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Abstract 

In my opinion, compactness is the most important concept in 
mathematics. We 'll track it from the one-dimensional real 
line in calculus to infinite dimensional spaces of functions 

and surfaces and see what it can do. 
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1 Compactness as the Universal Strategy 

The universal problem in applied mathematics is to find an optimal so­

lution. For example, the premier application of calculus is to sol ve max-min 

problems. Economists seek optimal economic strategies. Soap films as in Fi­
gure 1 seek the least-area way to span a wire boundary. 

Figure 1: Soap films seek the least-area way to span a wire boundary, Photo by 

S. Devadoss. 

The universal problem in pure mathematics is to prove that an optimal 
solution exists. Such a proof helps the applied problem-solver in two ways. 
First, it is a guarantee that a life-long search for a solution is not doomed to 
fail. Second, it is what makes many methods of solution work. For example, 
in calculus, the reason that you have to check only critica! points (where the 
derivative is O or fails to exist) and endpoints is that the theory guarantees that 
a continuous function has a maximum (and that a maximum must be a critica! 

point or an endpoint). 

The general strategy for proving that an optimal solution exists goes like 
this. Take a sequence of candidates with values approaching an optimum and 
get an ideallimit somehow. It is compactness that guarantees a limit. 
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This general strategy sometimes fails. For example, there is no Iargest 

positive number, because the positive numbers are not bounded (see Figure 2). 
Moreover, there is no smallest positive number, because the positive numbers 

are not closed, zero is not included. Sometimes compactness fails. 

Figure 2: There is no largest positive number because the positive numbers 
are not bounded. There is no smallest positive number because the positive 
numbers are not closed 

2 The Bolzano-Weierstrass Compactness Theorem 
of 1840 

The first major result guaranteeing limits of sequences was proved by Karl 

Weierstrass in about 1840: 

2.1 Bolzano-Weierstrass Theorem. lf S e Rn is bounded and closed, then 

every sequence in S has a convergent subsequence, converging to a limit in S. 

A set S with this property is called compact (or now sometimes "sequentially 

compact", to distinguish it from other definitions which can differ on compli­
cated spaces). Here are three sample corollaries. 

2.2 Corollary. A continuous function f on [a, b] e R ( or any closed and 
bounded subset ofRn) has a minimum (and therefore calculus works). 

Proofsketch. Take a sequence ofpoints x; in [a,b] with values j(x;) approach­
ing the infimum. By Bolzano-Weierstrass, sorne subsequence converges toa 
point x in [a, b]. Because f is continuous, it hits its minimum at x. 

2.3 Corollary. There exists a least-perimeter n-gon ofunit area in R2 . 

Proof sketch. Since an n-gon is determined by n vertices, each with two coor-
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dinates, the set of n-gons is a subset of R2n. Moreover, the set 

S = {n-gons through the origin with unit area with perimeter at most 100) 

is a closed and bounded subset of R2n. Since perimeter is a continuous function 

on S, it has a rninimum. 

2.4 Corollary. The Isoperimetric Theorem. The circle minimizes perimeter 
for given area in the plane. 

Proof sketch. By approximation, it suffices to prove that a perimeter-rninimizing 
n-gon is regular. Zenodorus gave a beautiful, simple proof about 200 BC (see 

[1]), except that he had to assume that a perimeter-rninimizing n-gon exists, so 

Weierstrass usually gets the credit. 

Failure. Unfortunately, the Bo1zano-Weierstrass Theorem fails in many spaces 

different from Rn. For example, in the universe of rational numbers, the se­

quence which converges to Y2 in R, 

1, 1.4, 1.41, 1.414, ... 

has no convergent subsequence. As a second example, in what I'll call Roo (an 

infinite-dimensional real vector space), the sequence of unit basis vectors 

has no convergent subsequence. Likewise, the theorem fails for the space of 

possible soap films, which also is infinite dimensional. 

3 Compactness in Metric Spaces 

There is a generalization of Bolzano-Weierstrass from Rn to any finite or 

infinite-dimensional space with a distance or metric. 

3.1 Compactness Theorem for Metric Spaces. lf S in a me trie space is totally 
bounded and complete, then every sequence has a convergent subsequence, 

converging toa limit in S. 

