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1 Introduction and Preliminaries 

Andrijevié [4] introduced a new class of generalized open sets called 
b-open sets into the field of topology. This class is a subset of the class 
of semi-preopen sets [5], i.e. a subset of a topological space which is 
contained in the closure of the interior of its closure. Also the class of 
b-open sets is a superset of the class of semi-open sets [26], i.e. a set 
which is contained in the closure of its interior, and the class of locally 
dense sets [12] or preopen sets [28], i.e. a set which is contained in the 
interior of its closure. Andrijevié studied severa! fundamental and inter­
esting properties of b-open sets. 

Throughout the present paper, the space (X, T) always means a topolog­
ical space on which no separation axioms are assumed unless explicitly 
stated. A subset A is said to be semiopen [26] (resp. ¡J-open [1], preopen 
[28], o:-open [30]) if A e Cl(Int(A)) (resp. A e Cl(Int(Cl)A))), A e 
Int(Cl(A))), A e Int(Cl(Int(A)))). The complement of a semiopen 
(resp. ¡J-open, preopen, o:-open) set is said to be semiclosed (resp. ,8-
closed, preclosed, o:-closed). We denote the collection of all semiopen 
(resp. ¡J-open, o:-open) sets by SO(X) (resp. ¡JO(X), o:O(X)). We set 

SO(X,x) ={U: x E U E SO(X)}, ¡JO(X,x) ={U: x E U E f)O(X)} 
and o:O(X, x) ={U: x E U E o:O(X)}. 

Let A ~ X, then A is said to be b-open [4] if A ~ Cl(Int(A)) U 

Int(Cl(A)), where Cl(A) and Int(A) denotes the closure and the in­
terior of A in (X, T), respectively. The complement X\ A of a b-open 
setA is called b-closed and the b-closure of a setA, denoted by bCl(A), 
is the intersection of all b-closed sets containing A. The b-interior of a 
setA denoted by bint(A), is the union of all b-open sets contained in A. 

The family of all b-open (resp. b-closed) sets in (X, T) will be denoted by 
BO(X, T) (resp. BC(X, T)). 
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Proposition 1.1 ( Andrijevié (4]) (a) The union of any family of b-open 
sets is b-open. 
(b) The intersection of an open and a b-open set is a b-open set. 

Lemma 1.2 The b-closure of a subset A of X, denoted by bCl(A), is 
the set of all x E X such that O nA-!=- 0 for every O E BO(X, x), where 

BO(X,x) ={U 1 x E U E BO(X,r)}. 

A point X E X is said to be a e-semi cluster point of a subset A of X 
if Cl(U) nA-!=- 0 for every U E SO( X, x). The set of all e-semi cluster 
points of A is called the e-semiclosure of A and is denoted by sClo(A). A 
subset A is called e-semiclosed [23] if A= sCl0 (A). The complement of 
a e-semiclosed set is called e-semiopen. A subset A is said to be regular 
open (resp. regular closed) if A= In(Cl(A)) (resp. A= Cl(Int(A)). 

Definition 1 A function f : X ---t Y is said to be: 

(i) perfectly continuous (31 j if ¡-l (V) is clopen in X for every open 

set V ofY. 

(ii) contra-continuous (13 j if ¡-1 (V) is el o sed in X for every open set 
V ojY. 

(iii) regular set-connected (14} if ¡-1 (V) is clopen in X for every regular 
open set V of Y. 

(iv) s-continuous (8} if for each point x E X and each semiopen set V 

of Y with f(x) E V, there exists an open set U of X containing x 
such that f(U) e V. 

(v) almost s-continuous (32} if for each point x E X and each semiopen 

set V of Y with f(x) E V, there exists an open set U of X con­

taining x su eh that f (U) e sC (V). 

(vi) (e, s )-continuous (23} if for each point x E X and each semiopen set 

V ofY with f(x) E V, there exists an open set U of X containing 
x such that f(U) e Cl(V). 
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(vii) {3-quasi-irresolute (20} if for each point x E X and each semiopen 

set V of Y with f(x) E V, theTe exists an {3-open set U of X 

containing x such that f(U) e Cl(V). 

