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Abstract 

H ere we offer an introduction to the adele ring o ver the field 
of rational numbers Q and highlight sorne of its beautiful 

algebraic and topological structure. We then apply this rich 
structure to revisit sorne ancient results of number theory 

and place them within this modern context as well as make 
sorne new observations. We conclude by indicating how this 
theory enables us to extend the basic arithmetic of Q to the 

more subtle, complicated, and interesting setting of an 
arbitrary number field. 
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A Disparate Yet Connected World of Arithmetic 

In this paper we outline a modern approach to arithmetic that begins 
with Kurt Hensel's discovery of p-adic analysis in the late 1800s (here p 

is a fixed prime number). Years later, Claude Chevalley and many others 
saw how to simultaneously study all these p-adic worlds at once and that 
investigation led to the adeles. This pioneering work brought algebraic, 
analytic, and topological ideas together in order to better understand 
the nuance of number. Thus, beyond the important number theoretic 
implications of this effort, it also provides a beautiful illustration of the 
interconnections between the three basic pillars of pure mathematics. 

We adopt standard mathematical notation; in particular, we write 
Z, Q, JR, and C for the set of integers, rational, real, and complex num­
bers, respectively. The bibliography offers a number of references for 
further reading and research. This work grew out of my lecture notes 
from a special weekly evening number theory seminar I ran for interested 
students and faculty. 

I wish to acknowledge the referee who read this manuscript with 
great care and made a number of fine suggestions. Finally, I thank my 
colleague Professor Cesar E. Silva for the invitation and encouragement 
to write this article as well as for his friendship during my 20 years at 
Williams College. 
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1 An Introduction to the Theory of Valuations 

Let k be a field. A map 1 1 : k -+ [O, +oo) is called a valuation or an 
absolute value if the following three conditions are statisfied: 

1) lxl =O if and only if x =O. 
2) For all x, y E k, ixyi = lxiiYI· 
3) The triangle inequality holds: For all x, y E k, 

lx+yl ~ lxl + IYI · 

If k* = k\ {O} is the multiplicative group of nonzero elements of k and 
11 is a valuation on k, then, by condition 2), the map 

11: k*-+ {(O,+oo), ·} 

is a homomorphism of multiplicative groups. Hence it immediately fol­
lows that 

(i) 111 =l. 
( ii) If en = 1 for sorne e E k and nonzero integer n, then ~~~ = l. 

(iii) 1-11 = 1, 1-xl = lxl and lxml = lxlm for all x E k and m E Z. 

If we let d : k x k -+ [0, +oo) be defined by 

d(x,y) = lx- Yi , 

then conditions 1), 2), and 3) imply that d is a metric on k. Let 1 l1 
and 1 l2 be two absolute values on k, and let 1í. and 72 be the topologies 
on k induced by the metrics associated with 1 l1 and 1 !2, respectively. 
That is, T.¡ is the collection of all open sets in k determined by the metric 
di(x, y) = lx- Yii for i = 1 and 2. We say that the two absolute values 
ll1 and ll2 are equal if lxl1 = lxl2 for all x E k. We say that ll1 and ll2 
are equivalent if 1í. = 72, that is, if they generate the same topology on 
k. 

We define the map llo :k-+ [0, +oo) as follows: IOio =O and for all 
x E k, x =/:- O, lxlo = l. It is easy to verify that 1 lo is a valuation on k. 
This map is known as the trivial absolute value and although it may not 
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appear to be very interesting, it does illustrate that given any field k, the 
set of absolute values on k is never empty. A more important challenge 
remains: Given a field k, classify all (up to equivalence) absolute values 
on k. We will return to this question in Sections 2 and 8. 

We recall that the discrete topology on a set X is the topology in 
which each element of X is an open set; that is, {x} is an open set for all 
x E X. Our first proposition offers a necessary and sufficient condition 
for an absolute value on k to generate the discrete metric topology. 

Proposition 1.1. The absolute value 1 1 on the field k induces the dis-

crete topology on k if and only if 1 1 = 1 lo. 

Proof. For any o: E k, we note that the open set {x E k: lx- o:lo < 1} 
equals {o:}. Thus 1 lo generates the discrete topology on k. Conversely, 
suppose that 1 1 generates the discrete topology on k and further assume 
that it is not the trivial absolute value. Since 11 is not the trivial absolute 
value on k, there must exist an element o: E k such that lo:l =1- O and 
lo:l =1- l. By replacing o: by o:-1 , if necessary, we may assume without 
loss of generality that O < lo:l < l. Therefore 

lim lo:n - Ol = lim lo:ln = O . 
n--+oo n--+oo 

That is, {o:n}~=l is a sequence of nonzero elements of k converging to 
O with respect to 1 1· Thus any open set containing O must also contain 
an element ofthis sequence. However, since the topology is discrete, {O} 
is an open set containing O, but clearly does not contain any element of 
our nonzero sequence. This contradiction implies that 11 = 1 lo· O 

Moving beyond the trivial absolute value, the example with which 
we are most familiar is k = IR, with 1 1 as the usual Euclidean absolute 
value. If we consider the field of complex numbers C, then the map 
defined by 

lu + ivl = v'u2 + v2 
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is an absolute value on C that when restricted to IR produces the familiar 
Euclidean absolute value. Thus the absolute value on C extends the 
Euclidean absolute value of IR. 

Let x be a variable and define the field of rational functions in x, 
denoted by Q(x), to be the field of all p(x)jq(x) in which both p(x) and 
q(x) are polynomials having rational coefficients with q(x) not identically 
O. For a fixed transcendental number T, we define 1 Ir on Q(x) by 

l
p(x) 1 lp(T) 1 

q(x) r = q(T) ' 

where 1 1 is the usual absolute value on C. It is easy to verify that 1 Ir 
is an absolute value on Q(x). A more interesting map on Q(x), lldeg, is 
given by: 

l

p(x) 1 = edeg(p(x))-deg(q(x)) , 

q(x) deg 

where e = 2.718281 ... and deg(p(x)) is the degree of the polynomial 
p(x), with deg(O) defined to be -oo (and, of course, e-oo is defined to 
be 0). 

Theorem 1.2. The map 1 ldeg is an absolute value on the field Q(x). 

Proof. We first establish that this map is well-defined. For any nonzero 
polynomial r(x), we observe that 

l

p(x)r(x) 1 

q(x)r(x) deg 

edeg(pr)-deg(qr) 

edeg(p)+deg(r)-deg(q)-deg(r) 

edeg(p)-deg(q) = 1 p(x) 1 

q(x) deg 

which shows that 1 ldeg is indeed well-defined. 
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Clearly the map 1 ldeg takes on values from the set of nonnegative 
real numbers and lp(x)/q(x)ldeg =O if and only if p(x)fq(x) is the con­
stant function O. Next we compute 

I

Pl(x) P2(x) 1 

Ql(x) Q2(x) deg 

edeg(p¡)-degv(q¡)+deg(p2)-deg(q2) 

I

Pl(x) 1 lp2(x) 1 

Ql (x) deg Q2(X) deg 

thus condition 2) is satisfied for this function. 

Finally we establish condition 3), the triangle inequality, holds for 
1 ldeg· We abbreviate our notation and write p for the polynomial p(x). 
Let ptfql and P2/Q2 be two elements of Q(x). Without loss of generality 
we may assume that 

lptfqlldeg ~ IP2/Q2Ideg · 

That is, deg(pt)-deg(ql) ~ deg(p2)-deg(q2), or equivalently, 

deg(pt) + deg(q2) ~ deg(p2) + deg(qt) . (1.1) 

From basic polynomial arithmetic we recall that 

This observation along with inequality (1.1) yields 

IPl + P21 
Ql Q2 deg IP1Q2 + P2Qll 

Q1Q2 deg 
= edeg(p¡q2+P2q¡)-deg(q¡q2) 
< emax{deg(p1q2),deg(p2q1 )}-deg(q¡q2) 
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edeg(p2) +deg( ql) -deg( ql) -deg( q2) 

edeg(p2)-deg(q2) = IP2/Q2Ideg 

max{lpl/qlldeg, IP2/Q2Ideg} 

< 1:~ ldeg + 1:~ ldeg 

Hence the map 1 ldeg is an absolute value on Ql(x). o 

In our previous proof of the triangle inequality we actually proved 
a stronger inequality. Instead of condition 3) we proved: 

3') The strong triangle inequality: for all x, y E k, 

lx + Yl ~ max{lxl, IYI} · 

Clearly condition 3') implies condition 3). If an absolute value satis­
fies condition 3'), then it is called a nonarchimedean absolute value. If 
an absolute value does not satisfy condition 3'), then it is called an 
archimedean absolute value. The usual Euclidean absolute value on lR is 
an archimedean absolute value since, for example, 11+311:. max{lll, 131}. 
On the other hand, the trivial absolute value on a field k is always nonar­
chimedean. As we have just seen, 1 ldeg is a nontrivial example of a 
nonarchimedean absolute value on Ql(x). 

