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Abstract

It is proved that the initial value problem for a system of two
Kadomtsev-Petviashvili II (KP-II) equations coupled through
both dispersive and nonlinear terms is locally well posed in
the anisotropic Soboloev spaces H52 (R?) x H*1*2 (R?) with
81 > —% and s > 0, and globally well posed in
He10 (R?) x H*° (R?) with s; > —5.
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1 Introduction

In this article we consider initial value problem (IVP) for a system of
two Kadomtsev-Petviashvili II (KP-II) equations coupled through both
dispersive and nonlinear terms. More precisely, the IVP for the system
is

dru + a103u + a203v + b19: (uv) + baudyu + bavd,v + 071 0%u =0
Opv + a383u + a403v + 048, (uv) + bsudyu + bevdyv + 8;1831) =0
u (1"7 Y, 0) = Uo (I’ y)
v (x’ Y, O) =0 (Ia y)

(1.1)
where v = wu(z,y,t) and v = v(z,y,t) are the unknown functions,
(z,y) € R? and t € R, while up and vg are a given functions. aj, as,
as, as, by, ba, by, by, by and bg are real constants with aya4 — agaz > 0
and agaz > 0. System in (1.1} was derived by Grimshaw and Zhu [5]
in 1994, as a model to describe the oblique strong interaction of weakly,
two dimensional, nonlinear, long internal gravity waves in shallow fluids.

Observe that if we consider the system in (1.1) with ay = a3 =
by = b3 = by = b; = 0 then we obtain the scalar KP II equation.
The KP II appear in mathematical models for the description of long
dispersive waves which travel essentially in one direction but have small
transverse effects. KP II arises as a universal model in wave propagation
and may be viewed as a bidimensional generalizations of the Korteweg-
de Vries equation. In that case, local and global well posedness have
been intensively studied by several authors in recent year, standing out

{21, [6], [12], [10], [13], [11], [7] and [8].

In {1} Bourgain developed a method for study of the IVP for the
KP II and other nonlinear evolution equations, in wich the essential
part consist of the adequate election of functional spaces whose norms
are defined by the Fourier transform in the space-time variables and
involve the specific structure of the linear part of the equation. Using
this method Bourgain in [2] proved that problem (1.1) is locally well
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posed for the initial data up in the Sobolev spaces H*® (R?) with s > 0.

Following the ideas developed in [7], in this article we prove that
IVP (1.1) is locally well posed in the spaces H*2 (R?) x H*®»2 (R?)
with s1 > —% and s > 0.

The second objective of this paper is to prove global well posed
in Sobolev spaces. Our procedure follows the ideas in [3] and {8], to
extend the local result mentioned above to H*° (R2) x H*1:0 (R2) with
s1 > —+5. The solution in any time interval [0, 7] is obtained from the
local solutions by means of an iterative process in a finite number of
steps.

2 Transformation of the System and Main
Results

In this section we decoupled the dispersive terms in the system

(1.1). Let
we(0) ()
(Y as Qg4
and
b10; (uv) 4 baudyu + byvdv
fu,v) =
040 (wv) + bsudyu + bgvdyv
Therefore the system (1.1) can be written as
O W + ABSY + F (u,v) + 97 102U = 0. (2.2)
. . ay Q-
Since agaz > 0, there exists T = 2 o a € GL(2) such that
3 a3

a— . - 2
T AT = diag(ay,a_), where ay = artasty (a‘2 @) $49203 oo the

eigenvalues of A. We have that a, > a_ > 0 because a1a4 — azaz >0
and asaz > 0. Now setting & = TW where ¥ = (%, 7T), we arrive at the
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system
0V + T TATORV + F (V) + 06,1927 =0

with

F(9)=T"f(T7)= ( 610, (WD) + byu0; T + bsT0, ) .

b48, (WD) + b5UD, T + bV, T

and some constants by, ..., bs. Therefore, the system (1.1) transforms in

{ 0T + 1. 03T + b1, (WT) + baU0L U + b300,T + 87102 = 0 (23)

B0 + ™ 03T + by 0, (W) + bsUOLTU + bgUO,T + 951920 = 0.