(viii) (p, s)-continuous {19] if for each point x E X and each semiopen 

set V of Y with f(x) E V, there exists a preopen set U of X 

containing x such that f(U) e Cl(V). 

(ix) a-quasi-irresolute {21} if for each point x E X and each semiopen 
set V of Y with f(x) E V, there exists an a-open set U of X 

containing x such that f(U) e Cl(V). 

(x) weakly 8-irresolute {21 j if for each point x E X and each semiopen 
set V of Y with f(x) E V, there exists an semiopen set U of X 

containing x such that f(U) e Cl(V). 

2 (b, s )-continuous Functions 

Definition 2 A function f : X ---. Y is said to be (b, s )-continuous 
functions if for each point x E X and each semiopen set V of Y with 

f(x) E V, there exists a b-open set U of X containing x such that f(U) e 
Cl(V). 

Definition 3 Let A be a subset of a spa.ce (X, T). The set n{u E 

RO(X) : A e U} is called the r-kernel of A {17] a.nd is denoted by 

rker(A). 

Lemma 2.1 (Ekici (17]) The following properties hold for the subsets 
A, B of a spa.ce X : 

(1) x E rker(A) if and only if A n F =/= 0 for· any FE RC(X,x). 

(2) A e rker(A) a.nd A= rker(A) if A is regular open in X. 

(3) lf A e B, then rker(A) e rker(B). 
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Theorem 2.2 For a function f: X----> Y, the following are equivalent: 

{1) f is (b, s)-continuous; 

{2) ¡-1 (V) e blnt(f- 1 (Cl(V))) for every semiopen set V ofY; 

( 3) ¡- 1 
( F) is b- open in X for· every regular closed set F o f Y; 

(4) ¡- 1 (V) is b-closed in X for every regular open set V ofY; 

{5) ¡- 1(A) is b-open in X for every B-semiopen setA ofY; 

{6) ¡- 1 (B) is b-closed in X for every B-semiclosed set B ofY; 

{7) f(bCl(A)) e sCle(f(A)) for every subset A of X; 

{8) bCl(f- 1 (B)) e ¡-1(sCle(B)) for every subset B ofY. 

{9) f(bCl(A)) e rker(f(A)) for every subset A of X; 

{10) bCl(f- 1 (B)) e ¡-1(rker(B)) for every subset B ofY; 

( 11) For ea eh point x in X and ea eh regular el o sed set V in Y containing 
f(x), there is a b-open set U in X containing x such that 
f(U) e V. 

Proof. (1) =? (2): Let V E SO(Y) and x E ¡-1 (V). Since f is (b, s)­
continuous, there exists an b-open set U of X such that f(U) e Cl(V). 
It follows that X E u e ¡-1 (Cl(V)). Hence X E blnt(f- 1 (Cl(V))). 
Therefore ¡-1 (V) e blnt(f- 1 (Cl(V))). 

(2) =? (3): Let F be any regular closed set of Y. Since F E SO(Y), 
then by (2), it follows that ¡- 1(F) e blnt(f- 1(Cl(F))). This shows 
that ¡-1 (F) is b-open in X. 

(3) <=? (4): This is obvious. 

( 4) =? ( 5): This follows from the fact that any B-semiopen set is a union 
of regulares closed sets. 

(5) <=? (6): This is obvious. 
(5) =? (7): Let A be any subset of X and y rj:. sCle(f(A)). Then there 
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exist V E SO(Y, y) such that J(A) n Cl(V) = 0. Since Cl(V) is e­
semiopen, ¡-1(Cl(V)) is b-open in X and Anj-1(Cl(V)) = 0. Therefore 
bCl(A) n ¡-1(Cl(V)) = 0 and f(bCl(A)) n Cl(V) = 0. Consequently, we 
obtain y tJ. f(bCl(A)) and hence f(bCl(A)) e sClo(f(A)). 

(7) =;. (8): Let B be any subset of Y. Then by (7) f(bCl(J- 1(B))) e 
sClo(f(f- 1 (B))) e sClo(B). Therefore, we obtain bCl(f- 1(B)) e 
¡-1(sClo(B)). 

