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Abstract 
This article studies the linear multicommodity network flow 
problem. This kind of problem arises in a wide variety of 
contexts. A numerical implementation of the primal-dual 

interior-point method is designed to solve the problem. In the 
interior-point method, at each iteration, the corresponding 
linear system, expressed as a normal equations system, is 

solved by using the AINV algorithm combined with a 
preconditioned conjugate gradient algorithm or by the AINV 

algorithm for the whole normal equations. Numerical 
experiments are conducted for networks of different 

dimensions and numbers of products for the distribution 
problem. The computational results show the effectiveness of 
the interior-point method for this class of network problems. 
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1 Introduction 

This work seeks a numerical solution for the problem of optimizing 
a linear network problem for the multicommodity case where each single 
item (commodity) is governed by their own network flow constraints, but 
also shares common facilities, so the individual single commodity are not 
independent. This model is known as the multicommodity flow problem, 
in which the individual commodity shares common ares in a capacitated 
network. This kind of problem does not satisfy the integrality property 
as the case of single - commodity network flow problems that they always 
ha ve integer solutions whenever the supply / demand and capacity data 
are integer valued. 

Multicommodity flow problems arise in a wide variety of application 
contexts, for example, in telecommunications applications, telephone 
calls between specific node pairs in an underlying telephone network. 
Sorne of these applications and others ones can be seen in [1], [24] and 
[29]. 

Network specializations based on the simplex method have been 
studied by many authors. Sorne of these works are the comprehensive 
survey found in [5], which includes decomposition, partitioning, com­
pact inverse methods, and primal-dual algorithms. The paper [23] also 
presents a state-of-the-art survey of algorithms and sorne results for the 
mentioned problem. The paper [2] presents the computational experi­
ence for solving multicommodity network flow problems using special­
ized techniques that include a price-directive decomposition procedure, a 
resource-directive decomposition procedure using sub-gradient optimiza­
tion, and a primal partitioning procedure, see also the paper [3]. Also, 
the simplex algorithm is described in [16] for special multicommodity 
network flow problems. A new solution approach for the above problem 
can be found in [18] based upon both primal partitioning and decom­
position techniques, which simplifies the computations required by the 
simplex method. These ideas are also presented in [20]. The paper [30] 
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presents a penalty-based algorithm that solves the multicommodity flow 
problem as a sequence of a finite number of scaling phases. 

As it is known, the simplex method solves linear programming prob­
lems by visiting extreme points, on the boundary of the feasible set, each 
time improving the cost. In the mid 1980's new algorithms for linear pro­
gramming were devised that find an optimal solution while moving in 
the interior of the feasible set, for this reason, they are generally called 
interior point methods. The field of these methods has its origins in 
the work described in [21]. This is the paper that introduced the first 
interior point algorithm with polynomial time complexity. In practice, 
the interior point methods are competitive with the simplex method, es­
pecially for large and sparse problem, they often outperform the simplex 
method. Details of these interior point methods can be seen in the books 
[33] and [34]. 

The most computationally expensive step of an interior point method 
is to find a solution of a linear system of equation, the so-called New­
ton equation system. All general purpose interior point method codes 
use a direct approach or iterative methods to solve the Newton equa­
tion system. There are two competitive direct approaches for solving 
the Newton equations: the augmented system approach and the normal 
equations approach. The former requires factorization of a symmetric 
indefinite matrix, the latter works with a smaller positive definite matrix. 

The most efficient interior point method is the infeasible-primal-dual 
algorithm. The algorithm generates iterates which are positive, i.e. are 
interior with respect to the inequality constraints but do not necessarily 
satisfy the equality constraints. Other difficulty is the choice of a good 
initial solution. 

Most implementations of primal-dual methods are based on the sys­
tem of normal equations. They use direct Cholesky decomposition of 
the associated matrix. Iterative methods also could be used to solve 
the normal equations, but a good and computationally cheap precon-
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ditioned matrix could be chosen in order to accelerate the method to 
obtain the solution of the mentioned system. The papers [9], [10] and 
[11] for example, use a pre-conditioned conjugate gradient solver and a 
sparse Cholesky factorization, to solve the normal equations for multi­
commodity network fl.ows. The paper [25] uses this procedure for block­
structured linear programs, see also [15]. The other paper [13] presents 
various approaches to solve nonoriented multicommodity flow problems. 
It focuses on the specialization for the node-arc formulation of the prob­
lem and uses the dual affine scaling algorithm. This algorithm requires 
the Cholesky factorization of the respective matrix. 