126 ProMathematica, 22,43-44 (2008), 123-133, ISSN 1012-3938 



Compactness 

Here total/y bounded means that given c > O, S can be covered by finitely 
many balls of radius c. Complete means that there are no holes, technically 
that every Cauchy sequence converges. In the example above, the unit ball 
about the origin is not totally bounded: take c = 1/2 and note that each unit 
basis vector e; is distance greater than 1 from each other e i• so that covering 
them takes infinitely many such balls of radius c. 

Here are two big corollaries, starting with a compactness theorem for an 
infinite-dimensional space of functions. 

3.2 Corollary. The set of Lipschitz functions f from {0, 1] into a hall in Rn is 
compact (under uniform convergence). 

Here f Lipschitz means that for sorne fixed constant C, 

lf(y)- f(x)l ~ C IY- xl, (1) 

essentially that the functions have uniformly bounded derivative or velocity. 
That the main hypothesis to apply Theorem 3.1, total boundedness, follows 
from the Lipschitz condition, is a special case of Ascoli's Theorem (which ap­
plies to more general "equicontinuous" families of functions, such as "Holder" 
functions). 

3.3 Corollary. On a smooth compact m-dimensional surface K in Rn, there is 
a shortest path between any two points. 

Proof We define a path as a function from [0, 1] to K of constant velocity. 
Given two points, choose C such that sorne paths have velocity less than C. 

Corollary 3.2 implies that the set of such paths is compact, and it follows that 
there is a shortest one. 

Failure for soap films. Unfortunately, for candidate soap films of small area 
with a given boundary, there is no immediate bound (1), because a skinny 
tentacle of negligible area as in Figure 3 can require a huge constant C. 
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Figure 3: Long, skinny tentacles can carry an area-minimizing sequence of · 

surfaces out of a compact space of Lipschitz functions. Figure by J. Bredt [[2], 
Fig. 1.3.3] © Frank Margan. 

4 The Hausdorff Metric 

The following compactness theorem sounds like it would salve all our 
problems. 

4.1. Theorem. The space of all nonempty closed subsets of a ball in Rn is 

compact under the Hausdorffmetric. 

The distance in the Hausdorff metric between any two closed sets is the far­

thest th<\t any point of one set is from the other set. For example, the distance 

between the two faces of Figure 4 if placed in the same oval is the distance 

from the right eye of the first to the right eye of the second. Assuming that 

beauty is a continuous function, it follows from Theorem 4.1 that there is a 

most beautiful face. 

Theorem 4.1 follows from a version of Corollary 3.2 by identifying a 

closed setA with the Lipschitz function "distance from A." 

Gromov generalized the Hausdorff metric from two subsets of Rn to two 

abstract metric spaces A, B, by taking an infimum over all isometric embed­

dings of A and B into other metric spaces. Cheeger used the Gromov-Hausdorff 
metric to prove that bounds on curvature, diameter, and volume limit n-dimen­

sional manifolds to finitely many diffeomorphism types. 
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Figure 4: The Hausdorff distance between two sets is the farthest that any point 
of one set is from the other set. The distance between these two sets of facial 

features if placed in the same oval is the distance from the right eye of the first 
to the right eye of the second. 

Failure for soap films. Unfortunately, Theorem 4.1 does not produce area­

minimizing soap films, because in this weak topology area is not continuous. 

An area-minimizing sequence of surfaces growing lots of long, skinny tentacles 

of vanishing area can yield a solid volume of infinite area in the limit, as in 

Figure 5. 

.. 
Figure 5: Long, skinny tentacles on this area-minimizing sequence of surfaces 
produce a so lid block of infinite area in the Hausdorff metric limit. Left figure 

by J. Bredt [[2], Fig. 1.3.4] © Frank Morgan. 
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S Alaoglu's Theorem of 1940 

In addition to the Hausdorff metric, there is another weak topology de­
fined on the dualspace of a normed vectorspace, the weak* ("weak-star") topol­
ogy, which provides a compactness theorem more respectful of the size of sets. 

The dualspace is defined as the space of all bounded linear functions. For ex­
ample, Rn with basis e1, e2, •.• , en has dualspace Rn* with basis ei, e;, ... , e~, 

where e; is the linear function on Rn which just picks out the i1
" coordinate. 

A sequence of such functions fn converges to a limit f in the weak* topol­
ogy if for every x in the original vectorspace, the sequence of numbers f,,(x) 
converges to f(x). 