(8) =;. (6): Let B be any e-semiclosed set of Y. By (8) we have 
bCl(f- 1(B)) e ¡-1(sCl0 (B)) = ¡-1(B) and hence ¡-1 (B) is b-closed 
in X. 

(5) =;. (1): Let x E X and V E SO(Y, f(x)). Then Cl(V) is e-semiopen 
in Y. Set U = ¡-1(Cl(V)), then U E BO(X, x) and f(U) e Cl(V). 
Therefore f is (b, s )-continuous. 

(11)=;.(9): Let A be any subset of X. Suppose that y tJ. Tker(f(A)). 
Then, by Lemma 2.1 there exists V E RC(Y, y) such that f(A) n V= 0. 
For any x E ¡- 1(V), by (11) there exists Ux E BO(X, x) such that 
f(Ux) e V. Hence f(A n Ux) e f(A) n f(Ux) e f(A) n V = 0 and 
An Ux = 0. This shows that x tJ. bCl(A) for any x E ¡- 1 (V). Therefore, 
¡- 1(V)nbCl(A) = 0 and hence Vnj(bCl(A)) = 0. Thus, y tJ. f(bCl(A)). 
Consequently, we obtain f(bCl(A)) e Tke-r(f(A)). 

(9){=} (10): Let B be any subset of Y. By (9) and Lemma 3.1, we 
have f(bCZ(f- 1(B))) e rker(f ¡-1(B)) e rker(B) and bCl(f- 1(B)) e 
¡-r (rker(B) ). 

Conversely, suppose that (10) holds. Let B = f(A), where A is a subset 
of X. Then bCl(A) e bCZ(f- 1 (B)) e ¡-1 (Tker(f(A))). Therefore 
f(bCl(A)) e rker(f(A) ). 

(10)=;. (4): Let V be any regular open set of Y. Then, by (10) and 
Lemma 2.1(2) we have bCl(f- 1(V)) e ¡-1(rker(V)) = ¡-1(V) and 
bCZ(J- 1(V)) = ¡- 1(V). This shows that ¡- 1 (V) is b-closed in X. 

Therefore f is (b, s )-continuous. 

(3)=;.(11): Let x E X and V be a regular closed set of Y containing f(x). 
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Then x E ¡- 1(V). Since by hypothesis ¡-1 (V) is b-open, there exists 
U E BO(X, :r) such that x E U e ¡-1(V). Hence x E U and f(U) e V. 

Theorem 2.3 For a function f : X ~ Y, the following are equivalent: 

(1) f is (b, s)-continuous; 
(2) ¡-1 (V) is b-closed in X for every regular open set V ofY; 

(3) ¡-1(Int(Cl(F))) is b-closed in X for every open set F of Y (4) 
¡-1 ( C l (I nt( G))) is b-open in X jor every closed set G oj Y. 

Proof. (1) {:} (2): Theorem 2.2. 
(3) {:} (4): Let G be a closed set in Y. Then Y\G is open. We have 
that ¡-1(Int(Cl(Y\G))) = ¡-1(Y\Cl(Int(G))) = X\f- 1(Cl(Int(G))) 

is a b-closed set in X. Hence ¡-1(Cl(Int(G))) is b-open. 
The converse can be obtained similarly. 
(2) {:} (3): Let F be a open set in Y. We have Int(Cl(F)) E RO(Y). 

By (2) ¡-1(Int(Cl(F))) is b-closed in X. 

The converse can be obtained similarly. 

Remark 2.4 From the above definitions, we have the Diagmm follow­
ing: 

per jectly-cont. => contra-cont. 

s-cont. ::::} alrnost-s-cont. ::::} regular-set-connect. :::::> (9,s)-cont. 

(b,s)-cont. 

¡3-quaaí-iTre. 
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By the following examples, remarks and ([31], [13], [14], [8], [23], [20]), 
the inverse claims in the implication above are not usually true. 

Example 2.5 In ({33}, Examples 6.1-6. 6.}, Noiri and Jafari showed 

that: 

{1) Contra continuity (resp. regular set-connected, (e, s)-continuity) does 

not necessarily imply perfectly contin·uity. 

