GENERALIZED CLOSED SETS VIA IDEALS AND OPERATORS

M. Salas $Brown^{1}$, E. $Rosas^{1}$ and C. Carpintero¹

June, 2009

Abstract

Given a topological space (X, τ) , three operators α, β, γ associated to a topology τ and I an ideal on X. The concepts of: α -closed set, α -semi closed set, (α, β) -semi closed set an (I, γ) g-closed set are generalized. Also new separation axioms are introduced and characterized and new spaces are obtained in such way that the spaces $\alpha - T_{\frac{1}{2}}$, α -semi- $T_{\frac{1}{2}}$, (α, β) -semi- $T_{\frac{1}{2}}$ and $\gamma - T_I$ respectively are generalized.

(2000) Mathematics Subject classification: 54A05, 54A10, 54O10.

Keywords: (α, β) -semi closed, (I, γ) g-closed, (α, β) -semi- $T_{\frac{1}{2}}$, $(\alpha, \beta, \gamma) - semi - T_I$.

1 Introduction

The study of the concepts of the notions of generalized closed sets goes back to the classic paper of N. Levine [9], where using the basic definition of closed set, he introduces the notion of generalized closed set (abbreviated g-closed) and using this concept in order to define the $T_{\frac{1}{2}}$ spaces. Later on Dunham [5] $T_{\frac{1}{2}}$ spaces are characterized proving that a topological space is $T_{\frac{1}{2}}$ if and only if the unitary sets are open or closed. Khalimsky et al. [7] shown that the digital line is typical example of $T_{\frac{1}{2}}$ space. Using the same idea, many authors have defined and studied many types of generalized closed sets in order to introduce new separations axioms and new spaces.

Recently J Donchev et al. [4], using the theory of topological ideals introduced by R. L. Newcomb [13], the local function defined by D. Jankovic et al. [6] and the operator theory introduced by Kasahara [8], provide the definition of (I, γ) generalized closed sets and they introduced a class of spaces denominated $\gamma - T_I$ spaces, that are a generalization of the $T_{\frac{1}{2}}$ spaces given by Levine [9].

In this paper a new variant of a local function given by Jancovik et al. [6], is introduced, in order to define new concepts of g-closed sets that generalize the notions of (I, γ) g-closed sets [4], sg-closed set [1], $g\alpha$ -closed [11], α -sg-closed set [16], (α, β) -sg-closed set [17], etc. It can be used in order to introduce new spaces and new separation axioms that generalize the well known results given in [2], [4], [9], [15], [16] and [17].

2 Preliminary

128

Let X be a nonempty set, we say that $\alpha : \mathcal{P}(X) \to \mathcal{P}(X)$ is an expansive operator on a family Γ of subsets of X if $U \subset \alpha(U)$ for all $U \in \Gamma$. If (X, τ) is a topological space and α is expansive on the topology τ , then, we say that α is an associated operator on the topology τ [2].

We denote by (X, τ, α) the topological space (X, τ) with the operator α associated to the topology, also, if $\alpha(A) \subseteq \alpha(B)$ whenever $A \subseteq B$, we say that the operator α is monotone.

Let (X, τ, α) and A be a subset of X, we say that A is α -open [8] if for each $x \in A$ there exists an open set U containing x such that $\alpha(U) \subseteq A$. The complement of an α -open set is called α -closed set. It is easy to prove that every α -closed set is closed and the intersection of an arbitrary family of α -closed sets is an α -closed set, in this way, we can define the α closure of a subset A of X, denoted by $\alpha - cl(A)$, as the intersection of all α -closed sets that contain A. In this case, we can see that $x \in \alpha - cl(A)$ if and only if for all α -open set U containing $x, U \cap A \neq \emptyset$. We say that the set A is an α -generalized closed, denoted by α -g-closed, if $\alpha - cl(A) \subset U$ whenever $A \subset U$ and U is α -open. Every α -closed set is α -g-closed. We say that X is an $\alpha - T_{\frac{1}{2}}$ space if all α -g-closed set is α -closed.

We say that A subset of X is an α -semi-open ([2]) if there exists an open set $U \in \tau$ such that $U \subseteq A \subseteq \alpha(U)$. The complement of an α -semi-open set is called α -semi-closed set. All closed set is an α -semi-closed set, in general, the intersection of an arbitrary family of α -semi closed sets is not an α -semi closed set; but, if we consider that α is a monotone operator, then the intersection of an arbitrary family of α -semi-closed sets is an α -semi-closed set, in this case, we can define the α -semi-closed sets containing A; it verifies that $x \in \alpha - scl(A)$ if and only if all α -semi-open set U containing x, $U \cap A \neq \emptyset$. We say that A is an α -semi-generalized closed set, denoted by α -sg-closed, if $\alpha - scl(A) \subseteq U$ whenever $A \subseteq U$ and U is an α -semi-open set. If α is a monotone operator, all α -semiclosed set is an α -semi-open set. We say that X is an $\alpha - semiT_{\frac{1}{2}}$ space if all α -sg-closed set is an α -semi-closed set.

