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1 Introduction

The study of the concepts of the notions of generalized closed sets
goes back to the classic paper of N. Levine [9], where using the basic
definition of closed set, he introduces the notion of generalized closed
set (abbreviated g-closed) and using this concept in order to define the
Ty spaces. Later on Dunham [5] T} spaces are characterized proving
that a topological space is T% if and only if the unitary sets are open
or closed. Khalimsky et al. [7] shown that the digital line is typical
example of T% space. Using the same idea, many authors have defined
and studied many types of generalized closed sets in order to introduce
new separations axioms and new spaces.

Recently J Donchev et al. [4], using the theory of topological ideals intro-
duced by R. L. Newcomb [13], the local function defined by D. Jankovic
et al. [6] and the operator theory introduced by Kasahara [8], provide
the definition of (1, v) generalized closed sets and they introduced a class
of spaces denominated v — T spaces, that are a generalization of the T%
spaces given by Levine [9].

In this paper a new variant of a local function given by Jancovik et
al. [6],is introduced, in order to define new concepts of g-closed sets
that generalize the notions of (I,7) g-closed sets [4], sg-closed set (1],
ga—closed [11], a—sg-closed set [16], (, 3)—sg-closed set [17], etc. It
can be used in order to introduce new spaces and new separation axioms
that generalize the well known results given in 2], [4], [9], [15], [16] and
[17].

2 Preliminary
Let X be a nonempty set, we say that o : P(X) — P(X) is an
expansive operator on a family I' of subsets of X if U C a(U) for all

U eT. If (X, ) is a topological space and « is expansive on the topology
T, then, we say that « is an associated operator on the topology 7 [2].
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We denote by (X, 7, ) the topological space (X, 7) with the operator o
associated to the topology, also, if a(A) C «(B) whenever A C B, we
say that the operator o is monotone.

Let (X,7,a) and A be a subset of X, we say that A is a-open (8] if for
each x € A there exists an open set U containing z such that o(U) C A.
The complement of an a-open set is called a-closed set. It is easy to
prove that every a-closed set is closed and the intersection of an arbitrary
family of a-closed sets is an a-closed set, in this way, we can define the a-
closure of a subset A of X, denoted by a—cl(A), as the intersection of all
a-closed sets that contain A. In this case, we can see that € a—cl(A4) if
and only if for all a-open set U containing z, UNA # (). We say that the
set A is an a-generalized closed, denoted by a-g-closed, if a —cl(A) C U
whenever A C U and U is a-open. Every a-closed set is a-g-closed. We
say that X is an a — T% space if all a-g-closed set is a-closed.

We say that A subset of X is an a-semi-open ([2]) if there exists an open
set U € 7 such that U C A € a(U). The complement of an a-semi-open
set is called a-semi-closed set. All closed set is an a-semi-closed set,
in general, the intersection of an arbitrary family of a-semi closed sets
is not an a-semi closed set; but, if we consider that o is a monotone
operator, then the intersection of an arbitrary family of a-semi-closed
sets is an a-semi-closed set, in this case, we can define the a-semi-closure
of A, denoted by a — scl(A), as the intersection of all a-semi-closed sets
containing A; it verifies that x € a— scl(A4) if and only if all a-semi-open
set U containing z, U N A # (). We say that A is an a-semi-generalized
closed set, denoted by a-sg-closed, if o — scl(A) C U whenever A C U
and U is an a-semi-open set. If o is a2 monotone operator, all a-semi-
closed set is an a-sg-closed set. We say that X is an o — semiT% space
if all a-sg-closed set is an a-semi-closed set.

If 3 is another associated operator with 7, then we say that A subset

of X is an (a, B)-semi-open set [15] if for each z € A there exists a (-
semi-open set V such that x € V and a(V) C A. The complement of
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an (a, §)-semi-open set is called (a, 8)-semi-closed set. We can see the
following [15]:

1. If A is an open set, then A is an (id, §)-semi-open.

2. fa=p0=id, Aisan (a,3)-semi-open set if and only if A is an
open set.

