ON GENERALIZING δ -OPEN FUNCTIONS

 $Miguel \ Caldas,^1 \qquad Govindappa \ Navalagi^2$

January, 2008

Abstract

In this paper we introduce two classes of functions called weakly δ -open and weakly δ -closed functions. We obtain their characterizations, their basic properties and their relationships with other types of functions between topological spaces.

2000 Mathematics Subject Classification: Primary: 54A40, 54C10, 54D10; Secondary: 54C08

Key words: δ -open sets, δ -closed sets, weakly δ -closed functions, extremally disconnected spaces, quasi H-closed spaces.

¹ Departamento de Matemática Aplicada, UFF, Brasil.

² Department of Mathematics KLE Society's G.H.College, India.

104

1 Introduction and Preliminaries

In 1968, Veličko [20] introduced δ -open sets, which are stronger than open sets, in order to investigate the characterization of *H*-closed spaces and showed that τ_{δ} (=the collection of all δ -open sets) is a topology on *X* such that $\tau_{\delta} \subset \tau$ and so τ_{δ} equal with the semi-regularization topology τ_s . In 1985, M. Mršević et al [13] introduce and studied the class of δ -open functions, also in 1985, D.A.Rose [17] and D.A.Rose with D.S.Janković [18] have defined the notions of weakly open and weakly closed functions respectively. In this paper we introduce and discuss the notion of weakly δ -openness (resp. weakly δ -closedness) as a new generalization of δ -openness (resp. δ -closedness) and we obtained several characterizations and properties of these functions. We also study these functions comparing with other types of already known functions. Here it is seen that δ -openness implies weakly δ -openness but not conversely. But under a certain condition the converse is also true.

Throughout this paper, (X, τ) and (Y, σ) (or simply, X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If S is any subset of a space X, then Cl(S) and Int(S) denote the closure and the interior of S respectively.

Recall that a set S is called regular open (resp. regular closed) if S = Int(Cl(S)) (resp. S = Cl(Int(S)). A point $x \in X$ is called a θ cluster [20] (resp. δ -cluster [20]) of S if $S \cap Cl(U) \neq \emptyset$ (resp. $S \cap U \neq \emptyset$) for each open (resp. regular open) set U containing x. The set of all θ -cluster points (resp. δ -cluster points) of S is called the θ -closure (resp. δ -closure) of S and is denoted by $Cl_{\theta}(S)$ (resp. $\delta Cl(S)$). Hence, a subset S is called θ -closed (resp. δ -closed) if $Cl_{\theta}(S) = S$ (resp. $\delta Cl(S) = S$). The complement of a θ -closed set (resp. δ -closed set) is called θ -open (resp. δ -open). The family of all δ -open (resp. δ -closed) sets of a space X is denoted by $\delta O(X, \tau)$ (resp. $\delta C(X, \tau)$).

The δ -interior (resp. θ -interior) of S denoted by $\delta Int(S)$ (resp. $Int_{\theta}(S)$) is defined as follows:

 $\delta Int(S) = \{ x \in X : \text{ for some open subset } U \text{ of } X, x \in U \subset Int(Cl(U)) \subset S \}$

 $Int_{\theta}(S) = \{x \in X : \text{ for some open subset } U \text{ of } X, x \in U \subset Cl(U) \subset S\}.$

A subset $S \subset X$ is called preopen [11] (resp. α -open [14], β -open [1] (or semi-preopen [2])), if $S \subset Int(Cl(S))$ (resp. $S \subset Int(Cl(Int(S)))$, $S \subset Cl(Int(Cl(S)))$.

Lemma 1.1.([10], [20]). Let S be a subset of X, then:

- (1) S is a δ -open (resp. θ -open) set if and only if $S = \delta Int(S)$ (resp. $S = Int_{\theta}(S)$).
- (2) $X \delta Int(S) = \delta Cl(X S)$ and $\delta Int(X S) = X \delta Cl(S)$. (resp. $X - Int_{\theta}(S) = Cl_{\theta}(X - S)$ and $Int_{\theta}(X - S) = X - Cl_{\theta}(S)$.)
- (3) $\delta Cl(S)$ (resp. $\delta Int(S)$) is a closed set (resp. open set) but not necessarily is a δ -closed set (resp. δ -open set).
- (4) $Cl_{\theta}(S)$ (resp. $Int_{\theta}(S)$) is a closed set (resp. open set) but not necessarily is a θ -closed set (resp. θ -open set).

Lemma. 1.2. [20].

- (1) $Cl(S) \subset \delta Cl(S) \subset Cl_{\theta}(S)$ (resp. $Int_{\theta}(S) \subset \delta Int(S) \subset Int(S)$) for any subset S of X.
- (2) For an open (resp. closed) subset S of X, $Cl(S) = \delta Cl(S) = Cl_{\theta}(S)$ (resp. $Int_{\theta}(S) = \delta Int(S) = Int(S)$).