If β is another associated operator with τ , then we say that A subset of X is an (α, β) -semi-open set [15] if for each $x \in A$ there exists a β semi-open set V such that $x \in V$ and $\alpha(V) \subseteq A$. The complement of

129

an (α, β) -semi-open set is called (α, β) -semi-closed set. We can see the following [15]:

- 1. If A is an open set, then A is an (id, β) -semi-open.
- 2. If $\alpha = \beta = id$, A is an (α, β) -semi-open set if and only if A is an open set.
- 3. If $\beta = id$ and α is an arbitrary operator then A is an (α, β) -semiopen set if and only if A is an α -open set [8].
- 4. If $\alpha = id$, β is a monotone operator then the collection of all (α, β) -semi-open sets agree with the collection of all β -semi-open sets.

The intersection of an arbitrary family of (α, β) -semi-closed sets is an (α, β) -semi-closed set, and we define the (α, β) -semi-closure of A, denoted by $(\alpha, \beta) - scl(A)$, as the intersection of all (α, β) -semi-closed sets containing A; we can see that $x \in (\alpha, \beta) - scl(A)$ if and only if for all (α, β) -semi-open set U containing $x, U \cap A \neq \emptyset$. We say that A is an (α, β) -semi-generalized closed set, abbreviated by (α, β) -sg-closed, if $(\alpha, \beta) - scl(A) \subset U$ whenever $A \subset U$ and U is an (α, β) -semi-open set. All (α, β) -semi-closed set is an (α, β) -sg-closed set. We say that X is an $(\alpha, \beta) - scnit_{\frac{1}{2}}$ space if all (α, β) -sg-closed set is an (α, β) -semi-closed set.

3 Generalized Local Function

In this section, we generalize the concept of local function given in [6]. Also, we study some of its properties.

Definition 3.1 A non-empty collection I of subsets of a set X is said to be an ideal on X if it satisfies the following two conditions.

1. If $A_1 \in I$ and $A_2 \in I$, then $A_1 \cup A_2 \in I$.

130

2. If $A_1 \in I$ and $A_2 \subset A_1$, then $A_2 \in I$.

Definition 3.2 Let X be a set, \mathfrak{F} be a collection of subsets of X and I be an ideal on X. The generalized local function with respect to I, is a map that assign each subset A of X, the set $A^*(I,\mathfrak{F})$, defined as follows:

 $A^*(I,\mathfrak{F}) = \{x \in X : A \cap U_x \notin I \text{ for all } U_x \in \mathfrak{F} \text{ such that } x \in U_x\}.$

In the above definition $A^*(I,\mathfrak{F})$ can be empty and in general can not contain A

Remark 3.1 Observe that

- 1. When $\mathfrak{F} = \tau$ a topology on X, the concept of generalized local function agree with the concept of local function given in [6].
- 2. When $\mathfrak{F} = \tau$ a topology on X and the ideal is $\{\emptyset\}$, then $A^*(I, \mathfrak{F}) = cl(A)$.

We describe some properties that satisfies $A^*(I, \mathfrak{F})$.

Theorem 3.1 Let X be a set, \mathfrak{F} be a collection of subsets of X, A and B subsets of X, then

- 1. If $I = \mathcal{P}(X)$, then $A^*(I, \mathfrak{F}) = \emptyset$.
- 2. If $A \subset B$, then $A^*(I, \mathfrak{F}) \subset B^*(I, \mathfrak{F})$.
- 3. $\emptyset^*(I,\mathfrak{F}) = \emptyset$.
- 4. $A^*(I,\mathfrak{F}) \cup B^*(I,\mathfrak{F}) \subset (A \cup B)^*(I,\mathfrak{F}).$
- 5. $(A^*(I,\mathfrak{F}))^*(I,\mathfrak{F}) \subset A^*(I,\mathfrak{F}).$
- 6. If J is an ideal on X such that $I \subset J$, then $A^*(J,\mathfrak{F}) \subset A^*(I,\mathfrak{F})$.

Definition 3.3 Let X be a set, \mathfrak{F} be a family of subsets X, I be an ideal on X and A a subset of X. We define the \mathfrak{F} closure of A, denoted by $\mathfrak{F} - cl^*(A)$ as: $\mathfrak{F} - cl^*(A) = A \cup A^*(I, \mathfrak{F})$.

Remark 3.2 If τ is a topology on X and $\mathfrak{F} = \tau$, then $\mathfrak{F} - cl^*$ is a Kuratowski operator and therefore it induce a topology on X denoted by $\tau^*(I)$.

It is easy to prove that $\mathfrak{F} - cl^*$ satisfies the following properties:

Theorem 3.2 Let X be a set, \mathfrak{F} be a family of subsets of X, I be an ideal on X, A and B subsets of X, then:

1. $A \subset \mathfrak{F} - cl^*(A)$. 2. If $A \subset B$, then $\mathfrak{F} - cl^*(A) \subset \mathfrak{F} - cl^*(B)$. 3. $\mathfrak{F} - cl^*(\emptyset) = \emptyset$. 4. $\mathfrak{F} - cl^*(\mathfrak{F} - cl^*(A)) \subset \mathfrak{F} - cl^*(A)$. 5. $\mathfrak{F} - cl^*(A) \cup \mathfrak{F} - cl^*(B) \subset \mathfrak{F} - cl^*(A \cup B)$.