3. If 8 = id and « is an arbitrary operator then A is an («, 3)-semi-
open set if and only if A is an a-open set {8].

4. If o = id, B is a monotone operator then the collection of all
(«, B)-semi-open sets agree with the collection of all B-semi-open
sets.

The intersection of an arbitrary family of (a, 3)-semi-closed sets is an
{(a, B)-semi-closed set, and we define the (a, 8)-semi-closure of A, de-
noted by (a, ) — scl(A), as the intersection of all («, 3)-semi-closed sets
containing A; we can see that 2 € («a,3) — scl(A) if and only if for
all (o, 3)-semi-open set U containing x, U N A # . We say that A is
an (a, 8)-semi-generalized closed set, abbreviated by (a, 8)-sg-closed, if
(o, B) = scl(A) C U whenever A C U and U is an (a, 8)-semi-open set.
All (a, B)-semi-closed set is an («, 3)-sg-closed set. We say that X is an
(o, B) — semiTy space if all (o, B)-sg-closed set is an (a, B)-semi-closed
set.

3 Generalized Local Function

In this section, we generalize the concept of local function given in
[6]. Also, we study some of its properties.

Definition 3.1 A non-empty collection I of subsets of a set X is said
to be an ideal on X if it satisfies the following two conditions.

1. IfA1€l and As €1, then AfUA; 1.
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2. If Ay € I and Ay C Ay, then Ay € 1.

Definition 3.2 Let X be a set, § be a collection of subsets of X and I
be an ideal on X. The generalized local function with respect to I, is a
map that assign each subset A of X, the set A*(I,F), defined as follows:

A" (1,F)={z e X: AnU; ¢ I for allU, € §F such that z € U, }.

In the above definition A*(I,¥) can be empty and in general can not
contain A :

Remark 3.1 Observe that

1. When § = 7 a topology on X, the concept of generalized local
function agree with the concept of local function given in [6].

2. When § =7 a topology on X and the ideal is {0}, then A*(I,F) =
cl(A).

We describe some properties that satisfies A*(1, §).

Theorem 3.1 Let X be a set, § be a collection of subsets of X, A and
B subsets of X, then

1. If I =P(X), then A*(I,F) = 0.

2. If AC B, then A*(I,3) C B*(I,5).

3. 04(I,F) =0.

4. A*(I,3)UB*(I,3) C (AUB)*(I,3).

5. (A*(1, %)) (1,5) C A*(1,3).

6. If J is an ideal on X such that I C J, then A*(J,3) C A*(I,3).

Definition 3.3 Let X be a set, § be a family of subsets X, I be an ideal
on X and A a subset of X. We define the § closure of A, denoted by
F—cl*(A) as: F—c*(A)= AU A, F).
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Remark 3.2 If 7 is a topology on X and § = 7, then § — cl* is a
Kuratowski operator and therefore it induce a topology on X denoted by
().

It is easy to prove that § — cl* satisfies the following properties:

Theorem 3.2 Let X be a set, § be a family of subsets of X, I be an
ideal on X, A and B subsets of X, then:

1. AC §—d*(A).

2. If AC B, then § — cl*(4) C § — c*(B).
8. F—cl* () =0.

4§ —cl*(F — cl*(A4)) C F —cl*(A).

5. F—cl*(A)UF—cl*(B) C §—cl*(AUB).

4 (I,7)q-g-closed Sets and («a,7y)— 17 Spaces

In this section, we show that using the concept of generalized
local function, we can obtain immediately the notion of a-g-closed set
given in [9].