The present work applies a different method for solving the normal 
equations. Instead of the Cholesky method, this work uses a factorized 
sparse approximate inverse of the corresponding matrix, named AINV 
method, found in [7], with a combined conjugate gradient method. The 
AINV algorithm is a robust one, although taking a sometimes large 
computational time. 

The remainder of the paper is organized as follows. Section 2 briefly 
describes the primal-dual interior-point method. Section 3 presents the 
mathematical formulation of the linear multicommodity network fl.ow 
with capacitated ares, and section 4 develops a specialization of the 
interior-point method for multicommodity problems, considering the 
normal equations approach and the AINV algorithm. Section 5 presents 
the computational results for networks ofvarious dimensions and variable 
number of commodities for the distribution problem. Finally, concluding 
remarks are made in section 6. 

2 The Primal-Dual lnterior-Point Method 

This section presents a brief description of the primal-dual interior­
point method to solve the linear programming problem (LP) in the pri­
mal form. This problem is given by: 
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Minimize cT x 

subject to : Ex b, (1) 

X > 0, 

being x E Rq is the decision vector, e E Rq, b E RP and E is a matrix, 
E E Rpxq, p < q offull rank. The dual of the linear problem (1) has the 
form: 

maximize bT y 

subject to : Ety + z e, (2) 

z > o, 
being y E RP is the dual variables and z E Rq is the vector of dual slack 
variable. 

The first order optimality conditions, also known as the Karush-Kuhn­
Tucker (KKT) conditions, for the problems (1) and (2) are: 

Ex b, x 2': O, 

ET y+ z e, z 2': O, (3) 

XZe = O, 

where X and Z are diagonal matrices defined as X = diag(x1, ... , xq), 
Z = diag(z1, ... , zq), and e is the q-vector of all ones, that is: e = 

(1, ... ,1, ... ,1) E Rq. 
To apply the primal-dual interior-point method to solve the LP problem, 
it is solved the following perturbed KKT conditions : 

Ex b, x 2': O, 

ET y+ z = e, z 2': O, (4) 

XZe ¡.te, 

where ¡.t >O is called the barrier parameter. These modifications (4) are 
equivalent to the first order KKT conditions (3), except that the third 
condition is perturbed by ¡.t . 
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Let us notice that if J.-L =O and x;::: O, z 2: O, the KKT conditions (4) 
coincide with the KKT conditions (3). For this reason, the choice of the 
parameter J.-L plays an important role in the interior-point method. In the 
interior point method, at each iteration, the parameter J.-L > O is reduced 
by a certain factor. As the sequence of barrier parameters J.-L converging 
to zero, the solution (x(J.-L), y(J.-L), z(J.-L)) converges to an optimal solution 
of the LP problem. The system (4) is solved using Newton's method. 
Let dw = (dx, dy, dw)T denote the Newton's direction, obtained by the 
linearization of system ( 4) and determined by the solution of the system 
of linear equations: 

o o 

1) (;~) (U· ET = (5) 
o 

where 

~b b-Ex, 

~e e- ETy- z, 

~JI. J.-Le-XZe 

If the third equation of the system (5) is eliminated, that is, dz = 
x-1 (~~'- Zdx), it is obtained the following indefinite symmetric sys­
tem, also called an augmented system: 

dz =~e- ET dy 

and making a further substitution, if dx is eliminated from system (6), 
the following linear system, named normal equations, is obtained: 

and the others variables dz and dx can be determined as following: 

dz 

dx 

~e- ETdy 

z-1 (~~'- Xdz) 

(7) 

(8) 
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To summarize an iteration of the infeasible primal-dual interior-point 
method, let at the j-th iteration, dwj = (dxj, dyj, dzj)T denote the solu­
tion obtained from the system (5). In the next iteration, a new interior 
point Wj+l = (xj+ 1 , Yi+l, Zj+1 )T is determined using the following rules: 

Xj+l Xj + (3ajdXj, 

Yi+l = Yi + f3aidyj, 

Zj+l Zj + (3ajdZj, 

aj being the step length, determined by a suitable line search procedure 
and f3 E (0, 1) and near l. 

With this new point Wj+l, the barrier parameter J.L is updated ac­
cording to certain rules anda new linear system (5) is formed and solved 
by any solution method and the iterative procedure follows until a stop­
ping rule is satisfied. Implementation of this interior point method can 
be found in [4]. 