We now investigate algebraic properties of nonarchimedean valua-
tions. Again, let k be a field and let 1 1 be a nonarchimedean absolute 
value on k. We define the subsets O = O(k, 1 1) and P = P(k, 1 1) by 

O= {x E k: lxl ~ 1} and P = {x E k: lxl < 1} . 

Theorem 1.3. The set O is a ring and P is the unique maximal ideal 
in O. 

Proof. Suppose that x and y are elements of O. Then by conditions 2) 
and 3'), we have that 

lxyl = lxiiYI ~ 1 and lx + Yl ~ max{lxl, IYI} ~ 1 · 
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Thus, xy E O and x +y E O. Of course 1- xl = lxl :::; 1, so we have that 
-x E O and therefore O is a ring. 

Again by the strong triangle inequality we have that (P, +) is an 
additive subgroup of O. Also if p E P and z E O are arbitrary elements, 

then lzpl = lziiPI :::; IPI < l. Hence P is an ideal of O. Moreover, we 
note that for any x E O\ P, we have lxl = l. Thus it follows that 
11/xl = 1; that is, O\ P is precisely the set of units in O. To show that 
P is maximal, suppose that M, M =f. P, is an ideal of O with P e M. 
Let m be an element of M\ P. As mis a unit, then it follows that the 
ideal M= O; therefore Pis a maximal ideal. 

Finally we establish that P is the unique maximal ideal in O. Sup­
pose that P 1 is another maximal ideal of O with P 1 =f. P. Then there 
must exist an element w E P 1 ~ O with w fÍ. P. Thus, we have that w 

is a unit the ideal P 1; hence P 1 = O. However we assumed that P1 was 
also maximal, which implies that P 1 =f. O. Hence P 1 cannot exist; that 
is, P is the unique maximal ideal in O. O 

The set O is called the ring of integers of k with respect to 1 1· As P 
is maximal, it follows that the ring O /P is a field, known as the residue 
class field of k with respect to 1 1· As we will see in the sequel, these 
algebraic objects are central to the development of advanced arithmetic. 

We close this discussion with an important albeit strange observa­
tion about nonarchimedean valuations: If lxl =f. IYI, then there is always 
equality in the strong triangle inequality. 

Theorem 1.4. Let k be a field and 1 1 a nonarchimedean absolute value 
on k. lf x and y are elements of k with lxl =/=- IYI, then 

lx + Yl = max{lxl, IYI} · 

Proof. Since lxl =f. IYI, without loss of generality we may assume that 

lxl < IYI and thus max{lxl, IYI} = IYI· By the strong triangle in­
equality we have that lx + Yl :::; max{lxl, IYI}. We now assume that 
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lx + Yl < max{lxl, IYI}; that is, lx + Yl < IYI· By another application of 
the strong triangle inequality we discover that 

IYI lx+y -xl 
< max{lx +y¡, 1- xl} = max{lx +y¡, lxl} 

< IYI' 

which is plainly impossible. Therefore we conclude that 

lx + Yl = max{lxl, IYI}, 

as desired. o 

An amusing and surprisingly useful corollary to Theorem 1.4 is the 
fact that all triangles formed by three elements of k, whose side lengths 
are measured with the nonarchimedean absolute value 1 1, are isosceles. 

Corollary 1.5. Any triangle having its vertices given by three points 
of k is an isosceles triangle with respect to the nonarchimedean absolute 
value 11· 
Proof. Let x, y, and z be elements in k. Then the lengths of the sides of 
the triangle having x, y, and zas its vertices are given by lx-y¡, IY- zl, 
and lx- zl. Now if lx- Yl = IY- zl, then the triangle would be isosceles. 
We now assume that lx - Yl =f. IY - zl. Thus from Theorem 1.4, there is 
equality in the strong triangle inequality and therefore 

lx- zl = l(x- y)+ (y- z)l = max{lx- y¡, IY- zl} . 

Hence the side length of lx- zl equals the greater of the lengths of the 
other two sides and so the triangle is indeed isosceles as claimed. O 

We consider one last peculiar but important consequence of Theo­
rem 1.4. For a fixed element a E k and rE IR, r >O, we define the open 
ball of radius r centered about a by 

B(a,r) = {x E k: lx-al< r}. 
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Now let bE k be any other element in B(a, r), that is, bE B(a, r). If 11 

is a nonarchimedean absolute value on k, then it can be shown that 

B(a,r) = B(b,r). 

That is, every point in an open disk is the center of that open disk. The 
proof of this strange assertion closely parallels the argument of Corollary 
1.5 and is left as an instructive exercise for the reader. 

2 N onarchimedean S paces and Basic p-adic Analysis 

By the FUndamental Theorem of Arithmetic, every integer greater 
than 1 can be factored uniquely as a finite product of prime numbers 
(up to the order of the factors). Thus given a nonzero integer n, n =/=- 1, 
we may express it uniquely as 

in which each pz is a distinct prime number and tz is a positive integer. 
This unique prime factorization extends to nonzero rational numbers r, 

r =/=- 1, as 

where now the Um 's are nonzero integers. For example, 

140 2 -3 -1 

297 
= 2 X 3 X 5 X 7 X 11 . 

Let p be a fi.xed prime number. We can always include this special 
prime p in the factorization of any such r as follows: If p does not already 
occur in the factorization of r, then we can express the factorization with 
our superfiuous factor as: 
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Given the fixed prime p, this new factorization is also unique. We now 
define a map 1 IP : Q ---t [0, +oo) as follows: /0/p = O, and for r E Q, 
r :f. O, 

where t is the power of p occurring in this new factorization of r. 

Examples. j140/297la = 33
, 1140/29712 = 1/22, and l140/297b =l. 

We now discover that this peculiar prime reciproca! function pos­
sesses incredible structure. 

Theorem 2.1. Let p be a fixed prime number and let IIP : Q ---t [0, +oo) 
be the map defined above. Then 1 IP is a nonarchimedean absolute value 
onQ. 

The absolute value 1 IP is called the p-adic absolute value. 

Proof. Clearly we have that lxlp ~O for all x E Q and that lxlp =O if 
and only if x = O. Given arbitrary nonzero rational numbers x and y, 
we express them as: 

where t and u are integers, and r 1 , s 1 , r 2 , s2 are integers each relatively 
prime to p. Thus we have 

lxyiP IPt+u(r¡r2)/(s1s2)IP 

IPt+u IP = P-(t+u) 

P-t P-u = lxlp IYip · 

Hence for all rational x and y, lxyiP = lxlpiYip· It remains for us to 
establish the strong triangle inequality. Without loss of generality we 
may assume that t :::;: u so we ha ve that u - t is a nonnegative integer, 
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lx + Ylv = lpt (r1 + pu-t r2) 1 
S1 S2 p 

lxlv 1 r1s2 + p"'-tr2s1 1 

S1S2 p 

max{lxlp, IYiv} hs2 + p"'-tr2s1IP 

< max{lxlv, IYiv} , 

and therefore 1 lv is a nonarchimedean absolute value on Q. 

In this context we have that 

O= {x E Q: lxlv ~ 1} and P = {x E Q: lxlv < 1} , 

o 

where, by Theorem 1.3, O is a ring and P the unique maximal ideal in 
O. Here the residue class field, O /P, is isomorphic to the finite field of 
order p; that is, 71../p'll.. To establish this assertion we first observe that, 
in view of unique factorization, O and P can be defined alternatively, 
but equivalently, as 

O {x = r/s E Q: gcd(r,s) = 1 and gcd(s,p) = 1} and 

P {x = r/s E Q: gcd(r, s) = 1 and gcd(r,p) > 1} . 

It follows that for any r / s E O, the denominator s is not congruent to 
O modulo p and thus has a multiplicative inverse in 71../p'll., say s-1. Let 
t = t(r/s) be the element of 71../p'll. that is congruent to rs-1 modulo p. 
Then one can verify that the map r¡: 0/P-+ 71../p'll. defined by: 

r¡(x + P) = t(x) mod p 

is a well-defined function and moreover is an isomorphism of fields. Thus 
from now on, we will represent 0/P as {0, 1, 2, ... ,p- 1}. 