Lemma. 1.3. If X is a regular space, then:

(1)
$$Cl(S) = \delta Cl(S) = Cl_{\theta}(S)$$
 for any subset S of X.

(2) Every closed subset of X is θ -closed (and δ -closed) and hence for any subset S, $Cl_{\theta}(S)$ (resp. $\delta Cl(S)$) is θ -closed (resp. δ -closed).

A space X is called extremally disconnected (E.D) [21] if the closure of each open set in X is open. A space X is called δ -connected if X can not be expressed as the union of two nonempty disjoint δ -open sets.

A function $f: (X, \tau) \to (Y, \sigma)$ is called:

- (i) weakly open ([17], [18]) if $f(U) \subset Int(f(Cl(U)))$ for each open subset U of X.
- (ii) weakly closed [18] if $Cl(f(Int(F))) \subset f(F)$ for each closed subset F of X.
- (iii) strongly continuous [8] if for every subset A of X, $f(Cl(A)) \subset f(A)$.
- (iv) almost open in the sense of Singal and Singal, written as (a.o.S)
 [19] if the image of each regular open set U of X is an open set of Y, equivalently f(U) ⊂ Int(f(Int(Cl(U)))) for each open subset U of X.
- (v) δ-open (resp. δ-closed [7], β-open [1], α-open [14]) if for each open set U (resp. closed set F, open set U, open set U) of X, f(U) is δ-open (resp. f(F) is δ-closed, f(U) is β-open, f(U) is α-open) set in Y.

(vi) contra δ -open (resp. contra-closed [4]) if f(U) is δ -closed (resp. open) in Y for each open (resp. closed) subset U of X.

2 Weakly δ -open Functions

106

We define in this section the concept of weak δ -openness as a notion between δ -openness and weakly openness.

Definition 2.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly δ -open if $f(U) \subset \delta Int(f(Cl(U)))$ for each open set U of X.

Clearly, every δ -open function is weakly δ -open and every weakly δ -open function is weakly open, but the converses are not generally true. For,

Example 2.2.

(i) A weakly δ -open function need not be δ -open.

Let $X = Y = \{a, b, c\}, \quad \tau = \{\emptyset, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $\sigma = \{\emptyset, Y, \{a\}, \{a, b\}\}.$ Let $f : (X, \tau) \to (Y, \sigma)$ be the identity function. Then f is weakly δ -open since $\delta Int(f(Cl(\{a\}))) = \delta Int(f(Cl(\{a, b\}))) = \delta Int(f(Cl(\{a, c\}))) = Y$ but f is not δ -open since $f(\{a\}) \neq \delta Int(f(\{a\})).$

- (ii) A weakly open function need not be weakly δ -open. Let $X = \{a, b, c\}, \ \tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{\emptyset, X, \{b\}, \{a, b\}, \{b, c\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is weakly open since $Int(f(Cl(\{a\}))) = \{a, b\}, Int(f(Cl(\{c\}))) = \{b, c\}, Int(f(Cl(\{a, c\}))) = X$ but f is not weakly δ -open since $f(\{a\}) \not\subset \delta Int(f(Cl(\{a\})))$.
- (iii) Let $f : (X, \tau) \to (Y, \sigma)$ be the function as (i). Then it is shown that f is weakly δ -open which is not open.

Theorem 2.3. Let X be a regular space. Then $f: (X, \tau) \to (Y, \sigma)$ is weakly δ -open if and only if f is δ -open.

Proof. The sufficiency is clear.

Necessity. Let W be a nonempty open subset of X. For each x in W, let U_x be an open set such that $x \in U_x \subset Cl(U_x) \subset W$. Hence we obtain that $W = \bigcup \{U_x : x \in W\} = \bigcup \{Cl(U_x) : x \in W\}$ and, f(W) =

 $\cup \{f(U_x) : x \in W\} \subset \cup \{\delta Int(f(Cl(U_x))) : x \in W\} \subset \delta Int(f(\cup \{Cl(U_x) : x \in W\}) = \delta Int(f(W)). \text{ Thus } f \text{ is } \delta \text{-open.}$

Theorem 2.4. For a function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent :

- (i) f is weakly δ -open,
- (ii) $f(Int_{\theta}(A)) \subset \delta Int(f(A))$ for every subset A of X,
- (iii) $Int_{\theta}(f^{-1}(B)) \subset f^{-1}(\delta Int(B))$ for every subset B of Y,
- (iv) $f^{-1}(\delta Cl(B)) \subset Cl_{\theta}(f^{-1}(B))$ for every subset B of Y,
- (v) For each closed subset F of X, $f(Int(F)) \subset \delta Int(f(F))$,
- (vi) For each open subset U of X, $f(Int(Cl(U))) \subset \delta Int(f(Cl(U)))$,
- (vii) For every regular open subset U of X, $f(U) \subset \delta Int(f(Cl(U)))$,
- (viii) For every α -open subset U of X, $f(U) \subset \delta Int(f(Cl(U)))$.