3 Problem Formulation of the Multicom­
modity Network Flow 

Let us consider a directed graph G = (N, E), with N the set of 
nodes and E the set of edges. The graph represents a network where 
K different commodities are sent from given origins to given destina­
tions represented by initial and terminal nodes. Let bk denote the sup­
plyjdemand for each commodity k. The coordinate bki denotes, if posi­
tive, the supply of commodity k in node í and, if negative, the demand 
for commodity k in node í. The fiow through the network ares, repre­
sented by the graph edges, is capacitated if there is a maximum bmc for 
the sum of the mass of all commodities passing by each are. 

The linear formulation for this network fiow problem, in the format 
node-edge, is as follows: 
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K 

minimize L cr X k 

k=l 

subject to : Axk = bk, k = 1, ... , K 
K 

LXk +xv = bmc 
k=l 

Xv ;::: O, X k ;::: O, k = 1, ... , K. 

(9) 

(lO) 

(11) 

(12) 

Here, A E Rmxn is the node-edge incidence matrix of graph G. For each 
a E E, the coordinate Xka of vector Xk denotes the flow of commodity k 

through the network are a and Xv E Rn is the vector of slack variables, 
and ck E Rn is the cost for each commodity. It will be assumed that the 
incidence matrix A is full rank. Otherwise, rows can be removed. 

The Equation (9) presents the objective function to be optimized. 
The Equation (10) establishes the flow conservation constraint and (11) 
is known as the capacity constraint and establishes the maximum total 
flow of all commodities at each are. The Equation (12) expresses the fact 
that the flows must be nonnegative. The case for the nonlinear model 
was studied in [32]. 

4 The Multicommodity Network Flow and 
the Primal-dual Method 

In this section, the primal-dual interior-point method presented in 
section 2 is applied to the multicommodity network flow problem defined 
by (9)-(12). The process starts by building matrices X and Z for the case 
of multiple commodities. These are block diagonal matrices: The matrix 
X is diagonal given by: 
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x~ [ x, 

Each sub-matri:x Xk, k= 1, ... , K is a diagonal matri:x with components 
Xki, i = 1, ... , n, for each commodity k, and Xv is a diagonal matri:x with 
components given by the slack variable xv. The matrix Z has the same 
structure. 

On the other side, the matrix of constraints of the multicommodity 
network problem may be visualized as: 

with each block matri:x A corresponding to the node-edge matri:x of inci­
dence. The identity matrices in the last line correspond to the capacity 
constraints ( 11). 

Finally, let us build a block diagonal matri:x D as follows: 

with each sub-matrix Dk, k = 1, ... , K, being a diagonal matri:x given 
by Dk = Z¡; 1 Xk , and with Dv = Z;;1 Xv a diagonal matrix related to 
the slack variables. 
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The hardest computational effort required by the primal-dual method 
consists of solving the linear system (7). The next steps of this work will 
involve describing different methods to solve these normal equations. 

To solve the linear system (7), it is performed block multiplications 
to determine the matrix (EDET), which has the following structure: 

AD1AT O O AD1 

o ADKAT ADK 

Let B denote the block diagonal matrix of blocks Bk = ADkAT, k = 
1, ... ,K, ande denote the matrix given by eT = [D1AT, ... ,DKAT] 
and F the matrix given by F = Dv + ¿~=1 Dk . The matrix F is 
diagonal since Dv and Dk, k= 1, ... , K, are diagonal matrices. 
From the previous notation, it follows: 

EDET = [ gT ~ ] . 
Thus, the system (7) may be written as: 

[ ~ e J ( dy1 ) = ( h1 ) , 
e F dyz hz 

where dy = (dy1, dyzJT and h = (h¡, hz)T = ED('c- x- 1,¡.¡) + 'b· 
The above linear system may be written as follows: 

[F- eT B-1e]dyz 

Bdy1 

hz- eTB-1h1 

h1 - edyz 

where the matrix (F - eT B-1e) is known as Schur complement. 
Let h1 = [h11 , ... , h1K]T. From Equation (13), it follows: 

K 

[F- eTB-1e]dyz = hz- L(DkAT B¡;1)hlk, 
k=1 

(13) 

(14) 

(15) 
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where 

K K 

F- cT n-le= Dv + I: Dk - L(DkAT B¡; 1 ADk)· 
k=l k=l 

To use this result it must be computed the inverse of matrix Bk 
ADkAT, k = 1, ... , K. This can be determined using, for instance, 
Cholesky decomposition. In this work, approximation of matrices B¡;1

, 

k = 1, ... , K, will be used by a version of AINV method (see [7]), in 
such a way that: 

B -1 e::: z p-lzr k - k k k• k= 1, ... ,K, 

where Zk an upper triangular matrix with diagonal of 1' S and pk is a 
diagonal matrix. 