Let (X,7,c), I an ideal on X and 7, the collection of all a-open sets
in X, then the generalized local function taking § = 7, satisfies the
following properties:

Theorem 4.1 Let (X,7,a), I be an ideal on X and A be a subset of
X, then

1. A*(I,74) Ca—cl(A).

2. If I = {0} and « is any operator, then A*(I,74) = a — cl(A).
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3. Ifa=1id, I any ideal, then A*(I,74) = A*(I, T).
4. A¥(I,mp) =a—-cd(A*(I,74)) Ca—cl(A).
Proof.

1. Let x € A*(I,7,), then for all a-open set U, such that z € U, we
have U, N A ¢ I, then U, N A # { therefore x € a — cl(A).

2. Let x € a — cl(A), then for all a-open set U, such that z € U, we
have U, N A # 0, that is, U, N A ¢ {0} =I.

3. If « is the identity operator, the collection of all a-open sets agree
with the collection of all open sets.

4. Let z € A*(I,74), then for all a-open set U, such that xr € U,
we have U, N A*(I,74) # 0, that is z € a — c (A*(I,75)). If
x € a—cl(A*(1,74)), then for all a-open set U, such that z € U,,
U, NA*(I,74) # 0, that is, U, N A ¢ I and therefore x € A*(I,7,).

Finally, the last part of 4, follows from 1. O

Remark 4.1 If in Definition 3.3, we take § = 7, and denote by 7, —
cd*(A) for a — cl*(A). We observe that,

1. If o = id, then o — cl*(A) = cl*(A4).

2. If I = {0}, then a — cl*(A) = a — cl(A).
Now we introduce our generalization of the concepts of a-g-closed sets
and (I, v)-g-closed sets given in [9] and [4] respectively.
Consider now, the triple (X, 7,I) where I is an ideal defined on X, as
the topological space.

Definition 4.1 Let (X, 7,I), and consider two operators «, v associated
with 7. A subset A of X is said to be (I,v)q-generalized closed set,
abbreviated (I,7)q-g-closed, if a — cl*(A) C v{U) whenever A C U and
U € 1q4.
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Remark 4.2 When « is the identity operator, the (I,v)-g-closed sets
and the (I,7)q-g-closed sets are the same. In the case that I = {0}, the
(I,id)-g-closed sets are a-g-closed sets.

We can resume the above in the following:

Theorem 4.2 Let (X,7,1), A C X, a and y be two operators associated
with 7.

1. If o = id, A is an (I,7y)-g-closed set [4] if and only if A is an
(I,7)a-g-closed set.

2. If I = {0} and A is an (I,1d)-g-closed set, then A is an a-g-closed
set [16].

3. Ifa=~vy=1d and I = {0}, A is a g-closed set [9] if and only if A
is an (I,7)q-g-closed set.

Proof.

1. Suppose that o = id and A is an (I, v),-g-closed set, let U an open

set such that A C U, then cl*(A) C y(U), since A*(I,7) C cl*(4),
we conclude that A is an (I,~)-g-closed set.
Reciprocally, suppose that A is an (I,)-g-closed set, let U an a-
open set such that A C U. Since o = id, then U is open and there-
fore A*(I,7) C v(U), using Theorem 4.1, A*(I,7) = A*(I,7,), in
consequence o — cl*(A) C y(U).

2. Suppose that A is an (I,id),-g-closed set of X and let U an a-
open set such that A C U, then a —cl*(A) C id(U), since I = {0};
it follows that a — c*(A4) = a — cl(A4), in consequence A is an
a-g-closed set.

3. Is an immediate consequence of parts 1., 2. O

Theorem 4.3 Let (X,7,I), a and v two operators associated with .
Then all a-g-closed set is an (I,7)q4-g-closed set.
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The following example shows the existence of a set that is (I, ) o-g-closed
but is not a-g-closed.

Example 4.1 Consider R, the set of real numbers with the finite com-
plement topology 7y = {U C R: R\ U is finite or R}, and the operator
a: P(R) — P(R) associated with the topology defined as a(U) = int(U).
The set of the rational numbers Q, is not an «-g-closed set, because
R\{V2} is an a-open set that contains Q; but a—cl(Q) = R ¢ R\ {v2}.
We prove that, Q is an (I,7)o-g-closed set, if we consider the ideal I =
P(R) and v any operator associated with the topology.

