194944214289498743488400. 

106630071397633350561952563421419794952192540234543135833319170892910463 780214 

085719011546946704732831380560731ti6009835348563193. 

81004064083639438350 10831279818844924435570743 1 64726202001391945047676828 13 782 

454357526 IJ10398665823674544472474791243055757R55. 

9591908576716557832658656082236 765058413668063963589450982734100969014 [ 7953981 

94423754384533005215279343150027821í26750202589!82. 

1348369757186532758697013864 70171874 72669404H 13375190912533920833060 1957623519 

32224031161044213295533952127234335757937311963125. 

17169 3 842013871 022fí569684Rn9879054 735229545925542260864069541112442 75024 51%6 

16722529050 166388258394912250333065(}082116917017. 

3403305818805550668610773914086 760802102842262772168960481251190021399923 75907 

23 775460317343 7568082634538911!99344 71091072995914. 

60366951709887540K8668135807U0362040579916225430891237324113 76185460426 7725404 

3440776903238618235584633034910495328523426528041. 

1834748896 794579282190933 71225969319740413033916243039729261291 563092274425 522 

7654113644156165758017586259357886 7024497281924979. 

4068546 73102273 83393565 84929078593 155207996 773115073 896896934323 748549992218~9 

40027722\5858060313000200526103 50989036396221974 

171693842013871022656968489798790547352295459255422608640695411124427502451966 

16 722529050Jií63882583949 1225033306500821169\7017. 

380948481339?46064 75693 7128853347171í386291 8722683783 78163 7513R4278275797230630 

8850229240068916391 1 546688302894873095982817054 \4. 

4068541í73 102273 8339356584929078593155207996 7731 [ 5073 896896934323 7485499922181)9 
40027722158580603130{XJ20052fí 103 509H9036396221974. 

1952735727235772307591 841430 142!844664971986 78569258202 [ 81385923 87063280946074~ 

330487071799388042718369111479795143851036783031. 

959 [ 908576 716557832658656082236 7650584 13668063963589450982734100969014179539819 

442375438453300521527934315002782626 750202589182. 

9591908576 716557832658656082236 7650584136680639fí35894509827341 009690141 795398194 

423 7543 8453300521 5279343 1 5002782026 7502025R9182. 

106630071 3976333505f.J9525634214!979495219254023454313583331917089291 04637!!02J40R 

57190 1154694670473283!380560731660098353485631931 

> messg - [seq(powmod(emess[k], d, n),k=l .. nops(emess))]; 

messg := [82, 83, 65, 32, 65, 108, 103. 1 1 1, 1 14, 105, 1 16, 104, 109, 32, 105, 1 15, 32, 99, 1 1 1, 1 1 1, 1 08] 
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> writebytes(default, messg): 

RS A Algorithm is cool 21 

6 On Primality Tests 

It is clear that the most important task in the construction of the RSA 

algorithm is to find two large prime numbers and the most natural method to 

generate a prime number is to generate a random number n of appropriate size, 
and check if it is prime. 

As we know, this can be performed by checking whether n is divisible by 

any ofthe prime numbers which are :S -Vn as in Theorem (2.5). 
Nevertheless more efficient methods are required in practice. Most ofthe 

commcrcials software in the market use the following approach: 

l. Genera te as candidate a random odd number n of appropriate size. 

2. Test n for primality. 

3. If n is composite, retum to the first step. 

In step 1, a slight modification is to consider candidates restricted to sorne 

search sequence starting from n; a trivial search sequence which may be used 

is n, n + 2, n + 4, n + 6, .... Using specific search sequences may allow one to 

in crease the expectation that a candidate is prime, and to find primes possessing 
certain additional desirable properties a priori. 

In step 2, the test for primality might be eithcr: 

a. A test which proves that the candidate is prime. In which case the out­

come ofthc generator is callcd a provable prime for example using the 

Elliptic Curve method, or 

b. A test which establishes a weaker result, such as that n is probably 
prime. In which case the outcome ofthe generator is called a probable 
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prime: Ferrnat, Solovay-Strassen, Miiier-Rabin probabilistic primality 
tests. See for example: [ 4],[6] and [7]. 

In the latter case, careful consideration must be given to the exact meaning 
of this expression. Most so-cailed probabilistic primality tests are absolutely 

correct when they declare candidates n to be composite, but do not provide a 
mathematical proofthat n is prime in the case when such a number is declared 
to be probably so. Such tests are more properly cailed compositeness tests than 
probabilistic primality tests. 

Other techniques exist whereby candidates n are speciaily constructed 

such that it can be established by mathematical reasoning whether a candidate 
actuaily is prime. These are cailed constructive prime generation techniques. 

A final distinction between different techniques for prime number genera­
tion is the use of randomness. Can di dates are typicaily generated as a function 
of a random input. The technique used to judge the primality ofthe candidate, 
however, may or may not itself use random numbers. If it does not, the tech­
nique is deterrninistic, and the result is reproducible; if it does, the technique 

is said to be randomized. 8oth deterrninistic and randomized probabilistic pri­
mality tests exist. 

7 Summary 

We have shown one technique to encrypt messages by means of a func­
tion RSA(n, e, x) := xe mod n, where the case ofinterest is that n is the product 
oftwo large prime numbers p and q satisfying gcd(e, cp(n)) = l. We have seen 
RSA is easy to compute but the key is the difficulty ofreversing RSA i.e. given 

n try to find its factors. If n can be factored then by the CRT we could reverse 
RSA easily. Current commercial software in the market make use ofRSA and 
variations of it simply because there is already an infrastructure in place which 
would be very costly to replace (something that is happening but slowly) by 
more complex encryption techniques like AES (Advanced Encryption Stan­
dard). 
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Resumen 

En este artículo tratamos sobre los números primos y su uso actual en algo­
ritmos de cifrado. Estos algoritmos hacen posible el intercambio por intemet 
de datos sensibles, tales como transacciones bancarias, correos electrónicos y 
otras transacciones por Internet en las que la privacidad es importante. 

Palabras Clave: Números Primos, Aritmética Modular, RSA, Cifrado 

Jorge L. Anicama 

Oracle Corporation, 6505 Blue Lagoon, 

Drive Suite 400 Miami, FL 33126, USA 

janicama@yahoo.com 

Pro Mathematica, 21. 41-42 (2007). 155-181, ISSN 1012-3938 181 