We now introduce sorne basic p-adic analysis. Suppose that { an}~=T 
is an infinite sequence of elements from O /P (here we will allow T to 

160 Pro Mathematica, 24, 47 {2010}, 149-195, ISBN 1012-3938 



Arithmetic from an Advanced Perspective: An Introduction to the Adeles 

be an arbitrary integer). It is easy to see that lanlp equals either O or 
1, depending upon whether an =O oran -=/=-O, respectively. Let us now 
consider the following infinite sequence of rational numbers: 

(2.1) 

Note that by the strong triangle inequality, for M > L, 

li; a.p"-~ a.pt 
~ max {laL+lPL+liP, laL+2PL+21P, ... ' laMPMIP} = p-L-1 . 

In view of this observation, one can establish that the sequence in (2.1) is 
a Cauchy sequence in Q with respect to the metric topology generated by 
the p-adic absolute value. Moreover, every Cauchy sequence in Q with 
respect to the p-adic absolute value can be expressed as a sequence of 
partial sums as above with a suitable choice of the coefficients { an} ~=T ~ 
0/P. Thus, in sorne sense, we can describe the general shape of all 
Cauchy sequences in this context. 

If the sequence in (2.1) converges toa number o: E Q, then we write 

which leads to the question: Which of these Cauchy sequences converge 
in Q? The answer, whose proof we do not include here, is analogous 
to its Euclidean (archimedean) counterpart. In fact, we could view this 
answer as its arithmetical analogue. 

Theorem 2.2. Let p be a fixed prime number. Then the infinite series 
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where an E O /P, converges to a rational number with respect to the p­
adic absolute value if and only if the infinite sequence { an}~=T is even­
tually periodic. 

Example. Evaluate z=:=o 32
n with respect to the 3-adic metric. If we 

write s for this sum then we have: 

s 1 + 32 + 34 + 36 + · · · and 

32 
S 32 + 34 + 36 + · · · 

If we subtract these two identities, then we find (1 - 32)s 
therefore discover that s = -1/8. 

1, and 

Exercise. Find an infinite series that converges to a positive rational 
number with respect to the 3-adic absolute value. 

In view of Theorem 2.2, we see that not all Cauchy sequences in Q 
with respect to the p-adic absolute value converge in Q. To construct 
such a non-convergent Cauchy sequence, we need only select a sequence 
{ an}~=T that is not periodic. Thus Q is nota complete metric space with 
respect to the p-adic metric (the metric given by d(x, y)= lx- Ylp)· We 
now define the set Qp to be the completion ofQ with respect to the metric 
induced by the p-adic absolute value. That is, Qp is the smallest field that 
contains Q and for which every p-adic Cauchy sequence converges. The 
set QP is called the field of p-adic numbers. As we will discover in Section 
3, every element of Qp can be expressed as an infinite series of the forro 

(2.2) 

where an E {0, 1, ... ,p- 1}, and in view of Theorem 2.2, we see that 
(2.2) is the p-adic analogue of the decimal expansion of real numbers. 

We define the sets Zp and pZp by 
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and 
pZp = {x E Qp: lxlv < 1} . 

It is clear that O is a subset of Zp and P is a subset of pZp. In fact, 
following the proof of Theorem 1.3 we have that Zp is a ring and pZp 
is the unique maximal ideal contained in Zp. The ring Zp is called the 
ring of p-adic integers. 

In order for us to include the Euclidean absolute value 1 1 on Q in 
our discussion of valuations, we adopt the following notation. We write 
lloo for the usual Euclidean absolute value on Q and T00 for the metric 
topology on Q generated by 1 loo· Similarly, for a prime p we write 1 lv 
and Tp for the analogous p-adic objects. We note that Q 00 is just another 
name for R We define the set VQ by 

VQ = { oo, 2, 3, 5, 7, 11, 13, ... } . 

We call VQ the set of places of Q. It is a straightforward, but worthwhile 
exercise to verify that for any two distinct elements q and p in VQ, llv is 
not equivalent to llq· That is, Tp =f. Tq. It thus follows, perhaps not sur­
prisingly, that Qp =f. Qq. Thus we have constructed a countably infinite 
collection of distinct absolute values on Q. The following very impor­
tant theorem of Alexander Ostrowski from 1934-whose proof we only 
sketch below-tells us that there are no other (non-equivalent) nontrivial 
absolute values on Q. 

Theorem 2.3. Suppose that 11 11 is a nontrivial absolute value on Q. 
Then 11 11 is equivalent to 1 lv for some pE VQ. 

Outline of the proof. Let 11 11 be a nontrivial absolute value on Q. We 
first claim that 1111 is nonarchimedean if and only if llnll :::; 1 for all n E Z. 
To establish this assertion, we first note that if 11 11 is nonarchimedean, 
then for any n E Z (without loss of generality, we assume that n > 0), 
we have 

llnll = 111 + 1 + · · · + 111 :::; max{ll1ll, 11111, · · ·, 11111} = 1 · 
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Conversely, if we now assume that llnll :::; 1 for all n E Z, then for any 

integer M ~ 1 and any integer m, O :::; m :::; M, we have 11 (~) 11 :::; l. 

Thus it follows that for any x, y E Q, 

llx+yll ~ li(x+yJMII''M ~lit, (~!}m·M-mli''M 
< (i 11 (~) llllxmyM-mll) 1/M 
< ((M+ 1) max{llxll, IIYII}Mr/M 

= (M+ 1)1/M max{llxll, IIYII} · 

If we now let M -+ oo, then the previous inequality shows that 11 11 is 
nonarchimedean, thus establishing our claim. 

If 11 11 is archimedean, then we can find a positive integer n satisfying 
llnll > l. We define the positive real number T by llnll = lnl~· Using 
base-n expansions and a "power trick" similar to the one in the previous 
paragraph, it can be shown that this special T satisfies an even greater 
condition: For any rational number a, we have llall = lal~· Given this 
identity, it follows that 11 11 is equivalent to 1 ICX>· 

If 11 11 is nonarchimedean, then we can find the smallest positive 
integer n satisfying llnll < l. It can now be shown that n must be 
prime, which we will rename p. Using Corollary 1.5 and the Euclidean 
algorithm, one can craft an argument to deduce that for any rational 
number a, if lalp = p-t, then llall = IIPIIt. This assertion allows us to 
show that 11 11 is equivalent to 1 IP' D 

Therefore ( up to equivalence) the set of places VQ corresponds to a 
complete list of distinct nontrivial absolute values on Q. So any nontrivial 

164 Pro Mathematica, 24, 47 {2010}, 149-195, ISBN 1012-3938 



Arithmetic from an Advanced Perspective: An Introduction to the Adeles 

absolute value on Q is ( essentially) either the usual Euclidean absolute 
value or a p-adic absolute value for sorne prime p. 

Is it possible that all the absolute values on Q 
are somehow connected to each other? 

A positive answer may initially appear hopeless since these absolute 
values are so apparently different and independent. However they are 
connected in the following simple but fundamentally deep and beauti­
ful theorem, commonly known as the product formula. Recall that we 
denoted the trivial absolute value on a field by 1 lo· 

Theorem 2.4. (The Product Formula) Let a be a rational number. 
Then 

rr ialp = ialo . 
pEVQ 

That is, for a =f o, rrpEVQ lalp = l. 

Remark. Upon first inspection, it appears that the above product is an 
infinite product and thus issues of convergence need to be considered. 
However we recall that a has only finitely many prime factors. Thus for 
any prime p that is nota factor of a we have ialv = l. Therefore the 
product in Theorem 2.4 is only formally infinite and, in fact, is finite. 

Proof of Theorem 2.4. If a = O, then the identity trivially holds. Thus we 
need only consider the case in which a =f O (and so lalo = 1). Without 
loss of generality we assume that a > O. We factor a into its unique 
finite product of distinct primes 
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in which n¡ > O is an integer for each l. Therefore we have 

p a prime 

L L 

lo:loo rr io:lvz = lo:loo ITP!n¡ 
l=l l=l 

p~1p~2 ... p~L P!n1P2"n2 ... p[,nL 

= 1 = io:lo . 

Thus the product formula holds for all rational o:. o 

Though the proof of this result is straightforward, the product for­
mula is at the very heart of the subject. Notice that it illustrates, among 
other things, that if we know the value of io:lv for each pE VQ except for 
one place, say q, then we automatically know !o:lq· Also, in sorne sense, 
it is equivalent to the "fundamental principle of number theory"; namely 
that "there are no integers between O and 1." The product formula plays 
an important role in algebraic number theory and, as we will mention 
in Section 8, allows us to extend this fundamental principle to arbitrary 
number fields. 