Using the fact that there exists (I,7)qo-g-closed sets that are not a-g-
closed. We introduce a new class of spaces.

Definition 4.2 Let (X,7,1), a and v be two operators associated with
7. We say that X is an (o, ) — T space if all (I,7y)a-g-closed set is an
a-closed set.

If we analyze the above definition, we can see that it gives us a general
context in comparison with the one described in [4]. The following theo-
rem indicates that taking adequate operators and ideals, we can obtain
as particular cases the following well known results in the literature
Theorem 4.4 Let (X, 7,1}, @ and v be two operators associated with T.
1 Ifa=1id and X is an («,~y) - Tr, then X is v — Ty [4].
2. If X 1s an (o, ) =Ty then X is o — Ty [16].

8. If I ={0}, y=id and X is an o — Ty, then X is (a,) — Tr.

4. IfI={0}, y=a=1d. X is(a,y) =Ty if and only if X is T, [9].
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5 (I,7),~sg-closed Sets and («,y)—Semi—T;
Spaces

In the same way as in the above section, we use the generalized
local function in order to obtain the concept of a-sg-closed set given in

[16).

Let (X, 7, ) where a a monotone operator, I an ideal on X and o —
SO(X) the collection of all a-semi-open sets in X, then the generalized
local function taking § = a — SO(X) satisfies the following properties:

Theorem 5.1 Let A be a subset of X an a be a monotone operator
then:

1. A*(I,a— SO(X)) C a — scl(A).
2. If I = {0}, then

A*(I, o — SO(X)) = o — scl(A).

3. Ifa=1id and I is any ideal, then A*(I,a — SO(X)) = A*(I, 7).

4. A*(I,a—S0(X)) =a—sc (A*(I,a — SO(X))) C a—scl(A), that
is, A*(I, a0 — SO(X)) is an a-semi-closed set.

Proof.

1. Let z € A*(I,a — SO(X)), then for all a-semi-open set U; such
that £ € U,, we have U, N A ¢ I, then U, N A # @. Therefore
z € o — scl(A).

2. Let z € a — scl(A), then for all a-semi-open set U, such that
z€U, wehave U, N A # 0, that is, Uy NA ¢ {0} =I.

3. If a is the identity operator, the a-semi-open sets are the same as
the open sets.
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4. Let z € A*({,a — SO(X)) then for all a-semi-open set U, such
that z € U, we have U, N A*(I,a — SO(X)) # @; that is z €
a— scl (A*(I,a — SO(X))).

Ifrz € a—sd(A*(I,a— SO(X))), then for all a-semi-open set
U, such that z € U, we have U, N A*(I,a — SO(X)) # @, then
there exists y € U, N A*(I,a — SO(X)), that is, y € A*(I,a —
SO(X)) and U, is an a-semi-open set containing y,it follows that
U;N A ¢ I, in consequence z € A*(I,a — SO(X)) and therefore
a—sc (A*(I,a — SO(X))) Cc A*(I,a — SO(X)).

Finally, the last part of 4, follows from 1. |

Remark 5.1 If§ = a—SO(X). In Definition 3.3, we denote F—cl*(A)
by a—scl*(A) that is, a—scl*(A) = AUA*(I,a—SO(X)). Also satisfies
the following properties

1. o — scl*(A) C a — scl(A), for all monotone operator «.
2. If a =id, then o — scl*(A) = cl*(4).

3. If I = {0} and a is a monotone operator, then a — scl*(A) =
a — scl(A).

Definition 5.1 Let (X, 7,I), and consider two operators a, vy associated
with 7. A subset A of X is said to be (I,v)q-semi-generalized closed set,
abbreviated (I,7)q-sg-closed, if a—scl*(A) C v(U) whenever A C U and
Uea-SOX).

