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Abstract

We analyze a possible minimal counterexample to the
Jacobian Conjecture P,Q with ged(deg(P),deg(Q)) = 16
and show that its existence depends only on the existence of
solutions for a certain Abel differential equation of the
second kind.
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1 Introduction

In a recent article [1], we managed to describe the shape of possible
minimal counterexample to JC (the Jacobian conjecture as stated in [3])
given by a pair of polynomials (P, Q) with ged(deg(P),deg(Q)) = B,
where

00 if JC is true,

B =
min (ged(deg(P), deg(Q))) where (P,Q) is a counterexample

to JC, if JC is false.

We arrived at the following theorem (See [1, Theorem 8.10]):

Theorem 1.1 If B = 16, then there exist po, p1, pe, s € K with
to #0 and P,Q € L := K|z,y] such that

0, 1(P) = 2%y + pza®,  0,-1(Q) = 2%y + psx

and
[P, Q] = &'y + po + iz + poa® + psa. (1.1)

Moreover, there exists j € N such that {(j,1)} = Dir(P) = Dir(Q),
st (P) = (3,1), st;1(Q) = (2,1), enj1(P) = (0,m), en;1(Q) = (0,n),
where m =35+ 1 andn =25+ 1.

By [2, Theorem 2.23] we know that B > 16. Hence, if we can prove that
such a pair cannot exist, necessarily B > 16.

In Section 2 we will show how the existence of such a pair (P, Q) would
allow the construction of a counterexample to the Jacobian Conjecture.
We use the notations of [1].

In Section 3 we write, according to Theorem 1.1,

P =2y +2%pa(y) + api(y) + po(y) and Q =2y + 2q1(y) + qo(y).
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Then the condition (1.1) translates into a system of four first order dif-
ferential equations for the polynomials pg, p1,qo, g1, q2. We reduce this
system to a single equation for two polynomials and we prove the fol-
lowing theorem:

Theorem 1.2 B = 16 if and only if there exist A,q1 € Kly] and
Moy H1, 2, 13 € K with Ho 7& 07

1
AO) = —3p3, A)=pa and psA"(0) = —6p1 — 2347 (0), (1.2)
such that
1 pe \ 0
N B3 P2 — / e P2
6<A 4+4q 6y> 4yAA+6( ¢ Gy)

— p2ydi + 3y q — 6poy”.  (1.3)

We were not able to obtain a solution of (1.3) satisfying (1.2) with
to # 0 (which would yield a counterexample to the JC), nor could we
discard the existence of such a solution (which would prove B > 16). We
analyze some particular cases of (1.3), for example we show that for us =
fo = 1 = po = 0 the only possible solutions are (p,o)-homogeneous
for (p,0) = (j, 1), where j + 1 = deg(q1). We also recognize (1.3) as an
Abel differential equation of second kind, for which no general solution
is known. Using a standard trick we write this equation in a shorter
form in (3.7) and in (3.8).

2 Construction of an counterexample

We reverse the order of the construction leading to Theorem 8.10
of [1]. Starting from a pair (P, Q) as in Theorem 1.1, we apply different
automorphisms of L and L") and obtain a counterexample (P, Q) with

gcd(deg(p),deg(())) = 16.
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Recall from [1] the automorphisms ¢, € Aut(L) and 3 € Aut(L™M)
given by

Yi(z) ==y, Pg(x) =",
V1(y) == —x, P3(y) = 2y.

For (p,0) € T and k € {1,3}, we define (pi, or) := ¥, (p, o) by

(_pa 3p—|—0’) if (pa U) < (_172)7
(p,=3p—0) if (p,o)>(-1,2).

Py(p,0) = (0,p) and 4(p,0) = {

We have following lemma (See [1, Lemma 6.6]):

Lemma 2.1 Let P € LW, The maps 11 and 1) satisfy the following
properties:

1. For all i,j € Ny we have v, o, (P1(x'y?)) = v, ,(z'y?), and if
P e L, then

lpron(V1(P)) = b1 (6p0(P)) and Ll o, (Y1(P)) = 11 (€ly,0(P)) -
2. If (p,o) < (—1,2), then we have vy o, (V3(xy?)) = v, 5 (xy?) for

allt € Ng and j € Z,

Lps,o5 (V3(P)) = 103 (6p,0(P)) and Ly, oy (Y3(P)) = 13 (€ly,0(P)) -
3. If (p,a) > (7172); then vp3703(¢3(xiyj)) = 7Up,0(xiyj) fO?" all

1€Ng and j €7,

Cos,05(03(P)) = 3 (lp o (P)) and Uy, o5 (Y3(P)) = 3 (0(P))-

Moreover clearly Jac(¢1) = [¢1(z),¢1(y)] = 1 and Jac(¢s) = —z.
Let (P, Q) be as in Theorem 1.1.
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FIRST STEP:
Set Py := 13(P) and Q1 := ¥3(Q) and (p,5) := (—3,35 + 1). Using
Lemma 2.1 one checks that Predp, (5,6) = Predg, (p,0) = (1, —1),

ens3(P1) =(0,1), enzs(Q1) = (1,1), w(ll_y3(P1))=m(3,1),
and
w(ll_15(Q1)) =n(3,1), L12(P1) = y+psz=?, L15(Q1) = zy+psz ",
where m := 35 + 1 and n := 25 + 1. Moreover, using that

[p(P), p(Q)] = ([P, QD¢ (2), p(y)];

for all morphisms ¢, we obtain

[P1,Q1] = —(y + pox + p1 + ugx_l + u3x_2).