3 Topological Properties of QP 

Let p be a fixed prime and consider the infinite series 

00 

where an E Qlp for each n. It is easy to see that if this series converges 
in Qlp, then 

Suppose now that we are given the infinite series and we wish to de­
termine whether or not it converges in Qlp. In the archimedean setting 
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(in Q00 = JR) we recall from calculus that there are a variety of "tests" 
we emply in order to determine convergence. Here we show that in the 
nonarchimedean case, the situation is much simpler. 

Theorem 3.1. Let I::'=o an be an infinite series with an E Qp for each 
n. Then the series converges in Qp if and only if limn--+oo ian IP = O. 

Proof. If the series converges in Qp, then the terms must p-adically 
approach O. Suppose now that 

lim ianlp =O . 
n--+oo 

Thus for any given E: >O, there exists an index T such that for all t 2: T, 

(3.1) 

For N 2: O, we write SN for the Nth parial sum: 

To establish that the series converges we need to show that the sequence 
of partial sums converges. Given that Qp is a complete field, we need 
only show that {SN }íV'=o is a Cauchy sequence in Qp. Suppose that 
M> N 2: T. Then by the strong triangle inequality and (3.1) we have 

ISM - SNip iaN+l + aN+2 + · · · + aMip 

< max{laN+llp, iaN+21p, .. ·, laMip} <E:· 

Hence the sequence of partial sums is a Cauchy and therefore the corre­
sponding infinite series converges in Qp. O 

Of course Theorem 3.1 is false in the archimedean case. Thus al­
though we can transcribe all the results from real analysis to the p-adic 
setting, we see that sometimes the nonarchimedean analogues are strik­
ingly different. 
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We now turn our attention to topological properties of Qp by first 
recalling the ring of p-adic integers: 

and, in arder to develop sorne intuition into the structure of this ring, 
considering the following: 