Remark 5.2 Observe that when « is the identity operator, the (I,v)-g-
closed sets and (I,7v)q-sg-closed sets agree. If we choose I = {Q}, then
all (I,id)4-sg-closed set is a g-closed set.

We can resume the above in the following theorem:

Theorem 5.2 Let (X,7,I), AC X, a and v be two operators associated
with T an a monotone.
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1. If a = id, the set A is an (I,7)-g-closed set ([4]) if and only if A
is an (I,7)q-sg-closed set.

2. If I = {0} and the set A is an (I,id),-sg-closed, then A is an
a-sg-closed ([16]).

3 Ifa =id, I = {0}, and A is an (I,id)y-sg-closed, then A is a
g-closed set ([9]).

Proof.

1. Suppose that « = id and A is an (I,v)y-sg-closed set. Let U
an open set such that A C U, since all open set is an a-semi-
open set, then a — scl*(A) C v(U). Since a = id, we have that
cd*(A) C y(U) and therefore A*(I,7) C cl*(A) < v(U), it follows
that A is an (I, y)-g-closed set.

The converse follows in the same way.

2. Suppose that A is an (I, id),-sg-closed set of X and U an a-semi-
open set such that A C U, then a—scl*(A4) C id(U), since I = {0};
it follows a —~ scl*(A) = a — scl(A) in consequence, A is an a-sg-
closed set.

3. It is an immediate consequence of parts 1., 2. |

Theorem 5.3 Let (X, 7,I), a be a monotone operator associated with
7 and v an expansive operator on o« — SO(X). Then all a-sg-closed set
is an (I,7y)-sg-closed set.

Proof.

Let A an a-sg-closed subset of X and U an a-semi-open set such that
A C U, then a — scl(A) C U; therefore o — sel*(A) ¢ U, since 7 is ex-
pansive on o — SO(X), then U C v(U), it follows that A is an (1, 7),-sg-
closed set. ]

The following example shows the existence of an (I,7),-sg-closed set
that is not an a-sg-closed set.
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Example 5.1 Consider R, the set of the real numbers, with the finite
complement topology Ty = {U CR:R\U is finite or R}, the operator
a : P(R) — P(R) associated with this topology is defined as a(U) =
c(U).

The open interval (a,b) = {x € R :a < z < b} is not an a-sg-closed
set because R\ {b} is an a-semi-open set containing {a,b) and the o: —
scl(A) € R\ {b}. (a,b) is an (I,7)a-sg-closed set when we consider the
ideal I = P(X) and v the identity operator.

We have shown the existence of an (I, y)s-sg-closed set that is not an
a-semi-closed. Now we introduce a new class of spaces in the following
definition

Definition 5.2 Let (X, 7,1), a and vy be two operators associated with
7. We say that X is an (a,7) — semi — T space if all (I,7)q-sg-closed
set is an a-semi-closed set.

Theorem 5.4 Let (X,7,I), and consider two operators o, v associated
with 7 and o monotone.

1. Ifa=id and X is an (a,v) — semi—T7 space, then X is ay—T;

space ([4]).

2. If X is an (o, v)—semi—T; space and v is expansive on a—SO(X),
then X is an o — semi — Ty space ([16]).

3. If I = {0} and X is an a—semi—T) space, then X is an (a,id) —
semi — 17 space.

4. If I =40} andy =a =1id. X is an (a,v) — semi — T space if
and only if X is an T space (19]).
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6

(1,7)(a,8-5g-closed Sets and (a, 8,7)—semi—
Trspaces

Consider (X,7), I an ideal on X, o and ( operators on 7 and

(o, B) — SO(X) the collection of all (e, 3)-semi-open sets in X, then
the generalized local function taking § = (a, 8) — SO(X) satisfies the
following properties:

Theorem 6.1 Let A be a subset of X, then:

1.
2.