Now we make the change of scale

1/3

T(z,y,t)=1u (a:_ T, a_l__l/gy,t) and v(z,y,t)=7v (a:1/3x, a:Ll/sy, t) ,

then we obtain the IVP

O + 83T + b18; (WD) + bplid, U + b300, T + 07 102U = 0
B0 + O30 + bady (WD) + b5, + be0, 7 + 051820 = 0
u(z,y,0) = ug (z,y)

v(z,y,0) = v (z,9),

(2.4)

where Zl, 52, 33, 54, 35 and 56 are constants.

Note that (2.4) has a structure of two coupled KP II equations only
in the nonlinear terms. Since that the IVP (1.1) is equivalent to the
IVP (2.4), of the results of well-posedness for (2.4) is easy to obtain
the corresponding results for (1.1). For the sake of simplicity, from now
onwards we will drop “ ~”
system (2.4).

and use the notation u, v, up and vy in the

In order to state our theorems in a precise way, we give some defi-
nitions and introduce the necessary notation. Our initial data will be in
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the anisotropic Sobolev space of L2-type H®:2 := H®152 (R?) defined
for s1,s2 € R as the space of tempered distributions in R? with norm

1/2

lullges = ( [ @ 0 @OP &),

where © is the Fourier transform in the space variables, { = (£, 6) is the
variable in the frecuency space, with £ and 8 corresponding to the space
variables x and y, respectively, and {-) =1+ ||

For s1,s2,b € R, 0 > 0 let us consider the space X;, 5,50 Of tem-
pered distributions in R? such that

1/2

“UHXSI‘W;’M7 = (/1R2 </\>2b <,r,>2¢7 <€>2s1 <0>282 |17(Ld)|2 dw) )

where ~ is the Fourier transform in the space-time variables, w = (¢, 7)

is the variable in the space with £ and 6 as before, and 7 corresponding
2

to the time variable t, A = A\ (w) := 7 — &3 + %— and 1 =17 (w) := %{‘35

Ifb > —é— then X, s,.p 0 is continuously embedded in Cp, (Re, H®1+%2),
the space of continuous bounded functions from the variable ¢t € R to
Hev®2, If S is the Schwartz’s space, then § N X, 5,.0 s dense in
Xsl,sz;b,cr

For T >0and b> 1, let X7 be the set of the restrictions to

$1,823b,0

[0,T] of the functions in Xj, s;:6,0, With norm defined by

lullxr , , =int {Iwellx U € Xoyoppo and gy =u}.

81.825b.o

Our concept of solution comes from Duhamel’s formula for the IVP
(2.4). Formally, (u,v) is a solution of the IVP (2.4) if and only if

¢
u(t) =W (t)up — / W (t —~t') F (u,v, Ou, 0,v) dt’
0

Pro Mathematica, 22, 43-44 (2008), 67-88, ISSN 1012-3938 71



Juan Montealegre Scott

and
t
v(t) = W{t)vg — / W (t —t") G (u,v,8,u,8;v) dt’,
0

where {W (t)},cg is the unitary group on H*®!:*? associated with the
linear problem

{ du+ Bu+ 0;102u =0
u(z,y,0) = uo (z,y),
defined by
R it(ig -9 ) ~
W (t)uo(§,0) =e g (€,8),
and

b
F (u,v,0zu, 0,v) = b0, (wv) + %81u2 + —23811)2

G (u,v,0,u, Oz v) = bgdy (uv) + %583513 + %6-8QO

are respective nonlinearities. More precisely, we have the following defi-
nition.

Definition 2.1. We say that (u,v) € X.;I;,sz;b.a X XsThsz;b’a is a solution

of the IVP (2.4) in the interval [0, T] if there exists extensions u®,v® €
X, ,s0:b,0 Such that

¢
u(t) =W () uo —/ W (t —t') F (u®,v®, 0pu®, 8,0°) dt’
0

t
v(t) =W (t)v — / Wt —t') G (u®,v®, O,u’, 8,0°) dt’
0
for allt €{0,7).