{2) (e, s) -continuity does not necessarily imply regular set-connected. 

{3) (e, s) -continuity does not necessarily imply contra-continuity. 

{4) continuity and (e, s)-continuity are independent concepts. 

Example 2.6 {1) In ({14}, Example 3.8}, Dontchev et al. showed that 

a regular set-connected function need not be almost s-continuous. 

{2) In {{32}, Example 5.3}, Noiri et al. showed that a almost s-continuous 
function need not be s-continuous. 

Example 2.7 Let X= {a, b, e,}, T = {0, X, {b}, {a, e}} and 

~ = {0,X,{a},{b},{a,b},{a,c}}. 

Then the identity function f : (X, T) ----> (X,~) is (b, s)-continuous, but 

it is not continuous. 

Example 2.8 The identity function in the realline with the usual topol­

ogy is continuous. The in verse image of (0, 1) is not b-closed and the 

function is not (b, s)-continuous. 

Remark 2.9 By Examples 2. 7 and 2.8, continuity and (b, s)-continuity 

are independent of each other. 

We recall that a space X is called extremally disconnected [7] if the 
closure of each open set of X is open in X, equivalently if every semiopen 
set is o:-open. The space X is called submaximal [7] if every dense subset 
of X is open in X, equivalently if every preopen set is open. 

Lemma 2.10 If (X, T) be a submaximal extremally disconnected space, 

then T = Ta =SO( X, T) = PO(X, T) = BO(X, T) =[JO( X, T) 
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Theorem 2.11 IJ (X, r) is submaximal extremally disconnected, then 

the following are equivalently for a function f : (X, T) ---> (Y, o-): 
(1) f is (b, s)-continuous; 

(2) f is (8, s)-continuous; 

(3) f is (p, s)-continuous; 

(4) f is a-quasi-irresolute; 

(5) f is weakly 8-irresolute; 

( 6) f is f3 -quasi-irresolute. 

Proof. It follows from Lemma 2.10. 

3 Separation Axioms Related to b-open Sets 

Recall, that a space X is said to be: 

(i) Weakly Hausdorff [37] if each element of X is an intersection of 
regular closed sets. 

(ii) s-Urysohn [6] if for each pair of distinct points x and y in X, there 
exist U E SO(X, x) and U E SO( X, y) such that Cl(U) n Cl(V) = 

0. 

(iii) b-T2 [10] if for each pair of distinct points x and y in X, there exist 
U E BO(X,x) and V E BO(X,y) such that Un V= 0. 

Theorem 3.1 Jf f : X ---> Y is a ( b, s) -continuous injection and Y is 

s-Urysohn, then X is b-T2. 

Proof. Let x and y be distinct points of X. Then f(x) # f(y). Since 
Y is s-Urysohn, there exist V E SO(Y, f(x)) and W E SO(Y, f(y)) 

such that Cl(V) n Cl(W) = 0. Since f is (b, s)-continuous, there exist 
U E BO(X,x) ande E BO(X,y) such that f(U) e Cl(V) and j(e) e 
Cl(W). It follows that Un e= 0. This shows that X is b-T2. 

Theorem 3.2 IJ J, g : X ---> Y are (b, s)-continuous functions, X is 

submaximal extremally disconnected and Y is s- Urysohn, then E = { x E 

X: f(x) = g(x)} is closed in X. 
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Proof. Suppose that x tf. E. Then f(x) # g(x). Since Y is s-Urysohn, 
there exist V E SO(Y,j(x)) and W E SO(Y,g(x)) such that Cl(V) n 
Cl(W) = 0. Since f and g are (b, s)-continuous, there exist U E BO(X, x) 

and G E BO(X,x) such that f(U) e Cl(V) and f(G) e Cl(W). Set 
D = UnG. By Lemma 2.8 DE O(X) since X is submaximal extremally 
disconnected. Therefore D n E= 0 and it follows that E is closed in X. 

Lemma 3.3 [29}. Let A be a subset of X and B a subset of Y. Ij 

A E BO(X) and Y E BO(Y), then A x BE BO(X x Y). 