Theorem 3.2. The ring Z is a dense subset of Zp· 

Proof. For an integer x, we have that lxlp ~ 1 and thus clearly Z ~ Zp. 
We now demonstrate that Z is dense in Zp. Let a E Zp andO< é < l. 
We must show that there exists an integer m such that lm- alp < é. We 
recall that Qp is the completion of Q with respect to the p-adic absolute 
value. That is, Qp is the smallest field containing Q such that all p-adic 
Cauchy sequences converge. It follows that Q is dense in Qp. Therefore 
we may find a rational number rfs such that lr/s- alp < é. By the 
strong triangle inequality we have that 

~~~P =~~-a+ aiP ~ max{é, 1} = 1. 

Thus we conclude that r / s E Zp. 
We now write r / s as 

r _ 1 (u) - -P - ' 
S V 

where l 2:: O and u, v, and p are pairwise relatively prime. Next we 
select an integer i > O so large that p-i < é. Plainly since p and v are 
relatively prime, it follows that pi and v are also relatively prime. Thus 
there exist integers a and b satisfying 

av + bpi = 1 or equivalently bpi = 1 - av . (3.2) 

Now define the integer m by m= aup1 • In view of (3.2) we have 
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lp1 (~) IP 11- avlp 

p-l 11 - avlp ::; lbpiiP ::; p-i <e . 

Therefore we have Ir/ s - mlp < c. Hence, by another application of the 
strong triangle inequality we conclude that 

lm- 'C + 'C -al 
S S p 

< max{lr/s- mlp, lr/s- alp} <e. 

Thus Z is a dense subring of Zp. o 

Theorem 3.2 provides yet another example of the dramatic difference 
between p-adic and real analysis. The set of points in lR that have abso­
lute value less than or equal to 1 is the closed interval [-1, 1], which has 
no particularly attractive algebraic structure. In the nonarchimedean 
setting, the analogous set, Zp, forms a ring. Moreover, we observe that 
in the archimedean case, 

[-1, 1] n z = { -1, 1} , 

while in the nonarchimedean case 

Thus, the collection of integers in Qp is a bounded subset that is dense 
in Zp· 

Recall that a topological space (X, T) is locally compact if for every 
point x E X, there exists an open set U E T such that x E U and the 
closure of U is compact. In the archimedean setting, we note that the 
interval ( -1, 1) in lR is an open set whose closure is compact. This fact 
allows us to deduce that lR is locally compact. 

In fact the same strategy will allow us to prove that Qp is also 
a locally compact field (thus, local compactness is a property enjoyed 
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by both archimedean and nonarchimedean completions). In the nonar­
chimedean analysis, perhaps not surprisingly, we will replace the set 
[-1, 1] with Zp· However in this case, we will not have to consider an 
analogue to the real open interval ( -1, 1). For as we will now discover, 
Zp is both open and closed. 

Theorem 3.3. The ring of p-adic integers, Zp, is both open and closed 
and moreover is a compact subset of Qp. 

Proof. It is a straightforward exercise to verify that 

Given this identity and our metric topology, we conclude that Zp is an 
open set. Clearly, in view of the definition of Zp, we have that it is also 
closed. 

To show that Zp is compact, we begin by claiming that 

p-1 

Zp = U (a+ p.Zp) . (3.3) 
a=O 

To establish this assertion, we first observe that any element in the union 
of (3.4) has p-adic absolute value less than or equal to l. Thus we have 
that u:;;;~(a + p.Zp) ~ Zp. 

Suppose now that a E Zp· By Theorem 3.2 we have that Z is dense 
in Zp. Hence there must existan integer m E Z such that la-mlp < 1/p. 
Let rñ E {0, 1, 2, ... ,p- 1} be the unique element satisfying m = rñ 

mod p. It follows that lm- rñlp ~ 1/p. An application of the strong 
triangle inequality yields 

Thus we conclude that given an a E Zp, there exists an integer a, 

O ~ a ~ p- 1, su eh that a E a+ p.ZP and so Zp ~ u::~ (a+ p.Zp). Hence 
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identity (3.3) holds and, moreover, one can verify that the sets within 
the union are all pairwise disjoint. 

We now prove that Zp is compact by contradiction: We assume that 
Zp is not compact. Then there must existan infinite open cover {U>.h.EA 
of Zp with the property that there is no finite subcollection of {U>.} >.EA 
that also covers Zp. From identity (3.3) it follows that there must exist 
an ao, O~ a0 ~ p- 1, such that the set 

is not covered by finitely many of the U>.'s (for otherwise, we would be 
able to find a finite subcover). We now apply identity (3.3) again and 
notice that 

ao + p.Zp = ao + p CQ: (a + p.Zp)) . 

Thus, repeating our previous argument, there must exist an a¡, O ~ a1 ~ 

p- 1, such that the set 

is not covered by finitely many U>. 's. We continue this process and 
generate an infinite series 

with the property that for any N ~ O, 

(3.4) 

is not covered by finitely many U>. 's. This infinite series converges to a 
point, let us call it a, in .ZP' That is, 

CXl 

a = L anpn E Zp . 
n=O 
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Since {U>.hEA is an open cover of Zp, there must exist an element of 
this collection, say U>.0 , such that a E U>.0 • Of course U>.0 is an open 
set and the topology here is generated by open p-adic balls. Therefore 
there must exist an integer N > O so that the open hall centered at a of 
radius 1/pN. 

B (a, p~) = { x E Zp : la - xlp < p~} , 
is contained in U>.a· We note that the hall B (a, 1/pN) could have been 
defined by the following equivalent description: 

(3.5) 

We now observe that 

N 

L anpn E B (a, 1/pN) 
n=O 

beca use 

IJHa.p"l, 
= IPN+l¡P f anpn-(N+l)l 

n=N+l P 

1 < p-(N+l) < N . 
p 

Therefore, since every element within an open p-adic hall is the center 
of the hall, identity (3.5) reveals that 

(~ anpn) + pN+lzP e;;_ U>.a . 

However this containment contradicts the defining property (3.4) of the 
series. Thus there must exist a finite subcover and hence Zp is compact. 
o 
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Let a be an arbitrary element of Qp. Then the set a+ Zp is, by 
the previous proof, an open set containing a that is compact. Therefore 
Theorem 3.3 immediately implies 

Corollary 3.4. The field of p-adic numbers, Qp, is locally compact. 

Moreover, the algorithm used in the proof of Theorem 3.3 provides 
a method for finding the p-adic "digits", an E {0, 1, ... ,p- 1}, of an 
arbitrary a E Qp in its p-adic expansion 

00 

-'""' n a- L..,¡ anp . 
n=T 

The proof of Theorem 3.3 also highlights the fact that p-adic absolute 
values are, in reality, the generalizations of congruences. As we noted, 
x =y mod p if and only if lx- YIP < l. Thus the p-adic absolute value 
measures an arithmetic distance that is exactly captured by congruences. 
However notice that congruences are always studied in the context of 
integers, while the p-adic absolute value is able to handle arithmetic 
analysis of rational numbers and, as we have seen, irrational numbers 
from the completion Qp. Thus we have come upon the "right" tool to 
consider arithmetic issues: Traditionally working with the arithmetic via 
congruences is complicated and delicate. However now we can apply all 
the powerful machinery of analysis and topology to attempt to answer 
diffi.cult arithmetic questions. In fact, these types of applications are 
what inspired Kurt Hensel to develop this theory in 1897. Thus we see 
that these ideas are not only beautiful and potentially powerful, but 
relatively new. 

4 Restricted Topological Products: An Introduction 
to the Adele Ring 

Let {X>.hEA be a family oftopological spaces. For almost all.A E A 
(that is, all but possibly a finite number of .A) let 0>. be a specified open 
set in X>.. Let X be the space whose points are a = (a>.)>.EA where 
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a>.. E X>.. for all A E A and a>.. E 0>.. for almost all A E A. That is, 
the points of X are "vectors" with one component for each A E A such 
that the element in the Ath coordinate a>.. is an element of X>.. and more 
restrictively, for almost all components, the Ath coordinate a>.. is not 
only in X>.. but in the specified open set 0>.. in X>... 

We give X a topology T generated by open sets of the form: 

where rA is open in X>.. for all A E A and rA = 0>.. for almost all A E A. 
We call the topological space (X, T) the restricted topological product of 

the {X>..hEA with respect to {0>..}· To apply this topological construct 

to our setting, we recall that the collection of places of Q is defined by 

VQ = {oo, 2, 3, 5, 7, 11, 13, ... } 

and corresponds to all the non-equivalent, nontrivial absolute values on 
Q. Moreover, for each place pE VQ, Qp is a topological space with the 
metric topology induced by the absolute value 1 lv· We now consider 
the family of topological spaces {Qp}pEvQ and recall that for each prime 
number p, the ring of p-adic integers, 

is an open set in the field of p-adic numbers Qp. Plainly almost all p E VQ 
are primes (in fact there is only one element in VQ, namely oo, that is 
not a prime). Therefore for almost all p E VQ ( all p except p = oo), Zp 
is an open set in Qp. 

We write (QA, T) for the restricted topological product of {Qp}pEvQ 
with respect to {Zp}p a prime· That is, elements in the set QA have the 
form: a = (ap)pEVQ with aP E Qp for all p E VQ, and for almost all 
p, ap E ZP" So a may be viewed as a "vector" with infinitely many 
components, the pth component ap coming from the completion Qp and 
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almost all of the components are, in fact, p-adic integers. We abbreviate 
(ap)pEVQ as simply (ap)· 

We now define the binary operations addition and multiplication on 
QA as follows: If a= (av) and {3 = (f3v) are two elements of QA, then 

Here the addition ap + f3v and multiplication avf3v correspond to the 
addition and multiplication in the field Qp for the appropriate p E VQ. 
Thus, we have defined addition and multiplication on QA by componen­
twise addition and multiplication. 

Theorem 4.1. The set QA with componentwise addition and multipli­
