ON THE CONSTANT OF HOMOTHETY FOR COVERING A CONVEX SET WITH ITS SMALLER COPIES

Márton Naszódi^{1,2}

December, 2009

Abstract

Let H_d denote the smallest integer n such that for every convex body K in \mathbb{R}^d there is a $0 < \lambda < 1$ such that K is covered by n translates of λK . In [2] the following problem was posed: Is there a $0 < \lambda_d < 1$ depending on d only with the property that every convex body K in \mathbb{R}^d is covered by H_d translates of $\lambda_d K$? We prove the affirmative answer to the question and hence show that the Gohberg-Markus-Boltyanski-Hadwiger Conjecture (according to which $H_d \leq 2^d$) holds if, and only if, a formally stronger version of it holds.

2000 Mathematics Subject Classification: 52A35, 52A20, 52C17.

Keywords: Illumination, Boltyanski-Hadwiger Conjecture, Convex sets.

¹ Dept. of Geometry, Eötvös University, Hungary.

² Supported by a Postdoctoral Fellowship of the Pacific Inst. Math. Sci.

1 Definitions and Results

A convex body in \mathbb{R}^d is a compact convex set K with non-empty interior. Its volume is denoted by vol(K).

Definition 1.1. For $d \ge 1$ let H_d denote the smallest integer n such that for every convex body K in \mathbb{R}^d there is a $0 < \lambda < 1$ such that K is covered by n translates of λK . Furthermore, let \overline{H}_d denote the smallest integer m such that there is a $0 < \lambda_d < 1$ with the property that every convex body K in \mathbb{R}^d is covered by m translates of $\lambda_d K$.

Clearly, $H_d \leq \overline{H}_d$. The following question was raised in [2] (Problem 6 in Section 3.2): Is it true that $H_d = \overline{H}_d$?

We answer the question in the affirmative using a simple topological argument.

Theorem 1.2. $H_d = \overline{H}_d$.

The famous conjecture of Gohberg, Markus, Boltyanski and Hadwiger states that $H_d \leq 2^d$ (and only the cube requires 2^d smaller positive homothetic copies to be covered). For more information on the conjecture, refer to [1], [7] and [11]. In view of Theorem 1.2, the conjecture is true if, and only if, the following, formally stronger conjecture holds:

Conjecture 1.3. (Strong Gohberg-Markus-Boltyanski-Hadwiger Conjecture). For every $d \ge 1$ there is a $0 < \lambda_d < 1$ such that every convex body K in \mathbb{R}^d is covered by 2^d translates of $\lambda_d K$.

In Section 2 we prove the Theorem. We note that the proof provides no upper bound on λ_d in terms of d. In Section 3 we show an upper bound on the number of translates of λK required to cover K, improving a result of Januszewski and Lassak [5].

2 Proof of Theorem 1.2

We define the following function on the set of convex bodies:

 $\lambda(K) := \inf\{\lambda > 0 : K \text{ is covered by } H_d \text{ translates of } \lambda K\}.$

By [8], H_d is finite for every d, so $\lambda(.)$ is well defined.

Remark 2.1. Clearly, $\lambda(.)$ is affine invariant; that is, if T is an invertible affine transformation of \mathbb{R}^d then $\lambda(K) = \lambda(TK)$. Moreover, $0 < \lambda(K) < 1$.

We recall the definition of the (multiplicative) Banach-Mazur distance of two convex bodies L and K in \mathbb{R}^d :

$$d_{BM}(L,K) = \inf \{\lambda > 0 : L - a \subseteq T(K - b) \subseteq \lambda(L - a)$$

for some $a, b \in \mathbb{R}, T \in GL(\mathbb{R}^d) \}$ (2.1)

The following proposition states that $\lambda(.)$ is upper semi-continuous. Similar statements have been proved before, cf. Lemma 2, in [3].