Proof.

108

- $(i) \to (ii)$: Let A be any subset of X and $x \in Int_{\theta}(A)$. Then, there exists an open set U such that $x \in U \subset Cl(U) \subset A$. Hence $f(x) \in f(U) \subset f(Cl(U)) \subset f(A)$. Since f is weakly δ -open, $f(U) \subset \delta Int(f(Cl(U))) \subset \delta Int(f(A))$. It implies that $f(x) \in \delta Int(f(A))$. Therefore $x \in f^{-1}(\delta Int(f(A)))$. Thus $Int_{\theta}(A) \subset f^{-1}(\delta Int(f(A)))$, and so, $f(Int_{\theta}(A)) \subset \delta Int(f(A))$.
- $(ii) \to (i)$: Let U be an open set in X. As $U \subset Int_{\theta}(Cl(U))$ implies, $f(U) \subset f(Int_{\theta}(Cl(U))) \subset \delta Int(f(Cl(U)))$. Hence f is weakly δ -open.

$$(ii) \rightarrow (iii)$$
: Let B be any subset of Y. Then by (ii),
 $f(Int_{\theta}(f^{-1}(B))) \subset \delta Int(B)$. Therefore
 $Int_{\theta}(f^{-1}(B)) \subset f^{-1}(\delta Int(B)).$

 $(iii) \rightarrow (ii)$: This is obvious.

- $(iii) \rightarrow (iv)$: Let *B* be any subset of *Y*. Using (iii), we have $X - Cl_{\theta}(f^{-1}(B)) = Int_{\theta}(X - f^{-1}(B)) = Int_{\theta}(f^{-1}(Y - B)) \subset f^{-1}(\delta Int(Y - B)) = f^{-1}(Y - \delta Cl(B)) = X - (f^{-1}(\delta Cl(B)).$ Therefore, we obtain $f^{-1}(\delta Cl(B)) \subset Cl_{\theta}(f^{-1}(B)).$
- $(iv) \rightarrow (iii)$: Similarly we obtain, $X f^{-1}(\delta Int(B)) \subset X Int_{\theta}(f^{-1}(B))$, for every subset B of Y, i.e., $Int_{\theta}(f^{-1}(B)) \subset f^{-1}(\delta Int(B))$.

 $(i) \rightarrow (v) \rightarrow (vi) \rightarrow (vii) \rightarrow (viii) \rightarrow (i)$: This is obvious.

Theorem 2.5. Let $f: (X, \tau) \to (Y, \sigma)$ be a bijective function. Then the following statements are equivalent.

- (i) f is weakly δ -open,
- (ii) $\delta Cl(f(U)) \subset f(Cl(U))$ for each U open in X,
- (iii) $\delta Cl(f(Int(F)) \subset f(F) \text{ for each } F \text{ closed in } X.$

Proof.

- $(i) \rightarrow (iii)$: Let F be a closed set in X. Then we have $f(X-F) = Y f(F) \subset \delta Int(f(Cl(X-F)))$ and so $Y f(F) \subset Y \delta Cl(f(Int(F)))$. Hence $\delta Cl(f(Int(F))) \subset f(F)$.
- $(iii) \rightarrow (ii)$: Let U be an open set in X. Since Cl(U) is a closed set and $U \subset Int(Cl(U))$ by (iii) we have $\delta Cl(f(U)) \subset \delta Cl(f(Int(Cl(U))) \subset f(Cl(U)))$.
- $(ii) \rightarrow (iii)$: Similar to $(iii) \rightarrow (ii)$.

 $(iii) \rightarrow (i)$: Clear.

Theorem 2.6. If X is a regular space, then for a function $f: (X, \tau) \rightarrow (Y, \sigma)$, the following conditions are equivalent:

(i) f is weakly δ -open,

- (ii) For each θ -open set A in X, f(A) is δ -open in Y,
- (iii) For any set B of Y and any θ -closed set A in X containing $f^{-1}(B)$, there exists a δ -closed set F in Y containing β such that $f^{-1}(F) \subset A$.

Proof.

- $(i) \rightarrow (ii)$: Let A be a θ -open set in X. Then Y f(A) is a set in Y such that by (i) and Theorem 2.4(iv), $f^{-1}(\delta Cl(Y - f(A))) \subset Cl_{\theta}(f^{-1}(Y - f(A)))$. Therefore, $X - f^{-1}(\delta Int(f(A))) \subset Cl_{\theta}(X - A) = X - A$. Then, we have $A \subset f^{-1}(\delta Int(f(A)))$ which implies $f(A) \subset \delta Int(f(A))$. Hence f(A) is a δ -open subset of Y.
- $(ii) \rightarrow (iii)$: Let B be any set in Y and A be a θ -closed set in X such that $f^{-1}(B) \subset A$. Since X A is θ -open in X, by (ii), f(X A) is δ -open in Y. Let F = Y f(X A). Then F is δ -closed and $\beta \subset F$. Now, $f^{-1}(F) = f^{-1}(Y f(X A)) = X f^{-1}(f(A)) \subset A$.
- $(iii) \rightarrow (i)$: Let B be any set in Y. Let $A = Cl_{\theta}(f^{-1}(B))$. Then by Lemma 1.3 A is θ -closed set in X and $f^{-1}(B) \subset A$. Then there exists a δ -closed set F in Y containing B such that $f^{-1}(F) \subset$ A. Since F is δ -closed $f^{-1}(\delta Cl(B)) \subset f^{-1}(F) \subset Cl_{\theta}(f^{-1}(B))$. Therefore by Theorem 2.4, f is a weakly δ -open function.