cation forms a commutative topological ring with unity. 

Proof. We observe that O= (O) (here we mean that every component is 
O) is an element of QA and is the additive identity element in QA and 
similarly 1 = (1) is in QA and is the multiplicative identity element. 
The fact that the addition and multiplication are commutative follow 
immediately from the fact that + and x defined on each completion Qp 
are commutative. 

Suppose now that a= (ap) is an element of QA. Then ap E Qp for 
all p and for almost all p, ap E Zp (that is, for almost all p, iaviv ~ 1). 
Thus -ap is in Qp for all p and for almost all p, -ap E Zv- Hence 
-a = ( -ap) is another element of QA and is plainly the additive inverse 
of a in QA. Suppose that b = (bp) is another element of QA. We again 
note that bp E Zp for all but finitely many places p. Of course the set of 
primes p for which bp E Zp need not be the same set for which ap E Zv­
However the collection of primes p for which either ap or bp is not in Zp 
is a finite set. Therefore, for all primes p not in this new finite set, both 
ap and bp are in Zv· That is, for almost all primes, ap and bv are both 
in Zp. Since Zp is a ring ap + bp E Zp, we have that 
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is an element of QA, and thus QA is closed under addition. A similar 
argument shows that QA is closed under multiplication. All other condi­
tions required for QA to be a ring follow immediately from the fact that 
Qp is a field (in particular, a ring) for each pE VQ. D 

The topological ring QA is called the adele ring ( associated with Q) 
and, in sorne sense, it empowers us to analyze arithmetic issues with 
respect to all primes simultaneously. We recall that a topological space 
(X, T) is called a Hausdorff space if for any two distinct elements x and 
y in X, there exista disjoint open sets Ux, Uy so that x E Ux and y E Uy. 
Recall that every metric space is a Hausdorff space. 

Theorem 4.2. The adele ring QA is a Hausdorff space. 

Proof. Let a= (ap) and b = (bp) be two distinct elements of QA. Since 
they are distinct, there must exista place, say q, for which aq ,¡. bq; that 
is, there must exista component for which the "vectors" a and b differ, 
otherwise a = b. Therefore we have found two distinct points, aq and bq 
in the metric space Qq, and since Qq is a Hausdorff space, there exist 
two disjoint open sets Uq and Vq in Qq such that aq E Uq and bq E Vq· 
We now define two subsets U and V of QA by: 

U= II Qp X II Zp X Uq 
p#q p#q 

apjtZp apEZp 

and 

V= II Qp X II Zp X Vq. 
p#q p#q 

bpjtZp bpEZp 

We now claim that both U and V are open sets in QA. This follows 
from the fact that at each component p the subsets defined there are 
open in Qp and for almost all placea p, the subsets are Zp. We note that 
a E U and b E V. Finally, we claim that U and V are disjoint open sets. 
Suppose not, that is, suppose there exista an element ( = ((p) E QA such 
that (E U and (E V. This assumption implies that the qth component 
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of (, (q, is in both the qth components of U and V. Thus, 

(q E Uq and (q E Vq . 

However the sets Uq and Vq are disjoint sets, which is a contradiction. 
Therefore U and V are disjoint and hence QA is Hausdorff. D 

Theorem 4.3. The adele ring QA is a locally compact space. 

Proof. We must show that for any point in QA, there exists an open 
set containing the point whose closure is compact. Let a = (ap) be a 
element of QA. Define the set S as 

We note that since a is in QA, for almost all primes p, ap E Zp. Thus the 
set S is a finite set. We have already seen that for any p, Qp is locally 
compact. Therefore for each pE S, there must exist an open set Up in 
Qp such that ap E Up and the closure Up of Up is compact. We now 
define the subset U of QA by 

U = I1 Up x I1 Zp . 
pES pf/.S 

It follows that U is an open set in QA anda E U. Also its closure, U, 

U = I1 Up x I1 Zp , 
pES pf/.S 

is compact (recall that the Zp are open, closed, and compact). Therefore 
QA is locally compact. D 

5 The Topology and Algebra of the Adele Ring 

We open our discussion by observing that we may embed the ra­
tional numbers Q into QA in a natural way. If a E Q, then for almost 
all prime numbers p, lalp = l. Consider the element (a, a, a, a, ... ). 
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From our previous remark, for almost all p, a E Zp and thus the vector 
(a, a, a, a, ... ) is an element of QA. We define the natural diagonal map 

r¡: Q- QA by: 

r¡(a) =(a, a, a, a, ... ). 

The map r¡ is easily seen to be one-to-one and therefore we may view r¡ 
as an embedding of Q into QA. So we may view the rational numbers 
as being a subset of the adeles. Thus, for now on, whenever we view 
Q ~ QA, we formally are considering Q <.......t QA; that is, the image of the 
diagonal map r¡(Q) ~ QA. We now consider how the rational numbers 
"sit inside" the adeles. 

Recall that given a topological space (X, T) anda subset S in X we 
say that set Sisa discrete subset of X if given any element s E S, there 
exists an open set U E T such that S n U = { s}. That is, there exists 
an open set so that s is the only element of S in the open set. A subset 
D of X is said to be a dense subset of X if for every open set U E T, 
D n U -=1- 0. That is, D is dense if it intersects every open set. 

We are about to demonstrate that the adele ring is so vast that the 
set of rational numbers is a discrete subset. It is worth noting that the 
following proof contains only two fundamental ideas: First, the strange 
fact that every element of a p-adic open hall is its center and, second, 
the product formula: 

TI lalp = 1 for all a E Q , a -=1- O . 
pEVo 

Theorem 5.1. The field of rational numbers Q is a discrete subset of 
the a dele ring QA. 

Proof. Suppose that a E Q ~ QA, that is, a= (a,a,a,a, ... ). We now 
define the subset U by 

U = U00 X II Up , 
p prime 
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where 

lx-aloe< 1} 

and 

for p a prime. Clearly Uoe is an open subset of Qoe ( = R) and Up is an 
open subset of !Qp for p prime. We now claim that for almost all p (that 
is, all but possibly finitely many p's), Up = Zp. We note that if a= O, 
then this is trivially true since Zp = {x E !Qp : lx- Olp ~ 1}. Thus we 
now assume that a =1- O. Then for almost all primes p, lalp = L For all 
primes p for which lalp = 1, it follows that O E Up. Since O is an element 
of the p-adic open hall Up, we have that O can be viewed as the center 
of the hall. Therefore 

That is, for almost all p, Up = Zp, which establishes our claim. Thus we 
conclude that U is an open set in IQA containing a. 

Suppose now that bE 1Q nu. Then we have lb- aloe < 1 and for all 
primes p, lb- alp ~ L Therefore we conclude 

IJ lb- alp lb- aloe II lb- alp 
pEVQ p prime 

< lb- aloe II 1 
p prime 

lb- aloe< 1. 

That is, rrpEVQ lb- alp < L However, b- a E IQ. Hence by the product 
formula we must have b - a = O, which implies that the only rational 
number contained in the open set U is a. Hence IQ is a discrete subset 
of IQA. o 

To further explore the structure of 1Q as a subset of IQA, we turn our 
attention to sorne algebraic considerations. Since 1Q is a field and IQA 
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is a ring we trivially have that (IQ, +) and (IQA, +) are additive abelian 
groups. If we wish to consider IQ and IQA as mearly groups under addi­
tion, then we denote these groups as !Q+ and IQI. We note that !Q+ is a 
subgroup of IQI and quotient space IQI j!Q+ is another abelian group. 

Theorem 5.2. Let "Y: IQI -+ IQI j!Q+ be the natural homomorphism de­
fined by "Y( a) = a+ !Q+, and give IQI j!Q+ the quotient topology generated 
by "Y. Then IQI j!Q+ is compact. 

Before proving this theorem we make an important observation. The 
previous two theorems imply that the set 1Q is a lattice in ilJ1A· That is, 
the subset 1Q sits inside IQA in the same way that Z sits inside of 
~: Z is discrete in ~ and ~/Z is isomorphic to the circle group, which is 
compact. There is a significant distinction between these two examples: 
The roles of ring and field have been transposed. The discrete set Z is 
a ring that is contained in the field ~ whose quotient is compact. On 
the other hand, the field 1Q is the discrete subset contained in the ring 
IQA whose quotient is compact. In particular, we see that the nonzero 
elements of the lattice 1Q in IQA have multiplicative inverses. This insight 
highlights sorne of the rich algebraic structure within ilJ1A· We prove the 
theorem by first establishing the following lemma that, in sorne sense, 
defines a fundamental domain in IQA. 

Lemma 5.3. Let :F ~ IQA be the subset defined by 

in which 

and, for p prime, 

:Fp = {x E !Qp: lxlp:::; 1} . 

Then for every a = (ap) E IQA there exists elements w E :F and ( E 1Q 
such that a can be decomposed as 
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Proof. Let a = (ap) be an element of IQA. We must show that there 
exists w E :F and ( E IQ such that a = w + (. We claim that for each 
prime p, there exists a rational number, rp, of the form rp = npjpmP, 

where np, mp E Z, mp ;::: O, satisfying lap- rplp :::; l. To establish this 
assertion we first observe that since (ap) is an element of the adeles, for 
almost all primes p, laPIP :::; l. Hence for all such primes p, rp may be 
taken to be O. We now consider the (finite) collection of primes p for 
which laPIP > 1 and recall from Section 2 that since Ctp E IQP, Ctp has a 
p-adic expansion of the form 

where an E {0, 1, ... ,p-1} for all n. Thus, selecting the integer N large 
enough, the rational number 

could be chosen for rp· That is, the previous finite sum can be expressed 
as np/Pmp and is p-adically within 1 unit of Ctp. Since rp =1- O for only 
finitely many primes, we have that 

r= L rp 
p prime 

converges (it is, in fact, a finite sum) to a rational number. We observe 
that for any fixed prime number q, 

iaq-rlq (aq-rq)-LrP 
p#q q 