Proposition 2.2. For every convex body K and $\varepsilon > 0$ there is a $\delta > 0$ with the property that for any convex body L, if $d_{BM}(L, K) < 1 + \delta$ then $\lambda(L) < \lambda(K) + \varepsilon$.

Proof. Let $\lambda := \lambda(K) + \frac{\varepsilon}{2}$. Then there is a set $\Lambda \subset \mathbb{R}^d$ with card $\Lambda \leq H_d$ such that $K \subseteq \Lambda + \lambda K$. Now, let $\delta > 0$ be such that

$$1 + \delta < \frac{\lambda + \frac{\varepsilon}{2}}{\lambda} \tag{2.2}$$

Assume that $d_{BM}(L, K) < 1 + \delta$; that is,

 $L-a \subseteq \overline{K} \subseteq (1+\delta)(L-a), \tag{2.3}$

Pro Mathematica, 24, 47-48 (2010), 113-119, ISSN 1012-3938 115

where \overline{K} is an affine image (under an invertible affine transformation) of K. Clearly, we may assume that $\overline{K} = K$.

It follows that $L - a \subseteq \Lambda + (1 + \delta)\lambda(L - a)$, and hence, $\lambda(L) \leq (1 + \delta)\lambda < \lambda(k) + \varepsilon$.

Let \mathcal{K}_a^d denote the set of affine equivalence classes of convex bodies in \mathbb{R}^d equipped with the topology induced by the metric d_{BM} . In [6] it is shown that \mathcal{K}_a^d is a compact space. (Note that Macbeath uses a different metric on \mathcal{K}_a^d however, that metric induces the same topology as d_{BM} , cf. [4].)

It follows from Remark 2.1 and Proposition 2.2 that $\lambda(.)$ is an upper semicontinuous function on a compact space. Hence, it attains its maximum, which (by Remark 2.1) is less than one. This proves Theorem 1.2.

3 Quantitative Results

Januszewski and Lassak [5] proved that for every $k + l > d^d$, any convex body $K \subset \mathbb{R}^d$ is covered by k translates of λK and l translates of $-\lambda K$, where $\lambda = 1 - \frac{1}{(d+1)d^d}$. The following argument shows that one may obtain a better estimate on the number of translates of λK required to cover K, using results of Rogers [8], Rogers and Shephard [9], and Rogers and Zhong [10].

Let K, L be convex bodies in \mathbb{R}^d . Let N(K, L) denote the covering number of K and L; that is, the smallest number of translates of L required to cover K. In [10] it is shown that

$$N(K,L) \leq \frac{\operatorname{vol}(K-L)}{\operatorname{vol}(L)}\Theta(L),$$

where $\Theta(L)$ is the covering density of L. By [8], $\Theta(L) \leq d \log d + d \log d$

 $\log\log d + 5d$ for every convex body L in $\mathbb{R}^d.$ It follows that for any $0 < \lambda < 1$ we have

$$N(K, \lambda K) \leq \lambda^{-d} \frac{\operatorname{vol}(K - K)}{\operatorname{vol} K} (d \log d + \log \log d + 5d)$$

$$\leq \lambda^{-d} \binom{2d}{d} (d \log d + \log \log d + 5d) \qquad (3.1)$$

The last inequality follows from the Rogers-Shephard Inequality [9]. Similarly,

$$N(K, -\lambda K) \leq \lambda^{-d} \frac{\operatorname{vol}(K+K)}{\operatorname{vol} K} (d \log d + \log \log d + 5d) = \lambda^{-d} 2^d (d \log d + \log \log d + 5d)$$
(3.2)

By substituting $\lambda = \frac{1}{2}$ into (3.1) and (3.2), we obtain the following: **Remark 3.1.** The number of translates of $\frac{1}{2}K$ that cover K is of order not greater than $8^d\sqrt{d}\log d$; and the number of translates of $-\frac{1}{2}K$ that cover K is of order not greater than $4^d d\log d$.