4 $(I, \gamma)_{\alpha}$ -g-closed Sets and $(\alpha, \gamma) - T_I$ Spaces

In this section, we show that using the concept of generalized local function, we can obtain immediately the notion of α -g-closed set given in [9].

Let (X, τ, α) , I an ideal on X and τ_{α} the collection of all α -open sets in X, then the generalized local function taking $\mathfrak{F} = \tau_{\alpha}$ satisfies the following properties:

Theorem 4.1 Let (X, τ, α) , I be an ideal on X and A be a subset of X, then

1. $A^*(I, \tau_\alpha) \subset \alpha - cl(A)$.

132

2. If $I = \{\emptyset\}$ and α is any operator, then $A^*(I, \tau_\alpha) = \alpha - cl(A)$.

3. If $\alpha = id$, I any ideal, then $A^*(I, \tau_{\alpha}) = A^*(I, \tau)$.

4.
$$A^*(I, \tau_\alpha) = \alpha - cl \left(A^*(I, \tau_\alpha) \right) \subset \alpha - cl(A).$$

Proof.

- 1. Let $x \in A^*(I, \tau_{\alpha})$, then for all α -open set U_x such that $x \in U_x$ we have $U_x \cap A \notin I$, then $U_x \cap A \neq \emptyset$ therefore $x \in \alpha cl(A)$.
- 2. Let $x \in \alpha cl(A)$, then for all α -open set U_x such that $x \in U_x$ we have $U_x \cap A \neq \emptyset$, that is, $U_x \cap A \notin \{\emptyset\} = I$.
- 3. If α is the identity operator, the collection of all α -open sets agree with the collection of all open sets.
- 4. Let $x \in A^*(I, \tau_{\alpha})$, then for all α -open set U_x such that $x \in U_x$ we have $U_x \cap A^*(I, \tau_{\alpha}) \neq \emptyset$, that is $x \in \alpha - cl(A^*(I, \tau_{\alpha}))$. If $x \in \alpha - cl(A^*(I, \tau_{\alpha}))$, then for all α -open set U_x such that $x \in U_x$, $U_x \cap A^*(I, \tau_{\alpha}) \neq \emptyset$, that is, $U_x \cap A \notin I$ and therefore $x \in A^*(I, \tau_{\alpha})$.

Finally, the last part of 4, follows from 1.

Remark 4.1 If in Definition 3.3, we take $\mathfrak{F} = \tau_{\alpha}$, and denote by $\tau_{\alpha} - cl^*(A)$ for $\alpha - cl^*(A)$. We observe that,

- 1. If $\alpha = id$, then $\alpha cl^*(A) = cl^*(A)$.
- 2. If $I = \{\emptyset\}$, then $\alpha cl^*(A) = \alpha cl(A)$.

Now we introduce our generalization of the concepts of α -g-closed sets and (I, γ) -g-closed sets given in [9] and [4] respectively.

Consider now, the triple (X, τ, I) where I is an ideal defined on X, as the topological space.

Definition 4.1 Let (X, τ, I) , and consider two operators α , γ associated with τ . A subset A of X is said to be $(I, \gamma)_{\alpha}$ -generalized closed set, abbreviated $(I, \gamma)_{\alpha}$ -g-closed, if $\alpha - cl^*(A) \subset \gamma(U)$ whenever $A \subset U$ and $U \in \tau_{\alpha}$.

Remark 4.2 When α is the identity operator, the (I, γ) -g-closed sets and the $(I, \gamma)_{\alpha}$ -g-closed sets are the same. In the case that $I = \{\emptyset\}$, the (I, id)-g-closed sets are α -g-closed sets.

We can resume the above in the following:

Theorem 4.2 Let (X, τ, I) , $A \subset X$, α and γ be two operators associated with τ .

- 1. If $\alpha = id$, A is an (I, γ) -g-closed set [4] if and only if A is an $(I, \gamma)_{\alpha}$ -g-closed set.
- If I = {Ø} and A is an (I, id)_α-g-closed set, then A is an α-g-closed set [16].
- If α = γ = id and I = {∅}, A is a g-closed set [9] if and only if A is an (I, γ)_α-g-closed set.

Proof.

1. Suppose that $\alpha = id$ and A is an $(I, \gamma)_{\alpha}$ -g-closed set, let U an open set such that $A \subset U$, then $cl^*(A) \subset \gamma(U)$, since $A^*(I, \tau) \subset cl^*(A)$, we conclude that A is an (I, γ) -g-closed set.

Reciprocally, suppose that A is an (I, γ) -g-closed set, let U an α open set such that $A \subset U$. Since $\alpha = id$, then U is open and therefore $A^*(I, \tau) \subset \gamma(U)$, using Theorem 4.1, $A^*(I, \tau) = A^*(I, \tau_{\alpha})$, in consequence $\alpha - cl^*(A) \subset \gamma(U)$.

Suppose that A is an (I, id)_α-g-closed set of X and let U an α-open set such that A ⊂ U, then α − cl*(A) ⊂ id(U), since I = {∅}; it follows that α − cl*(A) = α − cl(A), in consequence A is an α-g-closed set.