< max{laq- rqlq, lrp¡lq, lrP21q, · · ·, lrP• lq} 
< l. 

N ext we select an integer s so that 

1 
la - r- si <-. 00 00-2 
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We now define w = (wp) = (ap- r- s). We note that 

1 
lwooloo = laoo- r- sloo:::; 2 ' 

and for p prime, 

Therefore w = (wp) E :F. If we define ( = r + s (E Q), then clearly 
a = w + (, which completes the proof. O 

Proof of Theorem 5. 2. Let :F be the fundamental domain as defined in 
Lemma 5.3. By Tychonoff's Theorem, :F is compact in QA since it is the 
topological product of compact sets. If we define the map 

to be the restriction of the natural homomorphism 'Y on QÁ to the subset 
:F, then by the definition of the quotient topology on QÁ jQ+, we ha ve 

that 'YJ.r is a continuous function. We now claim that 'YJ.r is surjective. 

Suppose that a + Q+ E QÁ jQ+ is an arbitrary element in the quotient 
space (so a E QÁ)· From Lemma 5.3 there exist w E :F and (E Q such 
that a = w + (. Thus, w = a - ( E :F and 

'YI.r(w) = w + Q+ =a- ( + Q+ =a+ Q+ . 

Hence QÁ jQ+ is the continons image of a compact set and therefore is 
compact. O 

6 Geometry of N umbers over the A dele Ring 

The subject of "Geometry of Numbers" was first studied by Her­
mann Minkowski in 1896. At the most basic level, the subject answers 
the following question. Suppose that K is a convex, symmetric set in 
Euclidean N-space (JRN). How big does the set K have to be in order to 
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insure that K contains a nonzero integer lattice point? In this question, 
we measure "how big K is" by computing its N -dimensional volume; 
this is, its Lebesgue measure in JRN. We recall that Lebesgue measure 
(or volume) satisfies two fundamental properties: First, the volume of 
any compact (measurable) set is finite and the volume of any nontrivial 
open (measurable) set is positive. And second, volume is translation 
invariant. Ifwe write VolN(K) for the N-dimensional Lebesgue measure 
of K, then we could state Minkowski's Convex Body Theorem as follows: 

Minkowski's Convex Body Theorem. Let K be a convex, symmetric 
set in JRN. IfVolN(K) > 2N, then KnzN-# {0}. That is, K contains 
a nonzero integer lattice point. 

We now wish to study the analogous issue over the adele ring asso­
ciated with Ql. That is, given a "convex, symmetric" subset of QlA, how 
large does it have to be so that it contains a nonzero lattice point? Here 
the lattice in QlA is the field Ql. This generalized theory will involve a 
translation invariant measure on QlA. 

Let G be a locally compact abelian group. Thus, we have an abelian 
group G that can be viewed as a topological space, and as such is lo­
cally compact and Hausdorff. In Section 5 we established that Qli is an 
example of such an object. 

A collection of subsets S of G is called a a-algebra in G if the 
following are satisfied: 

(1) G E S. 

(2) If S E S, then comp(S) E S, where comp(S) is the complement of 
S in G. 

(3) The (countable) union of elements of Sisan element of S. 

Let B be the smallest a-algebra in G that contains all the open sets of 
G. The elements of B are called the Borel sets of G. We now state 
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an important theorem of Alfred Haar from 1932 that states that there 
exists a way to measure "volume" in any locally compact abelian group. 

Theorem 6.1. lf G is a locally compact abelian group, then there exists 
a {positive) regular measure J..L on the Borel sets B in G such that: 

{1} J..L(K) < oo for all compact sets K E B. 

{2} J..L(U) > O for all nontrivial open sets U E B. 

{3} J..L(g +E)= J..L(E) for all g E G andE E B; that is, J..L is translation 
in varían t. 

Moreover, J..L is unique upto a multiplicative constant. 

The measure J..L from Theorem 6.1 is called Haar measure on G. 
So for example, Lebesgue measure is a Haar measure on JR. We will 
normalize a Haar measure, J..L, on QA as follows. We first let J..Loo be the 
usual (Lebesgue) measure on Q00 = JR. Then for each prime p, since Qp 

is a locally compact abelian group, there is a Haar measure on it. We 
normalize the Haar measure, J..lp, on QP so that J..Lp('llp) =l. That is, we 
normalize so that the measure of the compact ring of p-adic integers is 
equal to l. Then, informally, we define the Haar measure J..L on QA to be 
the product measure associated with the local measures defined above. 
That is, 

J..L= II J..lp. 
pEVQ 

So if U = TIP Up is a measurable subset in QA then 

J..L(U) = II J..Lp(Up) . 
pEVQ 

We are now able to offer the (one-dimensional) adelic convex body 
theorem. 

Theorem 6.2. lf a= (ap) E QA satisfies 

IT la.PIP > 1, 
pEVQ 
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then there exists a rational number {3 E Q ~ QA such that 

{i) {3-# o . 

{ii) For all pE VQ, lf31P ::; laPIP . 

We can reformulate Theorem 6.2 as follows. Given a= (ap) E QA as in 
the theorem, we define the set K = TIP Kp ~ QA by 

for all p E VQ. In sorne sense K is a convex, symmetric subset of the 
adele ring. Then Theorem 6.2 asserts that if ¡.t(K) > 2 then KnQ -::J {0}. 
That is, K contains a nonzero (rational) lattice point {3. 

Proof of Theorem 6.2. For almost all p, laPIP ::; l. Since TIP laPIP > 1, 
we conclude that laplp = 1 for almost all p. We now define the set 
F = IJpFP in QÁ by 

and for prime p 

By Theorem 5.2, QÁ/Q+ is compact and thus it has finite measure (tech­
nically the Haar measure on the quotient space is the measure induced 
by the measure JL on QA)· Moreover, it turns out that the measure of 
the compact set QÁ/Q+ is equal to ¡.t(F). We now compute ¡.t(F): 

p p prime 

We now define the set S= S( a)= TIP Bp ~ QA by 

Boo = {w E Qoo: lwloo::; !laooloo} , 

and for prime p 
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In view of our hypothesis, we observe that 

p p 

Since QÁ/Q+ has measure 1 and the measure of S is greater than 1, we 
conclude that the map 

is not injective. As this map is not injective, there must exist two dis­
tinct elements in S, say W¡ and w2, satisfying w¡ + Q+ = w2 + Q+. 
Alternatively, we have 7(w1 ) = 7(w2 ); that is, 

If we let f3 = w 1 - w 2 , then it follows that f3 E Q and since w 1 and w2 

are distinct, f3 i=- O. Since W¡ and w2 are elements of S we note that 

and for prime p, by the strong triangle inequality, 

Thus for all pE VQ, l/31p :S laplp· o 

We close this section with the following interesting corollary. 

Corollary 6.3. Suppose that p is a fixed place of Q. For each place 

pE VQ not equal to p, suppose that Óp E Qp with ióPIP = 1 for almost all 
pi=- p. Then there exists a rational number (3, f3 i=- O satisfying 

for all p i=- p. 
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Proof. Select an element a¡; E Q¡; such that la¡;l¡; is so large that 

IT laPIP > 1. 
Al! pEVQ 

By Theorem 6.2 there is a nonzero rational number (3 such that 

for all pE VIQ!. D 

As we will discover in the next section, Corollary 6.3 has an inter­
esting geometric interpretation. We will prove that the field Q delicately 
sits in the ring t!J1A: Q is discrete in t!J1A, however, if we were to remove 
any one completion Q¡; from the adele ring, then Q would be a dense 
subset in the resulting new restricted topological product. 

7 Approximation Theorems in Algebraic N umber 
Theory 

In view of Corollary 6.3, we are now in a position to prove an 
important result from classical algebraic number theory known as the 
Strong Approximation Theorem. 

Theorem 7.1. (Strong Approximation Theorem) Suppose that p is a 
fixed place. Let S be a finite set of places of Q, with p '1. S. Suppose that 
aP E Qp, for each pE S, ande> O is a real number. Then there exists 
a (3 E Q satisfying 

laP - f31P < e , for all p E S , 

and 
l/31p ~ 1 , for all p '1. S U {p} . 

Proof. By Lemma 5.3, we know there exists a set 
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in which b00 = !, and bp = 1, for all primes p, with the property that 
every cp = (cpp) E QA can be expressed as 

cp=w+(' 

where w E :F and (E Q. By Corollary 6.3, we can find a nonzero 'Y E Q 
such that I'YIP :::; I8PIP for all p =/:. p, where I8PIP < b¡; 1c, for p E S, and 
I8PIP = b¡; 1

, for all p ~S U {p}. Thus, 

for all pE S, 

for all p ~ S U {p} . 

Since "fcp = "fW + "((, we conclude that for any a E QA, a= '1/J + (3 where 
'1/J E "(F and (3 E Q. We now define a= (ap) E QA by ap = ap for all 
p E S and ap = O otherwise. Hence there must exist a '1/J E "(F and 
(3 E Q satisfying a= '1/J + (3; or equivalently (3 = a- '1/J. We now claim 
that (3 satisfies the inequalities of the theorem. If p E S, then 

iap- f31P lap- (ap- "(Wp)lp 
= iap- Op + "(Wplp 

i"fwplp = I'Yip lwPIP < b;/cbp =e. 

If p Et S U {p} then 

which completes the proof. D 

There are other formulations of the Strong Approximation Theorem. 
We offer a geometric version below that was foreshadowed at the end of 
Section 6. 

Theorem 7.2. Suppose that p is a fixed place. Let QA(p) be the re­
stricted topological product of {Qp}p# with respect to {Zp}p#· Then if 
Q is identified with its image in QA (p) by the usual diagonal embedding, 
then Q is a dense subset of QA (p). 
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In the Strong Approximation Theorem, we have a bound for f3 at 
every place except for p. In sorne sense, we loss control over l/3lp; that is, 
in most situations, there will be a very high power of p in the denominator 
of {3. Furthermore, the Strong Approximation Theorem asserts that for 
all p f/ S U {p}, lf31v :::::; l. Of course we know that for almost all p, 
lf31v = l. These observations lead us to the following question: How 
many places p f/ S U {p} satisfy lf31v < 1? That is, how many prime 
factors not in S U {p} must occur in the factorization of {3? Here we 
state a new result of the author asserting that only one additional prime 
is needed. 

To avoid complications, we assume that S is a finite collection of 
places containing the place oo. The (multiplicative) group of S-units is 
defined by 