Now we are the position to state the main results of this paper. The
first result is concerned about the local well-posedness for the IVP (2.4).
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Theorem 2.2. Let 51 € ]——%,0[, s2 > 0 and (ug,vo) € H*1:%2 x H51:52,
Ifbo > % and o > % satisfy the hypothesisb+o <1451, b < %(2 +81)
and 0 < 1 (1+ s1), then there exists T =T (|juol| ger.cz » |V0l| o1 .52 ) and
a unique solution (u,v) € X.;‘I;,SQ;b,a X qul,sz;b,a of the IVP (2.4) in the
interval [0,T] satisfaying

uve XT C C([0,T,H®+®2).

s1,82;b,0

Furthermore, if Br is the open ball of radius R centered at (0,0) in
Hevs2 x Hovs2 gigen T7 €10, T, the mapping

O : (uo,v0) € B — (u,v) € C([0,T], H*2) x C ([0, T], H**2)

s analytic.

The next theorem deals with the global well-posedness for the IVP
(2.4).

Theorem 2.3. For sy € |—,0[, T > 0 and (uo,v0) € H**0 x H10
con (07 ug, 07 'vg) € 8’ x &, there exists N > 0 such that IVP (2.4)
has a solution (u,v) in X;Tl,o;b,a X X.z:,O;b,o'

3 Proof of Theorem 2.2

In this section we prove the theorem 2.2, the local well-posedness
result for the IVP (2.4). As the methods of proof used here are all well
known, we only give a sketch of proof.

To find a local solution to (2.4) let’s consider (for suitable u and v)
the equivalent system of integral equations,

u(t) =1 (E) W (t) ug — ¢ (t) /0 Wt —t') F (u,v, 0u, 0;v) dt’

v(t) =1 () W (t)vo — ¢ (t)/0 Wt -t G (u,v, Oz, zv) dt’
(3.5)
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where ¢ € Cg° (R), 0 < ¢ <1, is a cut-off function given by

1 osif<
w(t)_{o si [t >2

andl/)p(-)zz/)(;> for 0 < p< 1.

Now, we enunciate some estimates that will be used to prove the
local well-posedness result.

Proposition 3.1. Ifs;,s0 € R, b > %, o >0 and p € |0, 1], there exist
a constant C = C (p) such that

1o (YW () uoll
and, if we define

< G“u0”1{91-82 (3'6)

s1.99:b0

t
P,F(t):=1, (t)/ W (t—t)F(t)dt
0
for F € X, s,0-1,0, there is a constant C = C (p) such that

1PFl x <CIFlx 3.7)

s1.893b,0 81.32;b—1,0 :

Proof. For (3.6) and the case o = 0 in (3.7), see Ginibre [4]. For
case 0 # 0 consider the operator K, defined for u € X;, 5,:55 by
@(w) = (n)? @ (w). Then Ky : X, s3:0,0 — Xs;.50:0,0 IS an isometric
isomorphism, indeed

1/2
[ Koullx

nba = (/R ROV i <9>2”|<n>“aw>;2dw>

1/2
( / N2 )% (€)% (9)* |a<w>|2dw)
R3

= lullx,, s -
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Therefore we have

IPoFlx, 0. = /W )P () dt

Xsl,sz;b,a

= |xw,0 / W(—t)F () dt

X31.82;b.0

= w0 /0 W (- —t) K, F(t') dt

Xs]_,sg;b,o

and by (3.7) in the case 0 =0

1P Fl x S ClKFllx =C||Fllx

)

ay,89:b.0 81,82:b—-1,0 81,82:b—1,0

this way, the estimate (3.7) when o # 0 it’s demonstrated. O

In the study of the nonlinear part of the equation, the bilinear form
9; (uv) will play a critical role to prove theorem 2.2. More precisely, we
have the following result.

Proposition 3.2. Let s; € ] % [ and sg > 0. Forb > 2 and o > §
such thatb+o <1+s1,b< % (2+s1) ando <1 3 (14 s1), the followzng
bilinear estimate holds,

10: )y, .o <Cllully, .. Il

for all u,v € X, s,b0-

(3.8)

s1.82ibo

The proof can be found in Isaza and Mejia [7], so we skip the details.