Theorem 3.4 Ij f : X -+ Y be a (b, s)-continuous function and Y is 

s-Urysohn, then E= {(x,y): f(x) = f(y)} is b-closed in X x X. 

Proof. Suppose that (x, y) tf. E. Then f(x) # f(y). Since Y is 
s-Urysohn, there exist V E SO(Y, J(x)) and W E SO(Y, J(y)) such 
that Cl(V) n Cl(W) = 0. Since f is (b, s)-continuous, there exist U E 

BO(X, x) and G E BO(X, y) such that j(U) e Cl(V) and J(G) e 
Cl(W). Set D =U x G. By Lemma 3.3 (x, y) E DE BO(X x X) and 
D n E= 0. This means that bCl(E) e E and therefore E is b-closed in 
X X X. 

Theorem 3.5 Let f : X -+ Y be a function and g : X -+ X x Y the 

graph function, given by g(x) = (x, f(x)) jor every x E X. Then f is 

(b, s)-continuous ij g is (b, s)-continuous. 

Proa f. Let F be a regular closed set of Y. Then we ha ve X x F = 
X x (Cl(Int(X)) x Cl(Int(F)) = Cl(Int(X x F). Therefore X x F is 
regular closed in X x Y. By Theorem 2.1, ¡- 1(F) = g- 1(X x F) is 

b-open in X and hence f is ( b, s )-continuous. 

The following lemma is dueto El-Atik [15]. 

Lemma 3.6 Let A and X 0 be subsets of (X, T). Ij A E BO(X) and 

X 0 E o:O(X), then A n Xo E BO(Xo)· 
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Theorem 3.7 lf f: (X,T)----> (Y, o-) is (b,s)-continuous and Xa is a a­
open snbset of X, then the restriction 1.-...:a : Xa ____,Y is (b, 8)-continuous. 

Proof. Let V be an regular closed set of Y. Since f is (b, 8)-continuous, 
¡-1(V) is b-open in X. By Lemma 3.6, UxJ- 1 (V) = Xa n ¡-1 (V) is 
b-open in Xa and hence fxo is (b,8)-continuous. 

Lemma 3.8 Let A and X a be 8v.bsets of (X, T). lf A E BO(Xa) a.nd 
Xa E aO(X), then A E BO(X). (29}. 

Theorem 3.9 Let f: (X,T) ____, (Y,o-) be afunction and {Ai: i E D} 
be a cover of X by a-open 8ets of (X, T). Then f is (b, 8) -continuou8 if 
!Ai: A;____, y is (b,8)-continuou8 for ea.ch i En. 

Proa f. Let V be any regular closed set of Y and fA, be ( b, 8 )-continuous. 
Then (JAJ-1(V) = ¡-1(V) nA¡ is b-open in A; and hence, by Lemma 
3.8, (JAJ- 1(V) is b-open in X for each i E D. Therefore ¡-1(V) = 

Xnj-1 (V) = U{A;nj- 1 (V): i E D} = U{f.4,1 (V): i E D} is b-open in 
X. Hence f is ( b, 8 )-continuous. 

Theorem 3.10 Let {X; : i E D} be any family of topologica.l spaces. If 
f: X----> TI X; is a (b, s)-continuous. function . Then Pri o f: X____, X; 
is (b,s)-continuous. for each i E D, where Pr; is the projection ofTIXi 
onto xi. 

Proof. Let U; be an arbitrary regular open set in Xi. Since Pri is contin­
uous open, it is an R-map and hence Prj 1(Ui) is regular open in TI xi. 
Since f is (b, s)-continuous. , we have by Theorem 2.2 ¡- 1(Prj 1 (Ui)) = 
(Pr; o J)- 1 (U;) is b-closed in X. Therefore Pri o j is (b, s)-continuous. 
for each i E D. 

4 Applications 

Definition 4 A function f : X ____, Y is said to be: 
(i) b-irr·esolute if for each point x E X and each b-open set V of Y 
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containing f(x), there exists a b-open set U of X containing x such that 

J(U) e V. 
(ii} B-irresolute {25} if for each point x E X and each semiopen set V 

of Y containing f(x), there exists a semiopen set U of X containing x 

such that f(Cl(U)) e Cl(V). 