3. Is an immediate consequence of parts 1., 2.

Theorem 4.3 Let (X, τ, I) , α and γ two operators associated with τ . Then all α -g-closed set is an $(I, \gamma)_{\alpha}$ -g-closed set. The following example shows the existence of a set that is $(I, \gamma)_{\alpha}$ -g-closed but is not α -g-closed.

Example 4.1 Consider \mathbb{R} , the set of real numbers with the finite complement topology $\tau_f = \{U \subset \mathbb{R} : \mathbb{R} \setminus U \text{ is finite or } \mathbb{R}\}$, and the operator $\alpha : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ associated with the topology defined as $\alpha(U) = int(U)$. The set of the rational numbers \mathbb{Q} , is not an α -g-closed set, because $\mathbb{R} \setminus \{\sqrt{2}\}$ is an α -open set that contains \mathbb{Q} ; but $\alpha - cl(\mathbb{Q}) = \mathbb{R} \not\subseteq \mathbb{R} \setminus \{\sqrt{2}\}$. We prove that, \mathbb{Q} is an $(I, \gamma)_{\alpha}$ -g-closed set, if we consider the ideal $I = \mathcal{P}(\mathbb{R})$ and γ any operator associated with the topology.

Using the fact that there exists $(I, \gamma)_{\alpha}$ -g-closed sets that are not α -g-closed. We introduce a new class of spaces.

Definition 4.2 Let (X, τ, I) , α and γ be two operators associated with τ . We say that X is an $(\alpha, \gamma) - T_I$ space if all $(I, \gamma)_{\alpha}$ -g-closed set is an α -closed set.

If we analyze the above definition, we can see that it gives us a general context in comparison with the one described in [4]. The following theorem indicates that taking adequate operators and ideals, we can obtain as particular cases the following well known results in the literature

Theorem 4.4 Let (X, τ, I) , α and γ be two operators associated with τ .

- 1. If $\alpha = id$ and X is an $(\alpha, \gamma) T_I$, then X is γT_I [4].
- 2. If X is an $(\alpha, \gamma) T_I$ then X is $\alpha T_{\frac{1}{2}}$ [16].
- 3. If $I = \{\emptyset\}$, $\gamma = id$ and X is an $\alpha T_{\frac{1}{2}}$, then X is $(\alpha, \gamma) T_I$.
- 4. If $I = \{\emptyset\}$, $\gamma = \alpha = id$. X is $(\alpha, \gamma) T_I$ if and only if X is $T_{\frac{1}{2}}$ [9].

5 $(I, \gamma)_{\alpha}$ -sg-closed Sets and $(\alpha, \gamma) - Semi - T_I$ Spaces

In the same way as in the above section, we use the generalized local function in order to obtain the concept of α -sg-closed set given in [16].

Let (X, τ, α) where α a monotone operator, I an ideal on X and $\alpha - SO(X)$ the collection of all α -semi-open sets in X, then the generalized local function taking $\mathfrak{F} = \alpha - SO(X)$ satisfies the following properties:

Theorem 5.1 Let A be a subset of X an α be a monotone operator then:

- 1. $A^*(I, \alpha SO(X)) \subset \alpha scl(A)$.
- 2. If $I = \{\emptyset\}$, then

$$A^*(I, \alpha - SO(X)) = \alpha - scl(A).$$

- 3. If $\alpha = id$ and I is any ideal, then $A^*(I, \alpha SO(X)) = A^*(I, \tau)$.
- 4. $A^*(I, \alpha SO(X)) = \alpha scl(A^*(I, \alpha SO(X))) \subset \alpha scl(A)$, that is, $A^*(I, \alpha SO(X))$ is an α -semi-closed set.

Proof.

- 1. Let $x \in A^*(I, \alpha SO(X))$, then for all α -semi-open set U_x such that $x \in U_x$, we have $U_x \cap A \notin I$, then $U_x \cap A \neq \emptyset$. Therefore $x \in \alpha scl(A)$.
- 2. Let $x \in \alpha scl(A)$, then for all α -semi-open set U_x such that $x \in U_x$ we have $U_x \cap A \neq \emptyset$, that is, $U_x \cap A \notin \{\emptyset\} = I$.
- 3. If α is the identity operator, the α -semi-open sets are the same as the open sets.

4. Let $x \in A^*(I, \alpha - SO(X))$ then for all α -semi-open set U_x such that $x \in U_x$ we have $U_x \cap A^*(I, \alpha - SO(X)) \neq \emptyset$; that is $x \in \alpha - scl(A^*(I, \alpha - SO(X)))$.

If $x \in \alpha - scl(A^*(I, \alpha - SO(X)))$, then for all α -semi-open set U_x such that $x \in U_x$ we have $U_x \cap A^*(I, \alpha - SO(X)) \neq \emptyset$, then there exists $y \in U_x \cap A^*(I, \alpha - SO(X))$, that is, $y \in A^*(I, \alpha - SO(X))$ and U_x is an α -semi-open set containing y, it follows that $U_x \cap A \notin I$, in consequence $x \in A^*(I, \alpha - SO(X))$ and therefore $\alpha - scl(A^*(I, \alpha - SO(X))) \subset A^*(I, \alpha - SO(X))$.