Proof of Theorem 2.2

We consider the following function space where we seek a solution
to the IVP (2.4). For given (ug,vo) € H*%2 x H***2 and b > 3, 0 > ¢
satisfying the hypotheses of proposition 3.2, let us define

£ = {(u,v) € Xoyogmo © (1, 0) 15 <2CR }

81.89:b,0 T
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where X, s,i,0 1= Xs1,806,0 X Xsy,55;6,0 and

1w 0)lx,, e = el 00 TV, L
Then £ is a complete metric space.

For (u,v) € £ let us define T’y x Ty (u,v) = (I'1 (u,v), 2 (u,v))
where the maps I'y and I's are defined by

Ty (u,v) () =1 ) W () ug — P F (u,v, By, Ozv) (t)
(3.9)
I‘Q (u, ’U) (t) = 1/)1 (t) w (t) vy — PlG (u, v, azu, Ozv) (t) .

The good definition of I'; x I'y is guaranteed by propositions 3.1 and 3.2.
We prove that there exist C > 0 and R > 0 such that I'; x I's maps &
into itself and is a contraction.

Using (3.6) and (3.7) we get from (3.9),

I o), ..

<lvor (YW () ol x + 1A F (4,0, 020, 820) | x,

$1.82ib.0 51,823h.0
< C ol grr.es + CIF (0,00, 050) [, |
and from (3.8) we have

Ty (o),
< C ol gers +C il 102 (W)l _, ..

C|b2| + ¢ |bs| 2

”a ] Xeq,s25b=1,0 ”a ”qu sgib—1

<C”uO”H‘91 °2 +C|b1 Xoi.s0ib0 || ”AH s93b,0

C |bs| 2 C’ lbs]

+—;Wﬂ&wwﬁ+——4ﬂ&wma

< C o]l gr.es + € (Nullx

2
Xsq.89:b, a>
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If we choose R > 0 such that 8C%2R < 1 and [|(uo, vo)||x
follows that

< & it

81,80ib.o

CR

T (u, 0)] x < - +4C°R? < CR,

91.82;b.a

In the same way we obtain [|I'2 (u, v)|| x, < CR, therefore

1-92:b,0

1Ty (w,0), T2 (w,0))x,, <2CR (3.10)

Jspibe

and I’y x Ty (w,v) = (T'1 (u,v), T (u,v)) € €

Now we need to show that I'y x I'y is a contraction. For this, if
(u,v), (u,v) €€,

T () Ty @0, .
<||PyF (u,v,05u,0;v) — PLF (4,7,0,u, 0,9)|| x
< || Py [F (u,v, 0ru, 0,v) — F (4, U, 0, U, 0,0)]
< C||F (u,v, 0zu, 0,v) — F (%, v, 0,0, 0,V)|| y

81.82:b,0

Xsl ,893b,0

81,82;b—1,0 ?

but

F (4,0, 05, 050) — F (8,7, 85, 050)
= 0,8, [u (v — )] + b1, [F (u — )]

+ 20, [(u ) (u— 0] + 20 [0 +9) (0 - )],
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then
ITs (w,0) = Ty @D, ...
<C (J0: fu(v - )y,

+10s (w4 ) (w=Dlx, ., . + 100 +D) @ =)l )
< C (Jlullx

+ ”u + a!|Xsl.s2;b.a ”U - ﬁ“Xsl,SQ:h.a + ”'U + ’U”Xsl.sg;b,a ”U - 5”)\'91,52:1).11)
<c(lu+ily, ..+ Wlx, ,..) =g, ...