Theorem 2.7. If $f: (X, \tau)to(Y, \sigma)$ is weakly δ -open and strongly continuous, then f is δ -open.

Proof. Let U be an open subset of X. Since f is weakly δ -open $f(U) \subset \delta Int(f(Cl(U)))$. However, because f is strongly continuous, $f(U) \subset \delta Int(f(U))$ and therefore f(U) is δ -open.

Example 2.8. A δ -open function need not be strongly continuous. Let $X = \{a, b, c\}$, and let τ be the indiscrete topology for X. Then the identity function $f : (X, \tau) \to (X, \tau)$ is a δ -open (hence weakly δ -open) function which is not strongly continuous. **Example 2.9.** A strongly continuous function need not be δ -open. Let τ be the discrete topology for the topological space X, and σ the indiscrete topology on X. Let $f: (X, \tau) \to (X, \sigma)$ be the identity function. Then f is strongly continuous, but f is not weakly δ -open (hence, f is not δ -open).

Example 2.8 and 2.9 show that:

- (i) weakly δ -openness and strongly continuity are notions independent, and
- (ii) δ -openness and strongly continuity are notions independent.

Theorem 2.10. If $f : (X, \tau) \to (Y, \sigma)$ is closed and a.o.S, then f is a weakly δ -open function.

Proof. Let U be an open set in X. Since f is a.o.S and Int(Cl(U)) is regular open, f(Int(Cl(U))) is open in Y and hence $f(U) \subset f(Int(Cl(U))) \subset Int(f(Cl(U)))$. Since f is closed $f(U) \subset \delta Int(f(Cl(U)))$ (Lemma 1.2). This shows that f is weakly δ -open.

The converse of Theorem 2.10 is not true in general.

Example 2.11. Let $X = \{a, b, c\}$, $\tau = \{\emptyset, X, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma = \{\emptyset, X, \{a\}, \{b, c\}\}$. Let $f : (X, \tau) \to (X, \sigma)$ be the identity function. Then f is weakly δ -open but it is not a.o.S since c is regular open set in (X, τ) , $f(\{c\}) = \{c\}$ is not open set in (X, σ) . It is easily to verify also that f is not a closed function.

Lemma 2.12. If $f : (X, \tau) \to (Y, \sigma)$ is a continuous function, then for any subset U of X, $f(Cl(U)) \subset Cl(f(U))$ [21].

Theorem 2.13. If $f : (X, \tau) \to (Y, \sigma)$ is a weakly δ -open and continuous function, then f is β -open.

Proof. Let U be a open set in X. Then by weak δ -openness of f, $f(U) \subset \delta Int(f(Cl(U)))$. Since f is continuous $f(Cl(U)) \subset Cl(f(U))$. Hence we obtain that, $f(U) \subset \delta Int(f(Cl(U))) \subset \delta Int(Cl(f(U))) \subset Cl(Int(Cl(f(U))))$. Therefore, $f(U) \subset Cl(Int(Cl(f(U))))$ which shows that f(U) is a β -open set in Y. Thus, f is a β -open function.

Since every strongly continuous function is continuous, we have the following corollary.

Corollary 2.14. If $f: (X, \tau) \to (Y, \sigma)$ is an injective weakly δ -open and strongly continuous function, then f is β -open.

Theorem 2.15. If $f : (X, \tau) \to (Y, \sigma)$ is a bijective weakly δ -open of a space X onto a δ -connected space Y, then X is connected.

Proof. Let us assume that X is not connected. Then there exist nonempty open sets U_1 and U_2 such that $U_1 \cap U_2 = \phi$ and $U_1 \cup U_2 = X$. Hence we have $f(U_1) \cap f(U_2) = \phi$ and $f(U_1) \cup f(U_2) = Y$. Since fis bijective weakly δ -open, we have $f(U_i) \subset \delta Int(f(Cl(U_i)))$ for i = 1, 2 and since U_i is open and also closed, we have $f(Cl(U_i)) = f(U_i)$ for i = 1, 2. Hence $f(U_i)$ is δ -open in Y for i = 1, 2. Thus, Y has been decomposed into two non-empty disjoint δ -open sets. This is contrary to the hypothesis that Y is a δ -connected space. Thus X is connected.