Us = {a E Q : lalv = 1 for all p f/ S} . 

Thus the Strong Approximation Theorem may be phrased as follows: 
There exists a finite collection of places S', S ~ S', so that the nonzero 
rational number f3 that satisfies the inequalities of the Strong Approx­
imation Theorem also satisfies: f3 E Us' and lf31v < 1 for all primes 
p E S'\ S, p # p. In fact, there need be only one prime p f/ S U {p} satis­
fying lf31v < 1 and moreover lf31v = p- 1 for that prime. Furthermore, the 
prime p may be selected from any specified arithmetic progression. For 
relatively prime integers a and b > O, we write A( a, b) for the arithmetic 
progression 

A(a,b)={a+bn: n=0,1,2, ... }. 

We now state our new formulation of the Strong Approximation Theo­
rem. 

Theorem 7.3. Let S be a finite collection of places of Q containing 
the injinite place. Let A = A( a, b) be an arithmetic progression with 
gcd( a, b) = 1 and b relatively prime to each prime in S. Let p f/ S be a 
fixed prime. For each place pE S, let ap E Qp ande E IR, e> O. Then 
there exists an S-unit u, an integer k > O, and a prime ij E A, ij f/ S, 
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satisfying 

for all pE S. 

We conclude with a modern proof of the ancient Chinese Remainder 
Theorem. 

Theorem 7.4. (Chinese Remainder Theorem) Let m¡, m 2 , .•. , mN be 
pairwise relatively prime integers, each greater than 1. lf a¡, a 2 , ... , aN 
are integers, then there exists an integer x satisfying the system of si­
multaneous congruences: 

x = an mod mn , for all n = 1, 2, ... , N . 

Proof. By unique factorization, without loss of generality, we may as­
sume that mn = P~", where P1, P2, ... , PN are distinct primes, and 
t1, t2, ... , tN are positive integers. We now apply the Strong Approxi­
mation Theorem with S = { P1, P2, ... , PN} and with the fixed prime 
p = oo. For each Pn E S, we set ap,. = an and we select a positive real 
number e so small that 

O < · {p-h p,-t2 p-tN} <c_min 1 , 2 , ... ,N 

Thus there exists a {3 E Q such that 

ian - /3IP,. < e , for n = 1, 2, ... , N , 

and 

l/31v ::; 1 , for all primes p fl- S (p # oo) . 

We note that an is an integer, thus ianlv ::; 1 for all prime numbers p. 
Hence we conclude that 
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Therefore for all primes p, I.BIP :::;; l. It follows then that .B E Z. Finally 
we observe that for each n = 1, 2, ... , N, 

Thus P~n must divide .B- an, which is equivalent to 

,B- an =O modP~n , for n = 1, 2, ... , N, 

and completes our proof. o 

We discover that the Chinese Remainder Theorem is, in fact, a 
special case of the much more general Strong Approximation Theorem­
for in the Strong Approximation Theorem, the ap need not be integers 
(or even rational). Also, in the Chinese Remainder Theorem the fixed 
place is the infinite place. An interesting number theory exercise is to 
rework our proof of the Chinese Remainder Theorem with the fixed place 
being a prime, say 5, for example. One would produce a new variation 
of the Chinese Remainder Theorem. What would it imply? What would 
it say about the arithmetic structure of ,8? 

8 Beyond the Field of Rational N umbers 

A field k is called an algebraic number field if it is a finite field 
extension of Q. Let Vk be the set of all places of k, that is, the set of 
all non-equivalent nontrivial absolute values on k. If v E Vk, then we 
write 11 llv for the corresponding valuation. If we restrict the map 11 llv 
to Q, then we will have a nontrivial absolute value on Q. Thus, it will 
equivalent to 1 IP for some pE VQ. In this case, we say that the place v 
líes over the place p and write vlp. 

Conversely, we can select a place p E VQ and wonder many places 
v E Vk lie over p. To answer this question we first recall that since k is a 
finite (separable) extension of Q, it follows that k is a simple extension 
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of Q; that is, there exists an algebraic number a satisfying k = Q(a). 
We write F(x) E Q[x] for the minimal polynomial of a over Q. Now 
given a place pE VQ, we factor F(x) in the polynomial ring Qp[x]: 

M 

F(x) = I1 fm(x) , 
m=l 

where each fm(x) is an irreducible polynomial in Qp[x]. In view of this 
factorization, it can be shown that the number of distinct places v that 
lie over p equals M. 

All the valuation theory we developed in the previous sections can be 
extended to the setting of an algebraic number field k and its valuations 
Vk. In particular, once appropriately normalized, the absolute values 
satisfy the product formula: 

Theorem 8.1. For any nonzero a E k, it follows that 

rr llallv = 1 . 
vEVk 

In addition, the basic facts we established for QA extend to the adele 
ring kA associated with k, including the strong approximate theorem. 

Unlike the ring of integers Z in the field Q, the ring of integers Ok 

in the field k might not enjoy the property of the unique factorization 
into primes. Through classical algebraic number theory we find that the 
ideals in any ring of integers ok can always be factored uniquely into 
prime ideals. This investigation can be further refined to study how "far" 
the ring of integers is from being a unique factorization domain. In this 
setting, the ring of integers is a unique factorization domain precisely 
when it is a principal ideal domain. We recall that a principal ideal 
domain is a domain in which each ideal is generated by one element. 
Thus we can measure how far the ring of integers Ok is from being a 
unique factorization domain by measuring, in sorne sense, the ratio of 
ideals to principal ideals. 
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Given an algebraic number field k having ring of integers Ok, we 
let I denote the set of all ideals contained in Ok and I* the set of all 
principal ideals in Ok. Plainly I* ~ I. If we expand our collection 
of ideals to include fractional ideals, then we can endow these objects 
with a binary operation so that I is an abelian group with I* as a 
subgroup. One considers related objects that are known as divisors and 
the divisor group however as we wish to convey only the underlying ideas, 
we consider the quotient group I ji*. The associated quotient of divisors 
modulo the principal divisors is called the class group and the cardinality 
of the group is called the class number of k, denoted by h = hk· We 
note that if h = 1, then I = I* and thus all ideals are principal and so 
Ok is a unique factorization domain. Thus we have: 

Theorem 8.2. The class number of an algebraic number field is 1 if 
and only if its ring of integers is a unique factorization domain. 

So the class number is the measure of how far Ok is from a unique 
factorization domain. It turns out that Ok is never "too far" from a 
unique factorization domain. We state this important result here: 

Theorem 8.3. The class number of any algebraic number field is finite. 

The proof of this deep theorem requires an application of the strong 
approximation theorem over k and involves the idele group--the multi­
plicative group of units of the adille ring. That is, the idele group, (kA)*, 
is the set of elements a= (av) E kA, for which av =f. 0 for all V E Vk and 
for almost all V E vk, iavlv = l. However instead of delving into this 
rich world of algebraic number theory, we will close here. Hopefully this 
journey provided sorne insights into how the theory of valuations and 
the adele ring allow us to develop a deeper and more expansive notion 
of number and, indirectly, a greater appreciation for the beautiful way 
in which mathematics fits together. 

"Arithmetic is the Queen of Mathematics" - Carl Friedrich Gauss 

Pro Mathematica, 24, 47 (2010}, 149-195, ISSN 1012-3938 193 



Edward B. Burger 

References 

(1] E.B. Burger. Exploring the Number Jungle: A Journey into Diophan­
tine Analysis, Student Mathematical Library 8, American Mathe­
matical Society, Providence, 2000. 

(2] E.B. Burger. Homogeneous Diophantine Approximation in 8-
integers, Pacific J. Math. 152 (1992), 211-253. 

(3] E.B. Burger. Inhomogeneous inequalities over number fields, Illinois 
J. Math. 38 (1994), 452-470. 

(4] E.B. Burger. On Mahler's compound bodies, J. Austral. Math. Soci­
ety (Series A) 55 (1993), 183-215. 

(5] E.B. Burger and T. Struppeck. Does I: 1/n! really converge? Infinite 
series and p-adic analysis, The American Mathematical Monthly 103 
(1996), 565-577. 

(6] E.B. Burger and J.D. Vaaler. On the decomposition of vectors over 
number fields, J. reine angew. Math. 435 (1993), 197-219. 

(7] J.W.S. Cassels. Local Fields, Cambridge University Press Cambridge, 
1986. 

(8] J.W.S. Cassels andA. Frohlich (Editors). Algebraic Number Theory: 
Proceedings of an Instructional Conference by the London Mathemat­
ical Society, Academic Press, Boston, 1986. 

(9] F.Q. Gouvea. p-adic Numbers: An Introduction, Springer-Verlag, 
Berlin-Heidelberg-New York, 2000. 

(10] A. Weil. Basic Number Theory, Springer-Verlag, Berlin-Heidelberg­
New York, 1995. 

(11] EE. Weiss. Algebraic Number Theory, McGraw-Hill, New York, 
1963. 

194 Pro Mathematica, 24, 47 (2010), 149-195, ISBN 1012-3938 



Arithmetic from an Advanced Perspective: An Introduction to the Adeles 

Resumen 

Aquí presentamos una introducción al anillo de adeles sobre el campo 
Q de los números racionales y destacamos algunas de sus bellas estruc­
turas algebraicas y topológicas. Luego, aplicamos esta rica estructura en 
la revisión de algunos antiguos resultados de la teoría de números que 
colocamos dentro de este contexto moderno, y también hacemos algu­
nas nuevas observaciones. Concluimos indicando cómo esta teoría nos 
permite ampliar la aritmética básica de Q a un más sutil, complejo e 
interesante ajuste de un campo arbitrario de números. 

Palabras clave: Anillo de adeles, Análisis no arquimediano, Números 
p-ádicos 

Edward B. Burger 
Department of Mathematics 
Williams College, Williamstown 
Massachusetts 01267 

eburger~williams.edu 

Pro Mathematica, 24, 47 {2010}, 149-195, ISBN 1012-3938 195 


