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Abstract
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reduces to Hermite polynomials of two variables Hn(x, y) due

to M.A. Khan and G.S. Abukhammash [2]
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1. Introduction

Hermite polynomials of two variable Hn(x, y) were defined and stud-

ied by M.A. Khan and G.S. Abukhammash [2]. They defined them by

means of the following generating relation

e2xt−(y+1)t2 =

∞∑
n=0

Hn(x, y)tn

n!
(1.1)

The aim of the present paper is to modify the definition (1.1) and

to obtain generating functions, recurrence relations, Rodrigues formula,

relationship with Legendre polynomials, expansion of polynomials and

other properties for the modified Hermite polynomials of two variables

Hn(x, y; a).

2. Definition

The modified Hermite polynomials Hn(x, y; a) of two variables are

defined by means of the generating relation:

a2xt−(y+1)t2 =

∞∑
n=0

Hn(x, y; a)tn

n!
, a > 0, a 6= 1 (2.1)

It follows from (2.1) that

Hn(x, y; a) =

[n
2 ]∑

r=0

n!Hn−2r(x; a)(−y)r(loga)r

r!(n− 2r)!
(2.2)
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where Hn(x; a) stands for the modified Hermite polynomial of one vari-

able [4].

The definition (2.2) is equivalent to the following explicit represen-

tation of Hn(x, y; a)

Hn(x, y; a) =

[n
2 ]∑

r=0

[n
2−r]∑
s=0

(−n)2r+2s(2x)n−2r−2s(−y)r(−1)s(loga)n−r−s

r!s!

(2.3)

In terms of double hypergeometric function, modified Hermite poly-

nomials of two variables can be written as

Hn(x, y; a) = (2xloga)nF 2:0;0
0:0;0[

−n
2 ,−

n
2 + 1

2 : −;− ;

− : −;− ;
− y

x2loga
,− 1

y2loga

]
(2.4)

For a = e (2.2), (2.3) and (2.4) reduces to Hermite polynomials of

two variables Hn(x, y) due to M.A. Khan and G.S. Abukhammash [2].

It may be remarked that Hn(x, y; a) is an even function of x for

even n, an odd function of x for odd n.

Hn(−x, y; a) = (−1)n Hn(x, y; a)

Also,

H2n(0, y; a) = (−1)n(y+1)
n
2 22n

(
1

2

)
n

(loga)n, H2n+1(0, y; a) = 0

H2n(0, 0; a) = (−1)n22n
(

1

2

)
n

(loga)n, H2n+1(0, 0; a) = 0
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and

∂

∂x
H2n(0, y; a) = 0,

∂

∂x
H2n+1(0, y; a) = (−1)n(2loga)n+1

(
3

2

)
n

(y + 1)
n+1
2

3. Recurrence Relations

Following recurrence relations hold for Hn(x, y; a)

∂

∂x
Hn(x, y; a) = 2nloga Hn−1(x, y; a) (3.1)

Iteration of (3.1) gives

∂s

∂xs
Hn(x, y; a) =

(2loga)sn!Hn−s(x, y; a)

(n− s)!
(3.2)

∂

∂y
Hn(x, y; a) = −n(n− 1) loga Hn−2(x, y; a) (3.3)

Iteration of (3.3) gives

∂r

∂yr
Hn(x, y; a) =

(−1)rn!

(n− 2r)!
Hn−2r(x, y; a) (3.4)

Hn+1(x, y; a) = (2xloga) {xHn(x, y; a)− n(y − 1)Hn−1(x, y; a)} (3.5)
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x
∂

∂x
Hn(x, y; a)− nHn(x, y; a) + 2y

∂

∂y
Hn(x, y; a) = n

∂

∂y
Hn−1(x, y; a).

(3.6)

2nxloga Hn−1(x, y; a)− nHn(x, y; a)− 2n(n− 1)yloga Hn−2(x, y; a)

= n
∂

∂x
Hn−1(x, y; a) (3.7)

Also we have

2nxloga Hn−1(x, y; a)−nHn(x, y; a) = 2n(n−1)(y+1)Hn−2(x, y; a)

(3.8)

which is a pure recurrence relation.