Definition 2.16. A space X is said to be hyperconnected [16] if every nonempty open subset of X is dense in X.

Theorem 2.17. If X is a hyperconnected space, then $f : (X, \tau) \to (Y, \sigma)$ is weakly δ -open if and only if f(X) is δ -open in Y.

Proof. The sufficiency is clear. For the necessity observe that for any open subset U of X, $f(U) \subset f(X) = \delta Int(f(X)) = \delta Int(f(Cl(U)))$.

3 Weakly δ -closed Functions

Definition 3.1. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be weakly δ -closed if $\delta Cl(f(Int(F))) \subset f(F)$ for each closed set F in X.

Clearly, every δ -closed function is weakly δ -closed since $\delta Cl(f(Int(A))) \subset \delta Cl(f(A)) = f(A)$ for every closed subset A of X. But not conversely.

Example 3.2. Let $f: (X, \tau) \to (Y, \sigma)$ be the function from Example 2.2 (i) (resp. Example 2.2 (ii)). Then it is shown that f is weakly δ -closed which is not δ -closed (resp. weakly closed function need not be weakly δ -closed).

Theorem 3.3. For a function $f : (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

- (i) f is weakly δ -closed,
- (ii) $\delta Cl(f(U)) \subset f(Cl(U))$ for every open subset U of X,
- (iii) $\delta Cl(f(U)) \subset f(Cl(U))$ for each open subset U of X,
- (iv) $\delta Cl(f(Int(F))) \subset f(F)$ for each preclosed subset F of X,
- (v) $\delta Cl(f(Int(F))) \subset f(F)$ for every α -closed subset F of X,
- (vi) $\delta Cl(f(Int(Cl(U)))) \subset f(Cl(U))$ for each subset U of X,
- (vii) $\delta Cl(f(Int(\delta Cl(U)))) \subset f(\delta Cl(U))$ for each subset U of X,
- (viii) $\delta Cl(f(U)) \subset f(Cl(U))$ for each preopen subset U of X.

Proof.

 $(i) \rightarrow (ii)$: Let U be any open subset of X. Then $\delta Cl(f(U)) = \delta Cl(f(Int(U))) \subset \delta Cl(f(Int(Cl(U)))) \subset f(Cl(U)).$

- $(ii) \rightarrow (i)$: Let F be any closed subset of X. Then, $\delta Cl(f(Int(F))) \subset f(Cl(Int(F))) \subset f(Cl(F)) = f(F).$ It is clear that: $(i) \rightarrow (iii) \rightarrow (iv) \rightarrow (v) \rightarrow (i), (i) \rightarrow (vi) \rightarrow (viii) \rightarrow (i), and (i) \rightarrow (vii).$
- $(vii) \rightarrow (viii)$: Note that $\delta Cl(U) = Cl(U)$ for each preopen subset U of X.

Theorem 3.4. If Y is a regular space, then for a function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent :

- (i) f is weakly δ -closed,
- (ii) $\delta Cl(f(U)) \subset f(Cl(U))$ for each regular open subset U of X,
- (iii) For each subset F in Y and each open set U in X with $f^{-1}(F) \subset U$, there exists a δ -open set A in Y with $F \subset A$ and $f^{-1}(F) \subset Cl(U)$,
- (iv) For each point y in Y and each open set U in X with $f^{-1}(y) \subset U$, there exists a δ -open set A in Y containing y and $f^{-1}(A) \subset Cl(U)$.

Proof. It is clear that: $(i) \rightarrow (ii)$ and $(iii) \rightarrow (iv)$.

- $\begin{array}{l} (ii) \rightarrow (iiii) : \mbox{ Let } F \mbox{ be a subset of } Y \mbox{ and let } U \mbox{ be open in } X \mbox{ with } \\ f^{-1}(F) \subset U. \mbox{ Then } f^{-1}(F) \cap Cl(X Cl(U)) = \phi \mbox{ and consequently}, \\ F \cap f(Cl(X Cl(U))) = \phi. \mbox{ Since } X Cl(U) \mbox{ is regular open}, \\ F \cap \delta Cl(f(X Cl(U))) = \phi \mbox{ by (ii). Let } A = Y \delta Cl(f(X Cl(U))). \\ \mbox{ Then } A \mbox{ is } \delta \mbox{ open with } F \subset A \mbox{ and } f^{-1}(A) \subset X f^{-1}(\delta Cl(f(X Cl(U)))) \\ \mbox{ Cl}(U))) \subset X f^{-1}f(X Cl(U)) \subset Cl(U). \end{array}$
- $(iv) \rightarrow (i)$: Let F be closed in X and let $y \in Y f(F)$. Since $f^{-1}(y) \subset X F$, there exists a δ -open A in Y with $y \in A$ and $f^{-1}(A) \subset Cl(X F) = X Int(F)$ by (iv). Therefore $A \cap f(Int(F)) = \phi$, so that $y \in Y \delta Cl(f(Int(F)))$. Thus $\delta Cl(f(Int(F))) \subset f(F)$.