(iii} b-open {16} if f(V) E BO(Y) for every V E BO(X). 
(iv} b-closed if f(V) E BC(Y) for ever-y V E BC(X). 

Theorem 4.1 If f : X ___, Y is b-ir-resolute and g : Y ___, Z is (b, s)­

continuous, then g o f: X___, Z is (b, s)-continuous. 

Proof. Let x E X any W be a semiopen set in Z containing (g o f)(x). 
Since g is (b, s)-continuous, there exists V E BO(Y,f(x)) such that 
g(V) e Cl(W). Since f is b-irresolute, there exists U E BO(X,x) such 
that f(U) e V. This shows that (g o !)(U) e Cl(W). Therefore g o f is 
(b, s )-continuous. 

Theorem 4.2 If f : X ___, Y is (b, s)-continuous and g Y ___, Z is 

B-irresolute, then g o f : X ___, Z is (b, s) -continuous. 

Proof. Similar to Theorem 4.1. 

Theorem 4.3 lf f : X ___, Y is a b-open su·rjective function and g : Y ___, 
Z is a function such that g o f : X ___, Z is (b, s)-continuous. then g is 

(b, s)-continuous. 

Proof. Suppose that x and y are in X and Y respectively, such that 
f(x) = y. Let W be a semiopen set in Z containing (g o f)(x). Then 
there exists U E BO(X,x) such that g(f(U)) e Cl(W). Since f is b­

open, then f(U) E BO(Y, y) such that g(f(U)) e Cl(W). This implies 
that g is ( b, s )-continuous. 

Recall that Caldas et al. [11] defined the b-frontier of A denoted by b­
fr(A), as b-fr(A) = bCl(A)\blnt(A), equivalently b- fr(A) = bCl(A) n 
bCl(X\A). 
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Theorem 4.4 The set of points x E X which f : (X, 7) -+ (Y, a) is 

not (b, s )-continuo·us is identical with the union of the b-frontiers of the 

in verse images of Cl(V) sets where V is a semiopen set of Y containing 

f(x). 

Proof Necessity. Suppose that f is not (b, s)-continuous at a point x 

of X. Then, there exists a semiopen set V e Y containing f ( x) su eh 
that f(U) is not a subset of Cl(V) for every U E BO(X,x). Hence 
we have Un (X\ ¡-1(Cl(V))) i= 0 for every U E BO(X,x). It fol­
lows that X E bCl(X \ ¡-1 (Cl(V))). We also have X E ¡-1(Cl(V)) e 
bCZ(f- 1(Cl(V))). This means that x E b-fr(f- 1(Cl(V))). 

Sufficiency. Suppose that x E b-fr(f- 1(Cl(V))) for some V E SO(Y, f(x)) 

Now, we assume that f is (b, s)-continuous at x E X. Then there 
exists U E BO(X, x) such that f(U) e Cl(V). Therefore, we have 
x E U e ¡-1 (Cl(V)) and hence x E b!nt(f- 1 (Cl(V))) e X\ b­

fr(f-1(Cl(V))) . This is a contradiction. This means that f is not 
(b, s )-continuous. 

Definition 5 For a function f: X-+ Y, the graph G(f) = {(x, f(x)): 
x E X} is called (b, s)-closed if for each (x, y) E (X x Y)- G(f), there 

exist U E BO(X, x) and V E SO(Y, y) such that U x Cl(V) n G(f) = 0. 

Lemma 4.5 A function f : X -+ Y has the (b, s)-closed graph G(f) 

if for each (x, y) E (X x Y) - G(f), there exist U E BO(X, x) and 

V E SO(Y, y) such that f(U) n Cl(V) = 0. 

Proof It is an immediate consequence of Definition 4 and the fact that 
for any subsets U e X and V e Y, (U x Cl(V)) n G(f) = 0 if and only 
if f(U) n Cl(V) = 0. 