4. Relation Between Hn(x, y; a) and Hn(x; a)

A relation between Hn(x, y; a) and Hn(x; a) is as given below:

Hn(x, y; a) = (y + 1)
n
2 Hn(

x√
y + 1

; a) (4.1)

5. Other Generating Function for Hn(x, y; a)

Some other generatig functions for Hn(x, y; a) are as follows:
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∞∑
n=0

(C)nHn(x, y; a)tn

n!

∼= (1−2xtloga)−cF 2:0;0
0:0;0[

C
2 ,

C
2 + 1

2 : −;− ;

− : −;− ;
− 4yt2loga

(1− 2xtloga)2
,− 4t2loga

(1− 2xtloga)2

]
(5.1)

∞∑
n=0

Hn+k(x, y; a)tn

n!
= a2xt−(y+1)t2Hk(x− ty − t, y; a) (5.2)

∞∑
n=0

∞∑
r=0

Hn+r+s(x, y; a)tnur

n!r!

= a2xt−(y+1)t2 .a2(x−ty−t)u−(y+1)u2

Hr(x−ty−t−yu−u, y; a) (5.3)

6. Rodrigues Formula

A Rodrigues formula for Hn(x, y; a) is given by

Hn(x, y; a) = (−1)n(y+1)
n
2 a

x2

(y+1) Dn a−
x2

(y+1) , D ≡ d

dx
(6.1)

a formula of the same nature as Rodrigues’s formula for modified Hermite

polynomial of one variable Hn(x).
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7. Special Properties

Consider the identity

a2xt−(y+1)t2 = a2(xt)−(y+1)(xt)2 .a(y+1)(x2−1)t2

or,

∞∑
n=0

Hn(x, y; a)tn

n!

=

∞∑
n=0

Hn(1, y; a)(xt)n

n!

∞∑
k=0

(y + 1)k
(
x2 − 1

)k
(loga)kt2k

k!

=

∞∑
n=0

[n
2 ]∑

k=0

Hn−2k(1, y; a)xn−2k(y + 1)k
(
x2 − 1

)k
(loga)ktn

k!(n− 2k)!

Equating the coefficients of tn, we get

Hn(x, y; a) =

[n
2 ]∑

k=0

n!Hn−2k(1, y; a)xn−2k(y + 1)k
(
x2 − 1

)k
(loga)k

k!(n− 2k)!
.

(7.1)

Next by considering the identity

a2(x1+x2)t−(y+1)t2 = a2x1t−(y+1)t2 .a2x2t−(y+1)t2 .a(y+1)t2
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we obtain

Hn(x1 + x2, y; a) =

n∑
r=0

[n−r
2 ]∑

s=0

n!Hn−r−2s(x1, y)Hr(x2, y)(y + 1)s(loga)s

r!s!(n− r − 2s)!

(7.2)

Now by considering the identity

a2xt−(y1+y2+1)t2 .a2xt−t
2

= a2xt−(y1+1)t2 .a2xt−(y2+1)t2

we get

Hn(x, y1 + y2; a)Hk(x; a) = Hn(x, y1; a)Hk(x, y2; a) (7.3)

where Hk(x; a) is modified Hermite polynomial of one variable [4].

Similarly

Hn(λx, y; a) =

n∑
k=0

Hn−k(x, y; a)2k(λ− 1)kxk(loga)k

k!(n− k)!
(7.4)

Hn(x, λy; a) =

[n
2 ]∑

k=0

n!Hn−2k(x, y; a) [(1− λ)yloga]
k

k!(n− 2k)!
(7.5)

Hn(λx, µy; a)

=

n∑
r=0

[n−r
2 ]∑

s=0

n!Hn−r−2s(x, y; a)Hr {(λ− 1)x, (1− µ)y; a} (loga)s

r!s!(n− r − 2s)!
(7.6)
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8. Expansion of Polynomials

Here we expand the Legendre polynomials of one and two variables

in a series of modified Hermite polynomials of two variable. These ex-

pansions are as given below:

Pn(x) =

[n
2 ]∑

k=0

2F0

[
−k, 12 + n− k,−; y+1

log a

]
(−1)k

(
1
2

)
n−kHn−2k(x, y; a)(log a)2k−n

k!(n− 2k!)
(8.1)

Pn(x, y) =

∞∑
k=0

2F0

[
−k, 12 + n− k;

−;
1

log a

]
(−1)k

(
1
2

)
n−k (1 + y)k(log a)2k−nHn−2k(x, y; a)

k!(n− 2k)!
.