Finally, the last part of 4, follows from 1.

Remark 5.1 If $\mathfrak{F} = \alpha - SO(X)$. In Definition 3.3, we denote $\mathfrak{F}-cl^*(A)$ by $\alpha - scl^*(A)$ that is, $\alpha - scl^*(A) = A \cup A^*(I, \alpha - SO(X))$. Also satisfies the following properties

- 1. $\alpha scl^*(A) \subset \alpha scl(A)$, for all monotone operator α .
- 2. If $\alpha = id$, then $\alpha scl^*(A) = cl^*(A)$.
- 3. If $I = \{\emptyset\}$ and α is a monotone operator, then $\alpha scl^*(A) = \alpha scl(A)$.

Definition 5.1 Let (X, τ, I) , and consider two operators α , γ associated with τ . A subset A of X is said to be $(I, \gamma)_{\alpha}$ -semi-generalized closed set, abbreviated $(I, \gamma)_{\alpha}$ -sg-closed, if $\alpha - scl^*(A) \subset \gamma(U)$ whenever $A \subset U$ and $U \in \alpha - SO(X)$.

Remark 5.2 Observe that when α is the identity operator, the (I, γ) -gclosed sets and $(I, \gamma)_{\alpha}$ -sg-closed sets agree. If we choose $I = \{\emptyset\}$, then all $(I, id)_{\alpha}$ -sg-closed set is a g-closed set.

We can resume the above in the following theorem:

Theorem 5.2 Let (X, τ, I) , $A \subset X$, α and γ be two operators associated with τ an α monotone.

Pro Mathematica, 23, 45-46 (2009), 127-146, ISSN 1012-3938

- If α = id, the set A is an (I, γ)-g-closed set ([4]) if and only if A is an (I, γ)_α-sg-closed set.
- 2. If $I = \{\emptyset\}$ and the set A is an $(I, id)_{\alpha}$ -sg-closed, then A is an α -sg-closed ([16]).
- 3. If $\alpha = id$, $I = \{\emptyset\}$, and A is an $(I, id)_{\alpha}$ -sg-closed, then A is a g-closed set ([9]).

Proof.

1. Suppose that $\alpha = id$ and A is an $(I, \gamma)_{\alpha}$ -sg-closed set. Let Uan open set such that $A \subset U$, since all open set is an α -semiopen set, then $\alpha - scl^*(A) \subset \gamma(U)$. Since $\alpha = id$, we have that $cl^*(A) \subset \gamma(U)$ and therefore $A^*(I, \tau) \subset cl^*(A) \subset \gamma(U)$, it follows that A is an (I, γ) -g-closed set.

The converse follows in the same way.

- 2. Suppose that A is an $(I, id)_{\alpha}$ -sg-closed set of X and U an α -semiopen set such that $A \subset U$, then $\alpha - scl^*(A) \subset id(U)$, since $I = \{\emptyset\}$; it follows $\alpha - scl^*(A) = \alpha - scl(A)$ in consequence, A is an α -sgclosed set.
- 3. It is an immediate consequence of parts 1., 2.

Theorem 5.3 Let (X, τ, I) , α be a monotone operator associated with τ and γ an expansive operator on $\alpha - SO(X)$. Then all α -sg-closed set is an $(I, \gamma)_{\alpha}$ -sg-closed set.

Proof.

Let A an α -sg-closed subset of X and U an α -semi-open set such that $A \subset U$, then $\alpha - scl(A) \subset U$; therefore $\alpha - scl^*(A) \subset U$, since γ is expansive on $\alpha - SO(X)$, then $U \subset \gamma(U)$, it follows that A is an $(I, \gamma)_{\alpha}$ -sg-closed set.

The following example shows the existence of an $(I, \gamma)_{\alpha}$ -sg-closed set that is not an α -sg-closed set.

Example 5.1 Consider \mathbb{R} , the set of the real numbers, with the finite complement topology $\tau_f = \{U \subset \mathbb{R} : \mathbb{R} \setminus U \text{ is finite or } \mathbb{R}\}$, the operator $\alpha : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ associated with this topology is defined as $\alpha(U) = cl(U)$.

The open interval $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ is not an α -sg-closed set because $\mathbb{R} \setminus \{b\}$ is an α -semi-open set containing (a,b) and the α -scl $(A) \notin \mathbb{R} \setminus \{b\}$. (a,b) is an $(I,\gamma)_{\alpha}$ -sg-closed set when we consider the ideal $I = \mathcal{P}(X)$ and γ the identity operator.

We have shown the existence of an $(I, \gamma)_{\alpha}$ -sg-closed set that is not an α -semi-closed. Now we introduce a new class of spaces in the following definition

Definition 5.2 Let (X, τ, I) , α and γ be two operators associated with τ . We say that X is an $(\alpha, \gamma) - semi - T_I$ space if all $(I, \gamma)_{\alpha}$ -sg-closed set is an α -semi-closed set.