+C (lulx, . + 0+, .. ) 1o =Flx
<C (nu

+ 1102 [0 (u — W)l x

sgib—1,a

81.82:b,0 ”U - :JHXsl.sg;b,o + ”fjll-’(sl,sz;bva ”u o iZHX

81.82;b,0

Xsl.sz;b,d) ”U - a”Xslv-“Z'vb‘d
+ C (”u”Xsl,sz;b,a + ”v”Xsl.s2;b,a + ”5|lxsl,s2;b,a> ”U o Etlxsl,sg;b,a
< C (Iullx,, oo + 1000, e + 1 s + Bl )

(“U - 17’ Xsl‘sz;h.a + ||'U - %{”XSDSZ;"'”)

<4C?R |(u—T,v D)y

Xy rgwe T N8lx, e T 19

s1.89:b,0 )

In the same way we obtain
T2 (u,0) T (@,9)]x,
Then
Ty (u,0) =T (w,9), T2 (uw,v) = T2 (@,0)llx, ..
<8C’R|(u—t,v-D)x, , ,,» (11)

2 ~ o~
\82ib,0 < 4C R ||(u —uv ’U)”xsl,sz;b,a '

since that 8C?R < 1, 'y x 'y is a contraction

Then, for fixed (uo,vp) € &£, by (3.10), I'1 x I'; maps £ into £ and
by (3.11) because 8C2R < 1 is a contraction. By the Banach fixed point
theorem there is exactly one fixed point of because I'y x I's in £.
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Now by a well known argument the uniqueness of the solution (u, v)
follows also in X, ,:b,0- Furthermore, it is easy to see that the mapping
O : (ug,v9) € Br — (u,v) € C([0,T], H*+*2) x C ([0, 7], H**2)

AT . Xsl,sz;b,a x Br — X.ﬁ,s;;b,a

defined by

Ar ((u,v), (u0,v0)) = (Wug (4, v) , Yo, (u,v))

is analytic. Therefore a standard use of the implicit function theorem
yields the analyticity of the flow map © : (up,v) € Br — (u,v) €
C([0,T), H*%2) x C([0,T], H*®2). a

4 Proof of Theorem 2.3

This section is devoted to extend the local solution obtained in the
previous section to the global one. We suppose s; < 0 throughout this
section. Our aim here is to derive as almost conservation quantity and
use it to prove theorem 2.3. For this, let use the multiplier operator I
define in H*19 by

Tu(¢) =m(£)T ()

where m is a smooth and monotone function given by

_[1 if (<N
m () —{ N=sUg|*t  if |¢| > N,

with N > 1 to be fixed later.

Proposition 4.1. Let ~% < 81 < 0 and N > 1, then the operator I
maps H*v0 to L? and

[ull groro < [Hull e S CNT2 lufl oo -
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Proof. We have

[ ull7. = [ma]}.

= u 2 ” 2
_/R</|€|SNlm(£) (9] d5> d9+/R</m>N Im (€)% ()] d§> do
= ﬂ 2 233 a 2
_/R</mszv[ (9] dé) d9+/R</|E|>N €17 [ Q)] dg) do

25 a 2 —2s1 25, a 9

< CON72 ||ulfy o

Then I is a bounded operator from H*10 to L2. O

As discussed in the section 2 let us consider the IVP (2.4). After
introducing the multiplier operator I, we have the following variant of
the local well-posedness for the IVP (2.4).

Proposition 4.2. For any (ug,vo) € H**0 x H510, 5, > —%, the initial
value problem (2.4) is locally well-posed in the Banach space I™'L?* x
I=1L? with existence lifetime p satisfying

(HTwoll 2 + [Tvol )™ < Cpy @ >0 (4.12)

and moreover

{ “iju”Xo‘o;b_O < C |[Tuol| 2 (4.13)

”wPIvHXo,o;b.O S C ||IvOI|L2 ’

The proof of this proposition is not difficult and follows using
Duhamel’s formula and X, 04,0 space properties reduces matters to use
the following bilinear estimate to obtain the contraction.
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Proposition 4.3. Let s; > —%. For any b > % and o > é with b+ o0 <
1+s; andb< % (51 + 2), there exist C independent of N such that

1021 (uv)| < Clllullx,, g0 1H0lx,, 000 (4.14)

Xsl.();b——l.a

for allu,v € X, 060

The following extra smoothing bilinear estimate it is fundamental
to find a almost conserved quantity. '

Proposition 4.4. For s; € ]—%,O[, let b > % and g > % be chosen to
satisfy the hypotheses of proposition 4.8 and the condition —2sy < 2—3b,
then for a € |—2s1,2 — 3b] it follows that

10z [TuTv — I (w)]| x,

1,0:0—-1,¢

SCONT*ullx, oo HVlx, o0 -
(4.15)

The proofs of estimates (4.14) and (4.15) due to Isaza and Mejia
can be find in (8].