Definition 3.2. Let $0 < \lambda < 1$, and $d \ge 1$. We denote by $\overline{H}_d(\lambda)$ the smallest integer n such that every convex body K in \mathbb{R}^d is covered by n translates of λK .

It follows from Remark 3.1 that $\overline{H}_d\left(\frac{1}{2}\right)$ is finite for every d. A natural strengthening of the question we discussed in this note is the following:

Question 3.3. Is there a universal constant $0 < \lambda < 1$ such that for every dimension d, H_d is equal to $\overline{H}_d(\lambda)$?

Acknowledgements. I would like to thank Nicole Tomczak-Jaegermann for her support during my post-doctoral years at the University of Alberta, as well as the University and the Pacific Institute for the Mathematical Sciences for their support. I am grateful to Omar Rivasplata for the translation of the abstract.

Pro Mathematica, 24, 47-48 (2010), 113-119, ISSN 1012-3938 117

References

- Bezdek, K. The illumination conjecture and its extensions. Period. Math. Hungar. 53 (2006), N° 1-2, 59-69.
- Brass, P.; Moser, W.; Pach, J. Research problems in discrete geometry. Springer, New York, 2005. xii+499 pp. ISBN: 978-0387-23815-8; 0-387-23815-8.
- [3] Boltjanski, V. G.; Soltan P. S. A solution of Hadwiger's covering problem for zonoids. Combinatorica 12 (1992), N° 4, 381-388.
- [4] Grünbaum, B. Measures of symmetry for convex set. 1963 Proc. Symps. Pure Math., Vol. VII pp.233-270 Amer. Math. Soc., Providence, R.I.
- [5] Januszewski, J.; Lassak, M. Covering a convex body by its negative homothetic copies. Pacific J. Math. 197 (2001), N° 1, 43-51.
- [6] Macbeath, A. M. A compactness theorem for affine equivalenceclasses of convex regions. Canadian J. Math. 3 (1951), 54-61.
- [7] Martini, H., Soltan, V. Combinatorial problems on the illumination of convex bodies. Aequitiones Math. 57 (1999), 121-152.
- [8] Rogers, C. A. A note on coverigns. Mathematika 4 (1957), 1-6.
- [9] Rogers, C. A.; Shephard, G. C. The difference body of a convex body. Arch. Math. 8 (1957), 220-233.
- [10] Rogers, C. A.; Zong, C. Convering convex bodies by translates of convex bodies. Mathematika 44 (1997), N° 1, 215-218.
- [11] Szabó, L. Recent results on illumination problems. Intuitive geometry (Budapest, 1995), 207-221, Bolyai Soc. Math. Stud., 6 János Bólyai Math. Soc., Budapest, 1997.

Resumen

Llamemos H_d al menor entero positivo n con la propiedad de que para todo cuerpo convexo K en \mathbb{R}^d hay una constante $0 < \lambda < 1$ tal que K se cubre por medio de n traslaciones de λK . En el libro *Research problems in discrete geometry*, de Brass, Moser y Pach, el siguiente problema fue propuesto: ¿Es posible encontrar una constante $0 < \lambda_d < 1$, que dependa solo de la dimensión d, tal que todo cuerpo convexo K en \mathbb{R}^d es cubierto por H_d traslaciones de $\lambda_d K$? Demostraremos que la respuesta a esta pregunta es afirmativa, y por tanto que la conjetura de Gohberg-Markus-Boltyanski-Hadwiger (la cual postula que $H_d \leq 2^d$) se cumple si, y solo si, se satisface una versión formalmente más fuerte de la misma.

Palabras Clave: Iluminación, Conjetura de Boltyanski-Hadwiger, Conjuntos convexos, Cubrimiento de conjuntos convexos.

Márton Naszódi Dept. of Geometry, Eötvös University. Pázmány Péter Sétány 1 /C, Budapest, Hungary 1117 nmarci@math.elte.hu