Theorem 5.4 Let (X, τ, I) , and consider two operators α , γ associated with τ and α monotone.

- 1. If $\alpha = id$ and X is an $(\alpha, \gamma) semi T_I$ space, then X is a γT_I space ([4]).
- 2. If X is an (α, γ) -semi- T_I space and γ is expansive on α -SO(X), then X is an α -semi- $T_{\frac{1}{2}}$ space ([16]).
- 3. If $I = \{\emptyset\}$ and X is an α -semi- $T_{\frac{1}{2}}$ space, then X is an (α, id) -semi- T_I space.
- 4. If $I = \{\emptyset\}$ and $\gamma = \alpha = id$. X is an $(\alpha, \gamma) semi T_I$ space if and only if X is an $T_{\frac{1}{2}}$ space ([9]).

6 $(I, \gamma)_{(\alpha,\beta)}$ -sg-closed Sets and (α, β, γ) -semi- T_I spaces

Consider (X, τ) , I an ideal on X, α and β operators on τ and $(\alpha, \beta) - SO(X)$ the collection of all (α, β) -semi-open sets in X, then the generalized local function taking $\mathfrak{F} = (\alpha, \beta) - SO(X)$ satisfies the following properties:

Theorem 6.1 Let A be a subset of X, then:

- 1. $A^*(I, (\alpha, \beta) SO(X)) \subset (\alpha, \beta) scl(A).$
- 2. If $I = \{\emptyset\}$, α and β any two operators, then $A^*(I, (\alpha, \beta) SO(X)) = (\alpha, \beta) scl(A)$.
- 3. If $\alpha = id$, β a monotone operator and I any ideal, then $A^*(I, (\alpha, \beta) SO(X)) = A^*(I, \beta SO(X)).$
- 4. If $\beta = id$, α any operator and I any ideal, then $A^*(I, (\alpha, \beta) SO(X)) = A^*(I, \tau_{\alpha})$.
- 5. If $\alpha = \beta = id$, and I any ideal, then $A^*(I, (\alpha, \beta) SO(X)) = A^*(I, \tau)$.
- 6. $A^*(I, (\alpha, \beta) SO(X)) = (\alpha, \beta) scl(A^*(I, (\alpha, \beta) SO(X))) \subset (\alpha, \beta) scl(A)$, that is, $A^*(I, (\alpha, \beta) SO(X))$ is an (α, β) -semiclosed set.

Proof.

- 1. Let $x \in A^*(I, (\alpha, \beta) SO(X))$, then for all (α, β) -semi-open set U_x such that $x \in U_x$ we have $U_x \cap A \notin I$; but $\emptyset \in I$ for any ideal I, then $U_x \cap A \neq \emptyset$; it follows that $x \in (\alpha, \beta) scl(A)$.
- 2. Let $x \in (\alpha, \beta) scl(A)$, then for all (α, β) -semi-open set U_x such that $x \in U_x$, $U_x \cap A \neq \emptyset$, that is, $U_x \cap A \notin \{\emptyset\} = I$, it follows that $x \in A^*(I, (\alpha, \beta) SO(X))$.

Parts 3, 4 and 5 follow directly from the definition 2.5.

Π

6. Let $x \in A^*(I, (\alpha, \beta) - SO(X))$ then for all (α, β) -semi-open set U_x such that $U_x \cap A^*(I, (\alpha, \beta) - SO(X)) \neq \emptyset$; it follows that $x \in (\alpha, \beta) - scl (A^*(I, (\alpha, \beta) - SO(X))).$

Suppose that $x \in (\alpha, \beta) - scl (A^*(I, (\alpha, \beta) - SO(X)))$, then for all (α, β) -semi-open set U_x such that $x \in U_x$ we have $U_x \cap A^*(I, (\alpha, \beta) - SO(X)) \neq \emptyset$, then there exists $y \in U_x \cap A^*(I, (\alpha, \beta) - SO(X))$, that is, $y \in A^*(I, (\alpha, \beta) - SO(X))$ and U_x is an (α, β) -semi-open set containing y, then $U_x \cap A \notin I$, therefore $x \in A^*(I, (\alpha, \beta) - SO(X))$ then $(\alpha, \beta) - scl (A^*(I, (\alpha, \beta) - SO(X))) \subset A^*(I, (\alpha, \beta) - SO(X))$.

Finally, the last part of 6, follows from 1.

We denote by $(\alpha, \beta) - scl^*(A) = A \cup A^*(I, (\alpha, \beta) - SO(X))$, when $\mathfrak{F} = (\alpha, \beta) - SO(X)$ in the Definition 3.3. It is clear that, $(\alpha, \beta) - scl^*(A) \subset (\alpha, \beta) - scl(A)$, satisfies the following properties:

- 1. If $\alpha = id$ and β is a monotone operator, then $(\alpha, \beta) scl^*(A) = \beta cl^*(A)$.
- 2. If α is any operator and $\beta = id$, then $(\alpha, \beta) scl^*(A) = \alpha cl^*(A)$.
- 3. If $\alpha = \beta = id$, then $(\alpha, \beta) scl^*(A) = cl^*(A)$.
- 4. If $I = \{\emptyset\}$, then $(\alpha, \beta) scl^*(A) = (\alpha, \beta) scl(A)$.