The AINV algorithm given in [7] to build an inverse of the matrix 
Bk = ADkAT is presented below. In this development, ei denotes the 
i- th axis unitary vector and, to simplify notation, the sub-index k is 
omitted. 

2. for i = 1, 2, ... , m do 

3. Vi = (ADAT)z¡i-l) 

4. for j = i, i + 1, ... , m do 

5 i-1) t (i-1) 
. Pj = vizj 

6. end 

7. if i = m end; 

8. for j = i + 1, ... , m do 

9. z?) = z?-1) - (pe:;) z¡i-1) 
P; 
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10. end 

11. End 

L (i-1) d (i-1) J: 1 . R et Zi = zi an Pi = Pi , 10r :::; t :::; m. eturn. 

Z = [z1, z2, ... , Zm] and P = diag(p¡,p2, ... ,Pm)· 

In step (3) of the AINV algorithm above, it can be seen that the proce­
dure performs the matrix-vector multiplication (ADAT)z}i- 1

). For our 
network problem it is not needed to store neither the matrix A nor the 
matrix AD AT, only the results of the multiplication of A or AT by vec­
tors are needed. Let us recall that the matrix D is a diagonal matrix, so 
that from its structure it is possible to apply the method to large-scale 
problems. 

Thus, the system (15) may be written as: 

K 

[F- cT B-1C]dy2 = h2 - ¿(nkAT zkP¡; 1 zl:)hlk. 
k=l 

This last system may be solved by many methods. Among these, the 
preconditioned conjugate gradient algorithm can be applied in such a 
way as to reduce the number of iterations needed to obtain the approxi­
mate solution of the respective system. Details of this algorithm may be 
obtained, for instance, in [26], [27], [28]. Now, to obtain a solution for 
the above linear system, it may be used as conditioning matrix simply 
the diagonal matrix F. 

Once dy2 is determined, it is possible to determine dy1 by using the 
system (14). In fact, from Bdy1 = h1 - Cdy2, it follows: 

dy1 = B-1(h1- Cdy2), 

and using the fact that the matrix B is block diagonal and the AINV 
decomposition, and from the construction of e, it follows: 
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being dy¡ = (dyn, ... , dy1K )T. 

By using the above procedure, o vector dy = ( dy1 , dy2f is deter­
mined. Then it follows to compute the remaining variables dz and dx 
by employing the relations (8), anda new interior point w = (x, y, zf 
is determined. 

A second way to salve (15) consists of, instead of applying the con­
jugate gradient algorithm to determine dy2, applying, once more, the 
AINV algorithm to compute the inverse of the matrix [F - CT B-1C] 
by: 

where, again, Z is an upper triangular matrix of 1's in the diagonal and 
P is a diagonal matrix. 

By this way, dy2 may be determined using again the AINV algo­
rithm, to determine the inverse ofthe matrix Bk by B¡;1 = ZkP¡;1 Z'{, k= 
1, ... , K, and again to determine the inverse ofthe matrix [F-CT B-1c]. 
Thus, from (15), it follows: 

K 

dy2 = (zP- 1 ZT)(h2 - Í:(DkAT zkP¡;1 Zk)h¡k)· 
k=l 

By this last approach, the vector dy2 is computed. After that, using 
(14), dy1 is obtained and dx and dz are determined as above. 

A third way of solving the linear system (6) consists of reducing to 
the following indefinite symmetric system, also called augmented system 
of equations: 

There are severa! methods to salve the indefinite symmetric system. 
They may be found in [6], [8], [12], [17], [19], [22] among others. In the 
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present work, as it say before, it is not used this indefinite symmetric 
system to solve the corresponding N ewton system. It could be done in 
any other paper. 

5 Computational Results 

This section presents the results of numerical computations per­
formed to solve the linear multicommodity network flow problem, of 
different dimensions, for variable number of commodities. The experi­
ments were performed using the primal-dual interior-point method and 
using the normal equations approach. 

As an application, the network considers the problem of distribut­
ing goods from one or more plants through a set of warehouses which 
serves customer demands, see [14]. This work considers the demands 
are deterministic. This distribution problem was studied in [31] for one 
commodity, using the homogeneous and self-dual linear programming 
algorithm, implemented in MATLAB code. This work treats the dis­
tribution model for multicommodity case. The network is extended to 
generate large-scale networks. Todo that, a specific FORTRAN program 
was implemented to determine the dimension of the new network, that is, 
the number of ares and nodes and the initial and final nodes that define 
each are in the network. All computational tests were conducted in an 
AMD Athlon PC with a Windows XP platform, of 1.0 GB of RAM and 
2.4 GHz of frequency. The computational codes were entirely written in 
FORTRAN. Double precision was used in all computations. 