(8.2)

Where

Pn(x, y) =

[n
2 ]∑

k=0

(−1)k
(
1
2

)
n−k (2x)n−2k(y + 1)k

k! (n− 2k)!

is the Legendre polynomials of two variables defined and studied by

Khan, M.A. and Ahmed, S. [3].
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9. Binomial and Trinomial Operator Repre-

sentations

In a recent paper in 2008, M.A. Khan and A.K. Shukla [5] obtained

binomial and trinomial operator representations of certain polynomials.

Using their technique we have obtained certain results of binomial and

trinomial operator representation type for modified two variables Her-

mite polynomials Hn(x, y; a) by using their Rodrigues formula. Here we

need the following results of [5]:

(Dx+Dy)n {f(x)g(y)} =

n∑
r=0

(
n

r

)
Dn−r

x f(x)Dr
y g(y)

(9.1)

(Dx+Dy+Dz)n {f(x)g(y)h(z)}

=

n∑
r=0

n−r∑
s=0

(−n)r+s(−1)r+s

r!s!
Dn−r−s

x f(x) Dr
y g(y) Ds

z h(z) (9.2)

and

(DxDy +DxDz +DyDz)
n {f(x)g(y)h(z)}

=

n∑
r=0

n−r∑
s=0

(−n)r+s(−1)r+s

r!s!
Dn−s

x f(x) Dn−r
y g(y) Dr+s

z h(z) (9.3)

The results obtained are as follows:

Let d

d
(

x√
y+1

) ≡ D1 and d

d
(

w√
z+1

) ≡ D2, then

(D1+D2)n a−
x2

y+1 b−
w2

z+1
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= (−1)n(y + 1)−
n
2 a−

x2

y+1 b−
w2

z+1

n∑
r=0

(
n

r

)
Hn−r(x, y; a)Hr(w, z; b)

(√
y + 1

z + 1

)r

(9.4)

Again let d

d
(

u√
v+1

) ≡ D1, d

d
(

w√
x+1

) ≡ D2 and d

d
(

y√
z+1

) ≡ D3, then

(D1+D2+D3)n a−
u2

v+1 b−
w2

x+1 c−
y2

z+1

= (−1)n(v+1)−
n
2 a−

u2

v+1 b−
w2

x+1 c−
y2

z+1

n∑
r=0

n−r∑
s=0

(−n)r+s(−1)r+s

r!s!

×Hn−r−s(u, v; a)Hr(w, x; b)Hs(y, z; c)

(√
v + 1

x+ 1

)r (√
v + 1

z + 1

)s

(9.5)

and

(D1D2+D1D3+D2D3)n a−
u2

v+1 b−
w2

x+1 c−
y2

z+1

= (v+1)−
n
2 (x+1)−

n
2 a−

u2

v+1 b−
w2

x+1 c−
y2

z+1

n∑
r=0

n−r∑
s=0

(−n)r+s(−1)r+s

r!s!

×Hn−s(u, v; a)Hn−r(w, x; b)Hr+s(y, z; c)

(√
v + 1

z + 1

)s(√
x+ 1

z + 1

)r

(9.6)
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Resumen

El presente art́ıculo se estudian polinomios modificados de Hermite de

dos variables Hn(x, y; a) que para a = e se reducen a los polinomios de
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Hermite de dos variables Hn(x, y) introducidos por M.A. Khan y G.S.

Abukhammash [2].

Palabras clave: Funciones generatrices, relaciones de recurrencia, fórmula

Rodrigues, Relación con los polinomios de Legendre y expansiones de poli-

nomios.
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