A*(I, (e, B) = SO(X)) C (a0, B) — scl(A).

If I = {0}, a and B any two operators, then A*(1, (e, B)—SO(X)) =
(o, B) — scl(A).

Ifa = id, B a monotone operator and I any ideal, then A*(I, (a, B)—
SO(X)) =A"(1,8 - SO(X)).

If 8 = id, a any operator and I any ideal, then A*(I,(a,3) —
SO(X)) = A*(I,74).

If o = 8 = 1id, and I any ideal, then A*(I,(a,B3) — SO(X)) =
A*(I,7).

A*(I, (e, B) = SO(X)) = (e, 8) = scl (A*(I, (a, B) — SO(X))) C
(o, B) — scl(A), that is, A*(I,(a,B) — SO(X)) is an (o, B)-semi-
closed set.

Proof.

1.

140

Let z € A*(I,(a, 8) — SO(X)), then for all (a, 3)-semi-open set
U, such that z € U, we have U, N A ¢ I; but @ € I for any ideal
I, then U, N A # §; it follows that = € (a, 8) — scl(A4).

. Let z € (a, B) — scl(A), then for all («, #)-semi-open set U, such

that z € U, Uy NA # @, that is, U, N A ¢ {0} = I, it follows that
z € A*(I, (o, B) — SO(X)).

Parts 3, 4 and 5 follow directly from the definition 2.5.
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6. Let z € A*(I,(a, ) — SO(X)) then for all («, 3)-semi-open set
U, such that U, N A*(I, (@, 3) — SO(X)) # B; it follows that z €
(a, 8) = scl (A*(I, (e, B) — SO(X))).

Suppose that z € (o, 8) — scl (A*(I, (a, B) — SO(X))), then for all
(e, B)-semi-open set U, such that z € U, we have U;NA*(I,(a, B)—
SO(X)) # 0, then there exists y € U, N A*(I, (e, f) — SO(X)),
that is, y € A*(I, (o, B)—SO(X)) and U, is an (o, 3)-semi-open set
containing y, then U, N A ¢ I, therefore z € A*(1, (o, B) — SO(X))
then (a, 8) —scl (A*(I, (e, B) — SO(X))) € A*(I, (e, B)— SO(X)).

Finally, the last part of 6, follows from 1. d

We denote by (a, 8) — scl*(A) = AU A*(I, (o, B) — SO(X)), when § =
(e, B) — SO(X) in the Definition 3.3. It is clear that, (o, 8) — scl*(A) C
{a, B) — scl(A), satisfies the following properties:

1. If @ = id and f is a monotone operator, then (a, 8) — scl*(A) =
B — cl*(A).

2. If «w is any operator and 3 = id, then (a, 8) — scl*(A) = a—cl*(4).
3. If @ = B =1id, then (o, 8) — scl*(A) = cl*(A).
4. If I = {0}, then (o, B) — scl*(A) = (o, B) — scl(A).

We now introduce the concept of (I,7)(q,g)-sg-closed set as a general-

ization of the concepts of (I,)-g-closed set ([4]) and (&, B)-sg-closed set

(7))

Definition 6.1 Let (X, 7,1I), and a, 3, v operators associated with 7. A
subset A of X is called (I,7)(a,5)-semi-generalized-closed set, abbreviated
(1,7)(a,p)-89-closed, if (o, B) — scl*(A) C y(U) whenever A C U and
U € (a,p)—SO(X).

Remark 6.1 1. Observe that when a = 8 = id, the (I,~)-g-closed
sets and the (I,7)(a,p5)-59-closed sets agree.
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2. If a is any operator and [ is a monotone, the (I,7)q-g-closed sets
and the (I,7)(a,5)-Sg-closed sets agree.

3. If a =id and 8 is a monotone, the (I,v)g-g-closed sets and the
(1,7)(a,3)-89-closed sets agree.

4. When I = {0}, the (I,7)q,g)-s9-closed sets and the (a, 8)-sg-closed
sets agree.

We can resume the above in the following theorem.