Now we proceed to introduce the almost conserved quantity. When
we apply the operator I to the system (2.4), and take the inner product
in L? with Iu, using integration by parts, we get,

d 2 d
— — —_ T
p 1 Tul72 2<dtlu, u>L2
b
=2 <—agfu — 18,1 (wv) — —22-811u2 — %iaxhﬂ - 8,102, Iu>
L2

= — (5 (2b1] (uv) + baTu? + bsIv?)  Tu),,

because it is easy to see that (931u, Iu) = (3;1851'% Iu>L2 = 0. Then,
an integration with respect to ¢ in [0, 1] yields

17w (V)72 = [[Tuoll22 + Ry (1) (4.16)
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where
1
R (1) = —/ (85 (2617 (wv) + balv? + b21u2) ,Iu)L2 dt, (4.17)
0
and in the same way
170 (V)72 = 1Tvoll72 + Ra (1) (4.18)
with
1
Ry (1) = —/ <8I (2b4I (uv) + bsIv? + b6[u2) ,IU>L2 dt. (4.19)
0

Let us define R(1) := Ry (1) + Rz (1), so that we have from (4.16) and
(4.18),

17w (D72 + v ()72 = [Tuall 7z + Mol 7 + R(1).  (4.20)

Proposition 4.5. The following cancellations hold,

<8x (Iu)2 ,Iu>L2 =0 and <BI (Iv)?, I’U>L2 =0 (4.21)
and
baly + 251 I + bs s + 2bs L4 = 0 (4.22)
where
1 1
I = /0 (oc(10? 1) at L= /0 (0. (Tulv) , Tu) o dt

1 1
= [ (e ) @ L= [0, Gut), oy i
0 L 0
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Proof. The proof of (4.21) is trivial and (4.22) follows by using integra-
tion by parts. In fact, since by = b5 and b3 = b4, we have

1 1
L, = — / (Iulv, 0 Tu) ;> dt = — / (Iv, [ud Iu) 2 dt
0 0

1! 9 1
- —5/0 <1v,az(1u) >L2dt—-——2—13

and

1 1
I, = -—/ (IuIv,azIU)detZ—/ (IuvIvaIIU>L2dt
0 0

1! 5 1
_5/0 (Tu,0. (1)) dt =31,

then bsly + 20611 + bz + 2b4ly = b3l — byI3 + bg I3 — byl; = 0. O

Using proposition 4.5,
1

R(1) = 2b1/ (0r [Tulv — I (uw)], Tu) ;. dt
0

1
+2b4/ (O (Tulv — I (wv)], Tv) . dt
0

= Ji+Jo+T3+Jdi+Jds5+ Js. (4.23)

Using Plancherel identity and Cauchy-Schwarz inequality as in [9], we
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have
1
[Ji] < 2b1/0 sz(az [Tulv — I (uv))) (¢) F (Tu) (¢) dC‘ dt
< 2 [ OO F (@ [ulo — ) ©)
@ F () () dede
1/2
< o ( [ X @1 @ ruro = ) ©F de dt)
1/2
([ xow 2 F @ ©F acar)
< 26y [ ()0 Tutv = T @)y o, o I (o) Tl
< Clslulo — Iy,  Mulx

where x is the characteristic function of the interval [0,1], 1 <c¢<b< 2
and the last inequality we have used the following lemma.