5.1. Alaoglu's Theorem. The unit hall in the dualspace of a normed vec­
torspace is weak* compact. 

At first this may seem to contradict our earlier counterexample to compact­
ness in infinite-dimensional vectorspaces. Consider for example the normed 
vectorspace z2 of real sequen ces (x;) of finite norm: 

l(x;)l2 = I.xf < oo. 

The unit dual basis elements 

seem to provide a counterexample, a sequence with no convergent subsequence. 
The resolution is that in this new weak* topology, this sequence does converge, 
toO. Indeed, for any vector (x;), 

e~(x;) = Xn ~ O. 

In analysis, this kind of convergence is called "pointwise convergence". In 
topology, it is called convergence in the "product topology." Indeed, Alaoglu's 

Theorem follows from Tychonoff's Theorem in topology, which says that if 
K is compact, then the set Kx of al! functions from X to K is compact in the 

product topology. 
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5.2. Corollary. The set of hounded measures on a hall B in Rn is compact. 

Proof Bounded measures constitute the dualspace to the space of continuous 

functions on B. (Weak* convergence is deterrnined by the convergence of the 
integral of every continuous function with respect to the measures.) 

Near-miss for soap films. Corollary 5.2 is very promising for applications 

to soap films, because a two-dimensional surface S in R3 can be viewed as a 
measure Jls on R 3 , with the help of the standard two-dimensional "Hausdorff'' 

measure 1{2 on R3, as follows. Given a surface S of finite area, for any setA 

such as a small ball in Rn, define 

Jls(A) = 1{2 (A n S). 

Because it ignores sets of vanishing measure, this approach avoids the pitfalls 

of Figure 5. The only trouble is that the space of measures is too big: it includes 

smeared out surfaces and probability distributions. We want to be guaranteed 

a real surface as our area-minimizing soap film. 

6 The Compactness Theorem of Geometric Mea­
sure Theory 

In the l960s, Federer and Fleming introduced the ultimate compactness 

theorem. lt applies to a very satisfactory class of "rectifiable" surfaces, ge­

neral enough to include anything anyone would call a surface, allowing sin­

gularities and infinite topological complexity, but nothing more. Roughly, m­
dimensional rectifiable surfaces are defined as countable unions of Lipschitz 

images of subsets of Rm. Convergence means weak* convergence as measures, 
or equivalently, convergence in a more geometric "ftat norm." 

6.1. The Compactness Theorem of Geometric Measure Theory. The set of 

all m-dimensional rectifiahle surfaces in a hall in Rn, with a fixed hound on 
area and perímeter, is compact. 

The proof shows that this space of rectifiable surfaces is closed in the space of 

measures. This theorem finally solves the soap film problem: 
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6.2. Corollary. Solution of the Soap Film Problem. Given a closed curve e 
of finite length in R3, there is a rectifiable surface of least are a bounded by the 

given curve. 

Proof The curve e Iies in sorne large ball B. Since projection to the ball does 
not increase area, we may confine attention to surfaces in the ball, of fixed 
perimeter and bounded area. There is sorne (perhaps singular) surface with 
that boundary, for example, a cone over the boundary. Take a sequence of 
surfaces with areas approaching the infimum. By the Compactness Theorem 
6.1, sorne subsequence converges to a limit surface S. Sin ce in general the area 
of a limit cannot exceed the lim inf of the areas, S is the desired surface of least 
are a. 

6.3. Remarks. In 1930 Jesse Douglas received the first Fields Meda! for a real 
analysis proof of the existence of least-area surfaces, but the definition used 
by him and his successors, with restrictions on topological type, admitted self­
intersection singularities that cannot occur in soap films. On the other hand, the 
area-minimizing rectifiable surfaces of geometric measure theory, with given 
smooth boundary, turn out to be smooth, embedded manifolds. 

6.4. Open Question. In fact, there are still more general physical soap films 

which have the given boundary in a weaker sense, as in Figure 6. For the 
broadest such class, it remains an open question today whether there is one of 
least area, or whether the limit might be an unstable non-soap-film that would 
collapse onto the boundary. 
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Figure 6: If soap films are allowed extra interna! boundary, like the dashed 
curve A where this soap film meets in threes, it is an open question whether 
there is a soap film of least area. 
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Resumen 

En mi opinión, la compacidad es el concepto más importante de las matemá­
ticas. La seguiremos desde la línea unidimensional en cálculo hasta los espa­
cios de dimensión infinita de funciones y de superficies y veremos lo que puede 
hacer. 
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