Theorem 4.6 If f : X -+ Y is (b, s)-continuous and Y is s-Urysohn, 

then G (!) is ( b, s) -closed in X x Y. 

Proof Let (x, y) E (X x Y) - G(f). It follows that f(x) i= y. Since 
Y is s-Urysohn, there exist semiopen sets V and W in Y containing 
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f(x) and y, respectively such that Cl(U) n Cl(W) = 0. Since f is 
(b, s)-continuous, there exists U E BO(X, x) such that j(U) e Cl(V). 

Therefore j(U) n Cl(W) = 0 ande(!) is (b, s)-closed in X x Y. 

Theorem 4. 7 lf f : X --+ Y is a ( b, s) -continuous injection with a 

(b, s)-closed graph, then X is b-T2 

Proof. Let x and y be any distinct points of X. Then, since f is injective, 
we have f(x) =f. f(y) and thus (x, f(y)) E (X x Y)- e(!). Since e(!) is 
(b, s)-closed, there exist U E BO(X, x) and V E SO(Y, f(y)) such that 
f(U) nCl(V) = 0. Since f is (b, s)-continuous, there exists e E BO(Y, y) 

such that j(e) e Cl(V). Therefore, we have f(U) nj(e) = 0 and hence 
Un e= 0. This shows that X is b-T2 • 

Definition 6 (i) A space X is called b-normal if for disjoint bclosed 

subsets A and B of X, there exist disjoint b-open sets U and V such 

that A e U and B e V. 

(ii) Any two subsets A and B of X are called b-separated if there exist 

disjoint b-open sets U and V such that A e U and B e V. 

Observe that X = {a, b, e} with Sierpinski topology is b-normal but not 
normal. 

Theorem 4.8 lf f : X --+ Y is a (b, s )-continuous, b-closed function of 

a b-normal X onto a space Y, then any two disjoint e-semiclosed subsets 

of Y can be b-separated. 

Proa f. Let F 1 and F2 be any distinct e-semiclosed sets of Y. since 
f is (b,s)-continuous, ¡-1 (F1) and ¡-1 (F2 ) are disjoint b-closed sets 
of X. By b-normalíty of X, there exist U1, U2 e BO(X) such that 
¡-1 (F¡) e U1 and ¡-1 (F2 ) e U2 and U1nU2 = 0. Let Vi= Y- f(X -U;) 
for i = 1, 2. Since f is b-closed, the sets V1 , V2 are b-open in Y and Fi e Vi 
for i = 1,2. Since U1 and U2 are disjoint and ¡-1 (Fi) e Ui for i = 1,2, 
we obtain V1 n V2 = 0. This shows that F 1 and F2 are b-separated. 
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Theorem 4.9 Jf f : X ---+ Y is a b-irresolute b-closed surjection and X 

is b-normal, then Y is b-normal. 

Proof. Let F1 and F2 be any distinct b-closed sets of Y. since f is 
b-irresolute, ¡-1(F1 ) and ¡-1 (F2 ) are disjoint b-closed sets of X. By 
b-normality of X, there exist U1, U2 e BO(X) such that ¡-1(F1) e U1 
and ¡-1(F2) e U2 and U1 n U2 = 0. Let Vi = Y - f(X - Ui) for 
i = 1, 2. Since j is b-closed, the sets V1, V2 are b-open in Y and Fi e Vi 
for i = 1, 2. Since U1 and U2 are disjoint and ¡-1(Fi) e Ui for i = 1, 2, 
we obtain V1 n V2 = 0. This shows that Y is b-normal. 

Definition 7 i) Let A be a subset of X, then we say that A is S-closed 

relative {34} to X if every cover {Va : a E V'} of A by semiopen sets of X, 

there exists afinite subset V' 0 ofV' such that A e U{Cl(Va): a E V' 0 }. 

A space X is said to be S-closed if X is S-closed relative to X equivalently 

if every regular closed cover of X has a finite subcover. 

ii) Let A be a subset of X, then we say that A is b-compact relative to 

X {15} if every cover of A by b-open sets of X has a finite subcover. A 

space X is said to be b-compact if X is b-compact relative to X. 

iii) Let A be a subset of X, then we say that A is nearly compact {36} if 
every cover of A by regular open sets of X has a finite subcover. 