Lemma 4.6. Ifv; € ]0, %[ and v < y2 < %, then

I (el o < Cllull o

and

I (-0) u”X0,0:—‘Yz,O <C “u“XO,o;~71~0 ’

Using the and proposition 4.4, we get

A< ONTT Tl 0l Wl

—a 2
< CN ||Iu||Xé‘0:b‘0 ”IvHXé,o;»,,o . (4.24)
In the same way, we have
|Jo] SCNT | Tulixy ol (4.25)

0,0;b,0 0.0:5,0
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—a 2
) < ON® [Tullyy ol (4.26)
—a 3
|J4) SCN~||Iv X omo (4.27)
—« 3
g5l < ON = Tullyy (4.28)
and
- 2
ol < ON=® [Tul%y  WTollyy (4.29)

Now, using (4.35) and from (4.24) to (4.29), the identity (4.20) yields
the following almost conservation law,

17w (1)]|22 + 1o (1))

< HIU()”iz + ”IUOIGF

_ 3 2
+ON~= (July,, , + Mulk, 1,
2 3
uilx, ol Il ) - (4.30)

Proof of Theorem 2.3

To prove the theorem it is emough to show that the local solution
to the IVP (2.4) can be extended to [0,T] for arbitrary T' > 0. To make
the analysis easy, for A € ]0, 1[we define u* (z,y,t) = A\%u (Az, A%y, \3¢),
v (z,y,t) = X2 (Az, A%y, X3t), uj (z,y) = Auo (Az, \?y) and v (z,y) =
N (Az, A%y). Then, (u,v) solves (2.4) in [0, T] with initial data (uo,vo)
if and only if (u*,v*) solves (2.4) in [0, %] with initial data (u),v}).

' AT
So we are interested in exending (u", v)‘) to [0, %]

By lemma 4.1 we have
[[1ug

2 < ON= |ud || yer0 < CNTATF Jlugll a0 (4.31)

and in the same way we have

1193l 2 < CNT5IARFS lugl ey 0, (4.32)
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N = N (T) will be selected later, but let us choose A = A (N) right now
by requiring that

{ ON“mATte lluollger0 = ( )1/2 <1

o
2 (4.33)
CN= A gl oy = ()7 < 1.

From (4.33) we get A ~ N5 and using (4.33) in (4.31) and (4.32)
we get

1. <5 <1 and [, <2 <1, (439)

therefore, if we choose €y arbitrarily small then from theorem 4.2 we see
that the IVP (2.4) is well-posed for all ¢ € [0, 1].

Now, using the almost conserved quantity (4.30), the inequality
(4.34) and theorem 4.2, we get

172> (D72 + 10> )7

IA

£p €0 —~ | €0 7€0 1/2

o | %o N-e |20 (&0

g+ g eaone | 2(9)"]

< g+ CN™ %y. (435)

So, we can repeat this process C"'N® times before doubling the
value of |[Tu* (1)||i2 + ||[Tv* (I)Hi2 By this process we can extend the
solution to the time interval [0, C~*N®] by taking C™!N* time steps
of size O (1). As we are interessted in extending the solution to the time
interval [O, %], let us select N = N (T) such that C"1N® > % That
is, '

N Z %1_ ~ TN~ 1-?-5231 A

That is possible if

681
—_ 4.36
T 1428 ( )
If s, is such that —-8%- < 2 — 3b, then we can find o which satisfies

14281
(4.36) and the hypotheses of proposition 4.4. This last inequality is

satisfied 1by an allowed value of b > % if ——1—%5243—1 < %,

$1 € ]_TZ7 0[. This completes the proof of the theorem. O

then we choose
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Resumen

Dado el problema de valor inicial para un sistema de dos ecuaciones de
Kadomtsev-Petviashvili IT (KP-II) acopladas en los términos dispersivos
y no Ineales, es demostrado que estd bien colocado localmente en los
espacios de Sobolev anisotrépicos H*1*2 (R?) x H*2+52 (R?) con s1 > —3
y s2 > 0 y bien colocado globalmente en H***2 (R?) x H*'*2 (R?) con
s1 > —ﬁ.

Palabras clave: Ecuaciones dispersivas no lineales, buena colocacién local y
global, espacios de Bourgain, leyes de casi conservacion.
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