Remark 3.5. By Theorem 2.5, if $f : (X, \tau) \to (Y, \sigma)$ is a bijective function then f is weakly δ -open if and only if f is weakly δ -closed.

Next we investigate conditions under which weakly δ -closed functions are δ -closed.

Theorem 3.6. Let (Y, σ) be a regular space. If $f : (X, \tau) \to (Y, \sigma)$ is weakly δ -closed and if for each closed subset F of X and each fiber $f^{-1}(y) \subset X - F$ there exists a open U of X such that $f^{-1}(y) \subset U \subset Cl(U) \subset X - F$. Then f is δ -closed.

Proof. Let F be any closed subset of X and let $y \in Y - f(F)$. Then $f^{-1}(y) \cap F = \phi$ and hence $f^{-1}(y) \subset X - F$. By hypothesis, there exists an open U of X such that $f^{-1}(y) \subset U \subset Cl(U) \subset X - F$. Since f is weakly δ -closed by Theorem 3.4, there exists a δ -open V in Y with $y \in V$ and $f^{-1}(V) \subset Cl(U)$. Therefore, we obtain $f^{-1}(V) \cap F = \phi$ and hence $V \cap f(F) = \phi$, this shows that $y \notin \delta Cl(f(F))$. Therefore, f(F) is a δ -closed subset of Y and f is δ -closed.

Recall that, a function $f: (X, \tau) \to (Y, \sigma)$ is said to be preclosed if f(F) is preclosed in Y for each closed subset F of X.

Theorem 3.7.

- (i) If $f : (X, \tau) \to (Y, \sigma)$ is preclosed and contra-closed, then f is weakly δ -closed.
- (ii) If $f: (X, \tau) \to (Y, \sigma)$ is contra δ -open, then f is weakly δ -closed.

Proof.

- (i) Let F be a closed subset of X. Since f is preclosed, $\delta Cl(Int(f(F))) = Cl(Int(f(F))) \subset f(F)$ and since f is contra-closed f(F) is open. Therefore $\delta Cl(f(Int(F))) \subset \delta Cl(f(F)) = \delta Cl(Int(f(F))) \subset f(F)$.
- (ii) Let F be a closed subset of X. Then, $\delta Cl(f(Int(F))) = f(Int(F)) \subset f(F)$.

Example 3.8. Example 2.2 (i) shows that weakly δ -closedness does not imply contra δ -openness. Shows also that weakly δ -closedness does not imply preclosedness.

Example 3.9. Contra-closedness and weakly δ -closedness are independent notions. Example 2.2 (i) shows that weakly δ -closedness does not imply contra-closedness while the reverse is shown in the Example 2.2 (ii).

Theorem 3.10. If Y is a regular space and if $f : (X, \tau) \to (Y, \sigma)$ is one-one and weakly δ -closed, then for every subset F of Y and every open set U in X with $f^{-1}(F) \subset U$, there exists a δ -closed set B in Y such that $F \subset B$ and $f^{-1}(B) \subset Cl(U)$.

Proof. Let F be a subset of Y and let U be an open subset of X with $f^{-1}(F) \subset U$. Put $B = \delta Cl(f(Int(Cl(U))))$, then by Lemma 1.3 B is a δ -closed subset of Y such that $F \subset B$ since $F \subset f(U) \subset f(Int(Cl(U))) \subset \delta Cl(f(Int(Cl(U)))) = B$. And since f is weakly δ -closed, $f^{-1}(B) \subset Cl(U)$.

Taking the set F in Theorem 3.10 to be $\{y\}$ for $y \in Y$ we obtain the following result,

Corollary 3.11. If Y is a regular space and if $f : (X, \tau) \to (Y, \sigma)$ is one-one and weakly δ -closed, then for every point y in Y and every open set U in X with $f^{-1}(y) \subset U$, there exists a δ -closed set B in Y containing y such that $f^{-1}(B) \subset Cl(U)$.

Recall that, a set F in X is θ -compact if for each cover Ω of F by open U in X, there is a finite family $U_1, ..., U_n$ in Ω such that $F \subset Int(\bigcup Cl(U_i) : i = 1, 2, ..., n)$ [18].

Theorem 3.12. Let (Y, σ) be a regular space. If $f : (X, \tau) \to (Y, \sigma)$

is weakly δ -closed with all fibers *theta*-closed, then f(F) is δ -closed for each θ -compact F in X.