Theorem 6.2 Let (X, 7,1), o, B and v operators associated with T and
AC X, then

1. If o = id and B is a monotone operator, A is an (I,7)(qa,3)-59-
closed set if and only if A is an (I,v)g-sg-closed set.

2. If o is any operator and 8 = id, A is an (I,7)(q,p)-59-closed set if
and only if A is an (I,77)s-g-closed set.

8 Ifa=p8=1id, Aisan (I,7)(a,g)-5g-closed set if and only if A is
an (I,7v)-g-closed set ([4]).

4. If I = {0}, a, B any operators, v = id and A is an (I,7)(a,5)-59-
closed set, then A is an («, B)-sg-closed set ([17]).

Theorem 6.3 Let (X,7,1), a, B be operators on T and v an expansive
operator on (a, ) — SO(X). All (o, B)-sg-closed set is an (I,7)(q,p)-59-
closed set. ,

Proof.

Let A an (o, )-sg-closed set of X and U an (a, 3)-semi-open set such
that A C U, then (o, 8) ~ scl(A) C U; that is (o, B) — scl*(A4) C U, since
v is expansive on (a, 8) — SO(X), then U C ~(U), therefore, (a, ) —
scl*(A) C y(U); it follows that A is an (I,7)(q,g)-sg-closed set. ]

The following example shows the existence of an (I, 7) 4,3)-sg-closed set
that is not an («, 3)-sg-closed set.
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Example 6.1 Consider R, the set of the real numbers, with the finite
complement topology 75 = {U C R : R\ U is finite or R}, the operators
a, B : P(R) — P(R) associated with this topology are defined as follow:
a(U) =int(U), B(U) = cl(U).

The set Q of the rational numbers is not an (a, 3)-sg-closed set because
R\ {V/2} is an (a, B)-semi-open set containing Q; but (a, 3) — scl(Q) =
R ¢ R\ {V2}. Q is an (I,7)(a,p-sy-closed set if we consider the ideal
I = P(X) and =y the identity operator.

Using the fact that there exist (I,7)(q,s)-sg-closed sets that are not
(a, B)-semi-closed. We introduce a new class of spaces in the follow-
ing definition.

Definition 6.2 Let (X, 7,[), o, 8 and vy be operators associated with 7.
X is called an («, 3,7v) — semi — Ty space if all (I,7)(q,p)-59-closed set
s an (a, 3)-semi-closed set.

Theorem 6.4 Let (X,7,1), o, B, 7y be operators associated with T and
A a subset of X, then

1. If o =1id and (3 is monotone, X is an («, 8,7v) — semi — Ty space
if and only if X is an (B,v) — semi — Tt space.

2. If a is any operator and B = id, X is an (o, B,7)—semi--T; space
if and only if X is an («a, ) — semi — Ty space.

3 Ifa=p=1id and X is (a,8,v) — semi — T space, then X is an
v =Tt space ([4]).

4. If I ={0}, y=1id and X is an (o, 8) — semi — Ty space, then X
is an (a, B,7v) — semi — T space.

5. If o, B are any operators, v expansive on (o, ) — SO(X) and X
is an (a, B,v) — semi— Ty space, then X is an (o, 3) — semi — T%
space ([17]).
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Resumen

Son dados un espacio topolégico (X, 1), tres operadores a, 3,7 asoci-
ados a una topologia 7, es un ideal I en X. Los conceptos de con-
junto a-cerrado, conjunto a-semicerrado, conjunto (o, 3)-semicerrado y
conjunto (I,7) g-cerrado son generalizados. También nuevos axiomas
de separacién son introducidos y caracterizados, y nuevos espacios son
obtenidos de tal manera que los espacios o — T% , - semi T%, (a, 3)- semi
T% y v — 11, respectivamente, son generalizados.
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