A starting point is given in the primal-dual method and it may not 
be viable. The step length a is determined by a line search procedure, 
see [4]. It was used in all computational tests the value f3 = 0.99995. 

Sometimes, especially for large-scale systems, it was not required 
great precision. By its turn, the stopping rule for the interior-point 
method is determined in terms of proximity of the values of the objective 
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function in successive steps. It is required an absolute difference between 
these values of the objective function smaller or equal to 10-8 and that 
the value of the parameter J.L be close to zero. Also, it is required the 
proximity of the values of the objectives functions of the linear problem 
and its corresponding dual problem. 

Several tests are performed for a different number of commodities 
varying from 1000 to 1500. As each variable Xk, for k = 1, ... , K, has 
dimension equal to the number of ares, the total dimension of the decision 
variables x = (xk), k= 1, ... , K is equal to the number of ares multiplied 
by the number of commodities. 

Tables 1 and 2 display the results for sorne distribution problems, 
obtained from the interior point method, using the corresponding normal 
equations. These equations are solved using the preconditioned conju­
gate gradient algorithm combined with the AINV algorithm or using 
the AINV algorithm alone. These tables show the computational time 
in seconds, the number of the interior point method iterations required 
to converge to an optimal solution, the optimal objectives values of the 
primal and dual problems, the total number of variables, without con­
sidering the dimension of the slack vector, as well as the number of links 
and nodes. The value of the barrier parameter J.L obtained, in all the 
cases studied, is less than 10-12 . 

These tables also show others variables as follows: 

• m: representing number of plants; 

• n: representing number of warehouses; 

• p: representing number of customers; 

• h: representing number os stages. 

It can be seen from the tables 1 and 2 that, the objective values of the 
primal and dual problems are very close, but a little more precision is 
obtained by using the AINV algorithm with a large computational time. 
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Table l:Computational results for multicommodity flow problem 
Preconditioned conjugate gradient algorithm 

number commodities 1000 1200 1500 

m 4 5 4 

n 6 7 6 

p 8 9 8 

h 12 6 6 

links 1057 759 565 

nades 234 147 126 

number variables 1057000 910800 847500 

value of primal 11267999.99999997 10139999.99999575 8117999.99996751 

value of dual 11268000.14211712 10140005.02266686 8118002.65844308 

iterations 13 12 13 

time(seconds) 1561.156 416.437 352.844 

Table 2: Computational results for multicommodity flow problem 
AINV algorithm 

number commodities 1000 1200 1500 

m 4 5 4 

n 6 7 6 

p 8 9 8 

h 12 6 6 

links 1057 759 565 

no des 234 147 126 

number variables 1057000 910800 847500 

val u e of primal 11268000.00000625 10139999.99999627 8117999.99999757 

val u e of dual 11268000.00001867 10140000.00016499 8118000.00001930 

iterations 13 12 13 

time(seconds) 10562.703 3629.593 2482.969 
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6 Conclusions 

This article discussed the application of the primal-dual interior­
point method to salve multicommodity network flow problems for the 
distribution model. Sorne alternatives algorithms were developed to deal 
with the systems of linear equations involved in the flow optimization. 
The corresponding linear problems, expressed as normal equations, is 
solved by using the AINV algorithm for the whole system or combined 
with the preconditioned conjugate gradient algorithm. In these cases, 
the algorithm explores the structure of the linear constraints in such a 
way as to avoid storing the constraints matrices as well as products of the 
matrices that appear in the iterative procedures applied allows dealing 
efficiently with large-scale problems. The experimental results, to salve 
the dynamic distribution model, have demonstrated the efficiency of the 
method. 
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Resumen 

Este artículo trata el problema de flujo en red para múltiplos produc­
tos. Ese tipo de problema aparece en una variedad de aplicaciones. La 
implementación numérica del método de puntos interiores primal - dual 
es realizada para resolver ese problema. En cada iteración del método 
de puntos interiores, el correspondiente sistema linear, formulado como 
un sistema de ecuaciones normales, es resuelto usando el algoritmo de 
factorización AINV combinado con el algoritmo pre condicionado de la 
gradiente conjugada o usando ese algoritmo de decomposición AINV 
para el sistema normal total. Resultados numéricos son realizados para 
redes de diferentes dimensiones y números de productos para el problema 
de distribución. Resultados computacionales muestran la eficiencia del 
método de puntos interiores para esta clase de problemas de red. 

Palabras Clave: Programación lineal, Métodos de puntos interiores, Opti­

mización en red, Flujo para múltiplos productos. 
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