Proof. Let F be θ -compact and let $y \in Y - f(F)$. Then $f^{-1}(y) \cap F = \phi$ and for each $x \in F$ there is an open $U_x \subset X$ with $x \in U_x$ such that $Cl(U_x) \cap f^{-1}(y) = \phi$. Clearly, $\Omega = \{U_x : x \in F\}$ is an open cover of F and since F is θ -compact, there is a finite family $\{U_{x_1}, ..., U_{x_n}\} \subset \Omega$ such that $F \subset Int(A)$, where $A = \bigcup \{Cl(U_{x_i}) : i = 1, ..., n\}$. Since fis weakly δ -closed by Theorem 3.4 there exists a δ -open $B \subset Y$ with $f^{-1}(y) \subset f^{-1}(B) \subset Cl(X - A) = X - Int(A) \subset X - F$. Therefore $y \in B$ and $B \cap f(F) = \phi$. Thus $y \in Y - \delta Cl(f(F))$. This shows that f(F) is δ -closed.

Two nonempty subsets A and B in X are strongly separated [18], if there exist open sets U and V in X with $A \subset U$ and $B \subset V$ and $Cl(U) \cap Cl(V) = \phi$. If A and B are singleton sets we may speak of points being strongly separated. We will use the fact that in a normal space, disjoint closed sets are strongly separated.

Recall that, a topological space (X, τ) is said to be θ - T_2 [5], if for $x, y \in X$ such that $x \neq y$ there exist disjoint θ -open sets U and V such that $x \in U$ and $y \in V$.

Theorem 3.13. Let (Y, σ) be a regular space. If $f : (X, \tau) \to (Y, \sigma)$ is a weakly δ -closed surjection and all pairs of disjoint fibers are strongly separated, then Y is θ -T₂ (hence T₂).

Proof. Let y and z be two points in Y. Let U and V be open sets in X such that $f^{-1}(y) \in U$ and $f^{-1}(z) \in V$ respectively with $Cl(U) \cap Cl(V) = \phi$. By weak δ -closedness (Theorem 3.4) there are *delta*open sets F and B in Y such that $y \in F$ and zinB, $f^{-1}(F) \subset Cl(U)$ and $f^{-1}(B) \subset Cl(V)$. Therefore $F \cap B = \phi$, because $Cl(U) \cap Cl(V) = \phi$ and f surjective. Then Y is θ - T_2 . **Corollary 3.14.** If Y is a regular space and if $f : (X, \tau) \to (Y, \sigma)$ is weakly δ -closed surjection with all fibers closed and X is normal, then Y is θ -T₂ (hence T₂).

Corollary 3.15. If Y is a regular space and if $f : (X, \tau) \to (Y, \sigma)$ is a continuous weakly δ -closed surjection function with X compact T_2 space and Y a T_1 space, then Y is a compact θ - T_2 space.

Proof. Since f is continuous, X compact and Y is a T_1 space, Y is compact and all fibers are closed, and since X is normal by Corollary 3.14 Y is a θ - T_2 space.

Definition 3.16. A topological space X is said to be quasi H-closed [6] (resp. $N - \delta$ -closed), if every open (resp. δ -closed) cover of X has a finite subfamily whose closures cover X. A subset $A \subset X$ is quasi H-closed relative to X (resp. $N - \delta$ -closed relative to X) if every cover $U_i : i \in I$ of A by open (resp. δ -closed) sets of X there exists a finite subfamily I_0 of I such that $A \subset \bigcup \{Cl(U_i) : i \in I_0\}$.

Lemma 3.17. A function $f: (X, \tau) \to (Y, \sigma)$ is open if and only if for each $B \subset Y$, $f^{-1}(Cl(B)) \subset Cl(f^{-1}(B))$ [9].

Theorem 3.18. Let $\delta O(X, \tau)$ closed under intersections and let $f : (X, \tau) \to (Y, \sigma)$ be an open weakly δ -closed function which is one-one from an extremally disconnected space X into a regular space Y such that $f^{-1}(y)$ is quasi H-closed relative to X for each y in Y. If G is $N - \delta$ -closed relative to Y then $f^{-1}(G)$ is quasi H-closed.

Proof. Let $\{V_{\beta} : \beta \in I\}$, I being the index set be an open cover of $f^{-1}(G)$. Then for each $y \in G \cap f(X)$, $f^{-1}(y) \subset \bigcup \{Cl(V_{\beta}) : \beta \in I(y)\} = H_y$ for some finite subfamily I(y) of I. Since X is extremally disconnected each $Cl(V_{\beta})$ is open and hence H_y is open in X. So by Corollary 3.11, there exists a δ -closed set U_y containing y such that $f^{-1}(U_y) \subset Cl(H_y)$. Then, $\{U_y : y \in G \cap f(X)\} \cup Y - f(X)$ is a δ -closed cover of G, $G \subset \bigcup (\{Cl(U_y) : y \in K\} \cup \{Cl(Y - f(X))\})$ for some finite subset K of $G \cap f(X)$ since G is an $N - \delta$ -closed. Hence and by Lemma 3.17, $f^{-1}(G) \subset \cup \{f^{-1}(Cl(U_y)) : y \in K\} \cup \{f^{-1}(Cl(Y - f(X)))\} \subset \bigcup \{Cl(f^{-1}(U_y)) : y \in K\} \cup \{Cl(f^{-1}(U_y))\} \subset \bigcup \{Cl(f^{-1}(U_y)) : y \in K\} \cup \{Cl(f^{-1}(U_y))\} \subset \bigcup \{Cl(f^{-1}(U_y)) : y \in K\}, \text{ so } f^{-1}(G) \subset \bigcup \{Cl(V_\beta) : \beta \in I(y), y \in K\}.$ Therefore $f^{-1}(G)$ is quasi H-closed.