We now introduce the concept of $(I, \gamma)_{(\alpha,\beta)}$ -sg-closed set as a generalization of the concepts of (I, γ) -g-closed set ([4]) and (α, β) -sg-closed set ([17]).

Definition 6.1 Let (X, τ, I) , and α , β , γ operators associated with τ . A subset A of X is called $(I, \gamma)_{(\alpha,\beta)}$ -semi-generalized-closed set, abbreviated $(I, \gamma)_{(\alpha,\beta)}$ -sg-closed, if $(\alpha, \beta) - scl^*(A) \subset \gamma(U)$ whenever $A \subset U$ and $U \in (\alpha, \beta) - SO(X)$.

Remark 6.1 1. Observe that when $\alpha = \beta = id$, the (I, γ) -g-closed sets and the $(I, \gamma)_{(\alpha,\beta)}$ -sg-closed sets agree.

- If α is any operator and β is a monotone, the (I, γ)_α-g-closed sets and the (I, γ)_(α,β)-sg-closed sets agree.
- 3. If $\alpha = id$ and β is a monotone, the $(I, \gamma)_{\beta}$ -g-closed sets and the $(I, \gamma)_{(\alpha,\beta)}$ -sg-closed sets agree.
- When I = {∅}, the (I, γ)_{α,β}-sg-closed sets and the (α, β)-sg-closed sets agree.

We can resume the above in the following theorem.

Theorem 6.2 Let (X, τ, I) , α , β and γ operators associated with τ and $A \subset X$, then

- 1. If $\alpha = id$ and β is a monotone operator, A is an $(I, \gamma)_{(\alpha,\beta)}$ -sgclosed set if and only if A is an $(I, \gamma)_{\beta}$ -sg-closed set.
- If α is any operator and β = id, A is an (I, γ)_(α,β)-sg-closed set if and only if A is an (I, γ)_α-g-closed set.
- If α = β = id, A is an (I, γ)_(α,β)-sg-closed set if and only if A is an (I, γ)-g-closed set ([4]).
- 4. If $I = \{\emptyset\}$, α , β any operators, $\gamma = id$ and A is an $(I, \gamma)_{(\alpha,\beta)}$ -sgclosed set, then A is an (α, β) -sg-closed set ([17]).

Theorem 6.3 Let (X, τ, I) , α , β be operators on τ and γ an expansive operator on $(\alpha, \beta) - SO(X)$. All (α, β) -sg-closed set is an $(I, \gamma)_{(\alpha, \beta)}$ -sg-closed set.

Proof.

Let A an (α, β) -sg-closed set of X and U an (α, β) -semi-open set such that $A \subset U$, then $(\alpha, \beta) - scl(A) \subset U$; that is $(\alpha, \beta) - scl^*(A) \subset U$, since γ is expansive on $(\alpha, \beta) - SO(X)$, then $U \subset \gamma(U)$, therefore, $(\alpha, \beta) - scl^*(A) \subset \gamma(U)$; it follows that A is an $(I, \gamma)_{(\alpha, \beta)}$ -sg-closed set. \Box

The following example shows the existence of an $(I, \gamma)_{(\alpha,\beta)}$ -sg-closed set that is not an (α, β) -sg-closed set.

Example 6.1 Consider \mathbb{R} , the set of the real numbers, with the finite complement topology $\tau_f = \{U \subset \mathbb{R} : \mathbb{R} \setminus U \text{ is finite or } \mathbb{R}\}$, the operators $\alpha, \beta : \mathcal{P}(\mathbb{R}) \to \mathcal{P}(\mathbb{R})$ associated with this topology are defined as follow: $\alpha(U) = int(U), \ \beta(U) = cl(U).$

The set \mathbb{Q} of the rational numbers is not an (α, β) -sg-closed set because $\mathbb{R} \setminus \{\sqrt{2}\}$ is an (α, β) -semi-open set containing \mathbb{Q} ; but $(\alpha, \beta) - scl(\mathbb{Q}) = \mathbb{R} \nsubseteq \mathbb{R} \setminus \{\sqrt{2}\}$. \mathbb{Q} is an $(I, \gamma)_{(\alpha, \beta)}$ -sg-closed set if we consider the ideal $I = \mathcal{P}(X)$ and γ the identity operator.

Using the fact that there exist $(I, \gamma)_{(\alpha,\beta)}$ -sg-closed sets that are not (α, β) -semi-closed. We introduce a new class of spaces in the following definition.

Definition 6.2 Let (X, τ, I) , α , β and γ be operators associated with τ . X is called an $(\alpha, \beta, \gamma) - semi - T_I$ space if all $(I, \gamma)_{(\alpha, \beta)}$ -sg-closed set is an (α, β) -semi-closed set.