Theorem 4.10 If f : X ---+ Y is a (b, s)-contimwus function andA is 

b-compact relative to X, then f(A) is S-closed relative to Y. 

Proof. Suppose that f : X ---+ Y is (b, s)-continuous and let A be b­

compact relative to X. Let {Va : a E V'} be an semiopen cover of 
f(A). For each point x E A, there exists a(x) E V' such that f(x) E 

Va(x)· Since f is (b, s)-continuous, there exists Ux E BO(X, x) such that 
f(Ux) e Cl(Va(x))· The family {Ux: x E A} is a cover of A by b-open sets 
of X and hence there exists a finite set Ao of A such that A e UxEAoUx. 

Therefore, we obtain f(A) e UxEAoCl(Va(x))· This shows that f(A) is 
S-closed relative to Y. 

Lemma 4.11 Let A be a subset of a topological space X. Then A E 

BO(X) if and only if bCl(A) is b-clopen in X (i.e., b-open and b-closed). 
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Proof. This follows immediately from Proposition 3.5 of [29]. 

Definition 8 A space X is said to be: (i) b-connected (29} if X can not 

expressed as the union of two disjoint non-empty b-open sets of X. 

(ii) B-irreducible (22} if every pair of non-empty regular closed sets of X 

has a non-empty intersection. 

It should be noted that X = {a, b, e} with Sierpinski topology is con­
nected but not b-connected. A space with indiscrete topology is con­
nected but not b-connected since b-open sets establish a discrete topol­
ogy. Also a space with partition topology is neither connected nor b­

connected. 

Theorem 4.12 If f : X ---> Y is a (b, s) -continuous function surjection 

and X is b-connected, then Y is B-irreducible. 

Proof. Suppose that Y is not B-irreducible. Then, there exist non-empty 
disjoint regular closed set F and G of Y. Since f is (b, s)-continuous and 
surjective, by Theorem 2.1 ¡- 1(F) and ¡-1(G) are non-empty disjoint 
b-open sets of X. Thus, we have bCl(f- 1(F)) n¡- 1(G) = 0. By Lemma 
4.11, bCl(f- 1 (F))is b-open and b-closed. This shows that X is not b­

connected. 

Recall, that a function f : X ---+ Y is said almost a-continuous [35] if 
¡-1(V) is a-open in X for every regular open set V of Y. 

Theorem 4.13 Let f : X ---. Y be a ( b, s) -continuous almost a-continuous 

surjection. If X is nearly compact (resp. S-closed), then Y is nearly 

compact (resp. S-closed). 

Proa f. If V is regular open in Y, then ¡-1 (V) is b-closed a-open in X 

since f is ( b, s )-continuous almost a-continuous. Since, every b-closed is 
¡3-closed, we have 
Int(Cl(Int(f- 1(V)))) e ¡- 1(V) e Int(Cl(Int(f- 1 (V)))) and ¡-1 (V) = 

Int(Cl(Int(f- 1(V)))). Thus, we obtain that ¡-1(V) is regular open in 
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X. Suppose that X is nearly compact. Let {Va : o: E 'V} be any 
regular open cover of Y. Then {f- 1 (Va) : o: E 'V} be any regular 
open cover of X and there exists a finite subset 'V 0 of 'V such that 
X= u{f-1 (Va): o: E '\70 }. Therefore, we obtain Y= U{Va: o: E 'V0 } 

since f is surjective. This shows that Y is nearly compact. 
The proof for S-closednees is similar and therefore is omitted. 
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Resumen 

Se introduce y estudia el concepto de funciones (b, s)-continuas en es­
pacios topológicos. Asimismo, se consideran algunas de sus propiedades 
características. También se investigan las relaciones entre estas clases de 
funciones ( b, s )-continuas y otras clases de funciones. 

Palabras clave: Espacios topológicos, conjuntos b-abiertos, conjuntos b­
cerrados, funciones (b, s )-continuas, funciones b-irresolutas. 
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