Corollary 3.19. Let $f: (X, \tau) \to (Y, \sigma)$ be as in Theorem 3.18. If Y is $N - \delta$ -closed, then X is quasi H-closed.

Acknowledgment. This work was concluded during the visit of the first author to the Institute of Mathematics of the Universidad Autónoma de México under the TWAS-UNESCO Associateship Schema at Centres of Excellence in the South. He express his thanks for theirs kind hospitality and support.

References

- M.E Abd-El-Monsef, S.N. El-Deeb and R.A. Mahmoud. β-open and β-continuous mappings. Bull. Fac. Sci. Assiut Univ., **12** (1983), 70-90.
- [2] D. Andrijevic. Semipreopen sets. Mat. Vesnik, 38 (1986), 24-32.
- [3] S.P. Arya and R.Gupta. Strongly continuous mappings. Kyungpook Math.J., 14 (1974), 131-143.
- [4] C.W. Baker. Contra-open functions and contra-closed functions. Math.Today 15 (1997), 19-24.
- [5] S. Bandyopadhyayi. Some Problems Concerning Covering Properties and Function Spaces. Ph.D. Thesis, University of Calcutta, (1996).

- [6] D.E. Cameron. Some maximal topologies which are Q.H.C. Proc. Amer. Math. Soc., 75 (1979), 149-156.
- [7] L.L. Herrington. Some properties preserved by the almost- continuous function. Boll. Un. Mat. Ital., 10 (1974), 556-568.
- [8] N. Levine. Strong continuity in topological spaces. Amer. Math. Monthly, 67 (1960), 269.
- [9] P.E. Long and D.A. Carnahan. Comparing almost continuous functions. Proc. Amer. Math. Soc., 38 (1973), 413-418.
- [10] P.E. Long and L.L. Herrington. The τ_{θ} -topology and faintly continuous functions. Kyungpook Math. J., **22** (1982), 7-14.
- [11] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deeb. Precontinuous and weak precontinuous mappings. Proc. Math. Phys. Soc. Egypt., 53 (1982), 47-53.
- [12] A.S. Mashhour, I.A. Hasanein and S.N. EL-Deeb. α-continuous and α-open mappings. Acta Math. Hung., 41 (1983), 213-218.
- [13] M. Mršević, I.L. Reilly and M.K. Vamanamurthy. On semiregularization properties. J. Austral, Math. Soc. (Series A), 38 (1985), 40-54.
- [14] O. Njåstad. On some classes of nearly open sets. Pacific J. Math., 15 (1965), 961-970.
- [15] T. Noiri. A generalization of closed mappings. Atti. Accad. Naz. Lince Rend. Cl. Sci. Fis. Mat. Natur., 8 (1973), 210-214.
- [16] T. Noiri. Properties of hyperconnected spaces. Acta Math. Hung., 66 (1995), 147-154.
- [17] D.A. Rose. On weak openness and almost openness. Internat. J. Math. & Math. Sci., 7 (1984), 35-40.

- [18] D.A. Rose and D.S. Janković. Weakly closed functions and Hausdorff spaces. Math. Nachr., 130 (1987), 105-110.
- [19] M.K. Singal and A.R. Singal. Almost continuous mappings. Yokohama Math. J., 16 (1968), 63-73.
- [20] N.V. Veličko. H-closed topological spaces. Amer. Math. Soc. Transl., 78 (1968), 103-118.
- [21] S. Willard. General topology. Addition Wesley Publishing Company (1970).

Resumen

En este trabajo introducimos dos nuevas classes de funciones, llamadas funciones débilmente δ -abiertas y funciones débilmente δ -cerradas. Obtenemos sus caracterizaciones, sus propiedades fundamentales y sus relaciones con otros tipos de funciones entre espacios topológicos.

Palabras clave: Conjuntos δ - abiertos, conjuntos δ -cerrados, funciones débilmente δ -cerradas, espacios extremadamente disconexos, espacios cuasi H-cerrados.

Miguel Caldas Departamento de Matematica Aplicada Universidade Federal Fluminense Rua Mario Santos Braga, s/nº, CEP: 24020-140, Niteroi, RJ Brasil gmamccs@vm.uff.br / caldas@predialnet.com.br

Govindappa B. Navalagi Department of Mathematics KLE Society's G.H.College, Haveri-581110, Karnataka, India gnavalagi@hotmail.com