Theorem 6.4 Let (X, τ, I) , α , β , γ be operators associated with τ and A a subset of X, then

- 1. If $\alpha = id$ and β is monotone, X is an $(\alpha, \beta, \gamma) semi T_I$ space if and only if X is an $(\beta, \gamma) - semi - T_I$ space.
- 2. If α is any operator and $\beta = id$, X is an $(\alpha, \beta, \gamma) semi T_I$ space if and only if X is an $(\alpha, \gamma) semi T_I$ space.
- 3. If $\alpha = \beta = id$ and X is $(\alpha, \beta, \gamma) semi T_I$ space, then X is an γT_I space ([4]).
- 4. If $I = \{\emptyset\}$, $\gamma = id$ and X is an $(\alpha, \beta) semi T_{\frac{1}{2}}$ space, then X is an $(\alpha, \beta, \gamma) semi T_I$ space.
- 5. If α , β are any operators, γ expansive on $(\alpha, \beta) SO(X)$ and X is an $(\alpha, \beta, \gamma) semi T_I$ space, then X is an $(\alpha, \beta) semi T_{\frac{1}{2}}$ space ([17]).

143

References

- Bhattacharyya, P. lahiri, B. K.(1997) Semi-generalized closed sets in topology. Indian J. Math. 29, 375-382.
- [2] Carpintero, C. Rosas, E. y Vielma, J. (1998) Operadores asociados a una topología sobre un conjunto X y nociones conexas. Divulgaciones Matemáticas, Vol. 6, N 2, 139- 148.
- [3] Carpintero, C. Rosas, E. y Vielma, J. (2003) Espacios α-sg-Ti para i: 1,2,3. Divulgaciones Matemáticas, Vol. 11, N 2.
- [4] Dontchev, J. Ganster, M. and Noiri, T. (1998) Operation approach of generalized closed sets via topological ideals. Math. Japonica. 49, N 3, 395-401.
- [5] Dunham, W. (1977) T_{1/2} Spaces. Kyungpook Math., Vol. 17, 161-169.
- [6] Jankovic, D. y Hamlett, T. R. (1990) New topologies from old via ideals. Amer. Math. Monthly 97
- [7] Khalimsky, E. Kopperman, R. and Meyer, P. R.(1990) Computer graphics and connected topologies on finite ordered sets. Topology Appl. Vol. 36, 1-17.
- [8] Kasahara, S. (1979) Operator-Compact spaces. Mathematic Japonica. 21, 97-105.
- [9] Levine, N. (1970) Generalized closed sets in topology. Rend. Circ. Mat. Palermo(2), 19, 89- 96.
- [10] Levine, N. (1963) Semi open sets and continuity in topological spaces. Amer. Math. Monthly 70, 36-41.

- [11] Maki, H. Balachandran, k. and Devi, R. (1993) Generalized alpha-closed sets in topology. Bull. Fukuaka Univ. ED. Part. III,42, 13-21.
- [12] Njastad, O. (1965) On some classes of nearly open sets. Pacific J. Math. 15, 961-970.
- [13] Newcomb, R. L. (1967) Topologies with are compact modulo an ideal. Ph. D. Dissertation, Univ. of Cal. At Santa Barbara.
- [14] Ogata, H. (1991) Operation on topological spaces and associated topology. Math. Japonica. N36. 175-184.
- [15] Rosas, E. Carpintero, C. y Sanabria, J. (2005). (α, β)-semi open sets and some new generalized separation axioms. Scientiae Mathematicae Japonicae. Vol. 62, N 3, 397-403, e-2005, 413-419.
- [16] Rosas, E. Vielma, J. Carpintero, C. y Salas, M. (2000) Espacios α -semi-Ti para i = 0, 1/2, 1, 2. Pro-Mathematica. N 27, 37-48.
- [17] Rosas, E. Vielma, J. Carpintero, C. y Salas, M. (2005) (α, β) -sg-Ti spaces for i: 1,2,3,4. Saber. Vol. 17, N 1.

Resumen

Son dados un espacio topológico (X, τ) , tres operadores α, β, γ asociados a una topología τ , es un ideal I en X. Los conceptos de conjunto α -cerrado, conjunto α -semicerrado, conjunto (α, β) -semicerrado y conjunto (I, γ) g-cerrado son generalizados. También nuevos axiomas de separación son introducidos y caracterizados, y nuevos espacios son obtenidos de tal manera que los espacios $\alpha - T_{\frac{1}{2}}, \alpha$ - semi $T_{\frac{1}{2}}, (\alpha, \beta)$ - semi $T_{\frac{1}{2}}$ y $\gamma - T_1$, respectivamente, son generalizados.

M. Salas Brown, E. Rosas and C. Carpintero

Palabras clave: (α, β) -semicerrado, (I, γ) g-cerrado, (α, β) -semi- $T_{\frac{1}{2}}, (\alpha, \beta, \gamma)$ - semi - T_I .

Margot Salas Brown Universidad de Oriente Departamento de Matemáticas 6101 Cumaná, Edo. Sucre, Venezuela msalas@sucre.udo.edu.ve

Ennis Rosas Universidad de Oriente Departamento de Matemáticas 6101 Cumaná, Edo. Sucre, Venezuela erosas@sucre.udo.edu.ve

Carlos Carpintero Universidad de Oriente Departamento de Matemáticas 6101 Cumaná, Edo. Sucre, Venezuela ccarpi@sucre.udo.edu.ve