SECOND STEP

Set Py := @o(P1) and Q2 := ¢o(Q1), where ¢o(y) =y — (pox + p1 +
pozt + p3z=2) and ¢o(z) := x (note that Jac(¢g) = 1). Then P, Q2 €
L and

(P2, Q2] = —y, Dir(P2) = Dir(Q2) = {(p,5), (1, 1)}, enjz(F,) = (0,1),
and

ens 5(Q2) = (1,1), £11(P) =ApRy' and £11(Q2) = AR5,
for Ry = 23(y — o).

THIRD STEP

Since Py, Q2 € L, we can apply ¢1. We set P3 := 11 (FP2), Q3 := ¥1(Q2)
and (p,o) := (37 +1,—4). Then

[P37Q3] = —Z, Dlr(PS) = DlI‘(Qg) = {(ﬁ,ﬁ), (17 1)}7 enﬁ,F(PB) = (130)7
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Figure 1: Ilustration of the first two steps, for j = 1.

and
ety 7(Q3) = (1,1), £11(P3) = \pRY and  €11(Q3) = AR,
for Ry = y3(y + ix)

FOURTH STEP(Figure 2)
We set Py := 93(P3), Q4 := ¢¥3(Q3) and (p,6) := (—3j—1,8j+3). Then

DiI‘(P4) = DlI‘(Q4) = {([)7 C})a (*134)}a enﬁ,fr(P4) = (7170)'
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Figure 2: Illustration of the fourth step.

Moreover [Py, Q4] = 1 and
enp5(Qa) = (2,1), Lo1a(Pa) = ApRY'" and £o14(Qs) = AR,
for Ry = y32'2(y + HLOJU“*).

FIFTH STEP
Set Ps := p1(Py) and Qs = ¢1(Q4), where p1(y) == y — %x_‘l and
¢1(x) := z (note that Jac(y1) = 1). Then

(_1.4(Ps) = ApRI and £ 1 4(Qs) = AoRE,

for Ry = yx'?(y — %1_4)3.

SIXTH STEP(Figure 3)
If P5,Qs5 € L, then we have a counterexample to JC, since [Ps, Q5] = 1,
deg(P) = 16m and deg(Q) = 16n with m tn and n {m.
Else set (p1,01) := Succp, (—1,4). Then [¢,, »,(P5),%p, 0, (Q5)] =0
and so
lpror (P5) = ApRg* and  €14(Qs) = AQRE,
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Figure 3: Illustration of the sixth step.
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for some Rg = y + Mz % with )\, € K* and k € {1,2,3}. Note

that (p1,01) = (=1,k). If necessary, we apply successively p(*) given
by ¢ (y) := y — \gz ™ and ¢*)(z) := 2, to obtain finally the desired
counterexample (P, Q) given by

(P, Q) := (Ve (P (5))), oM (¢ (0P(@5)))) € L

3 Differential equations for polynomials
According to Theorem 1.1 we write

P =2y +2°pa(y) +zp1(y) + po(y) and Q =2y +zq1(y) + qo(y).
(

Then the equality (1.1) yields

aty = 2%y, 2%y

[
ps® = [2%y, 2q1(y)] + [+°p2(y), 2°y]
p23® = [2%y, qo(y)] + [2%p2(y), mq1 (v)] + [xp1(y), 2°Y]
e = [2°pa(y), q0(y)] + [2p1(y), 2q1 ()] + [po(y), z%y]
= [zp1(y), 0 (W)] + [Po(v), za1 (y)]-

The first equality is trivially true. Noting that

[2* i (y), 27 q; ()] = = (kpr(y)d; (v) — 39k (¥) a5 (v)),

we obtain the system of four differential equations for the five polyno-
mials po, p1, P2, 9o, q1:

ps = 3yqy — q1 + 2p2 — 2yph

2 = 3yqy + 2p2qy — Poqr + p1 — 2yp)
fi1 = 2paqp + pray — prar — 2upg

Ho = Pl% - PS(]L

Note that ¢1 _1(P) = 23y + psz? and ¢ _1(Q) = 2y + psx imply
q1(0) = p3 and pa(0) = p3. Moreover, if we write P = 3, - a; jz'y’,
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then we can assume ag 1 = p5(0) = 0, replacing P by P —az1Q. Writing
Q=2 b jxiyl, [P,Q] = > ¢; jx'y? and noting that
Cij = > (kt — 1s)ak 1bs s, (3.1)
(k1) +(s,t)=(4,5)+(1,1)

one verifies that
0=c3,1 = 2a3,1b1,1 = 2by 1,

using bag = ba2 = az2 = a3 = 0 and b3 = asr = 0 for all k. It
follows that ¢1(0) = b1,1 = 0 and so we can and will assume

q1(0) = ps, ¢1(0) =0, p2(0) =ps and phH(0) =0.

This allows to solve the first equation in full generality. In fact, write
@1 = pu3 +y*F" and ps = p3 + yG for some F,G € K|y]. From the first
equation we obtain

p3 = 3y(yF' + y* F") — (3 + y*F') + 2(u3 + yG) — 2y(G + yG"),
from which we deduce the equality
2G' = 5F' + 3yF" = (2F + 3yF'Y

and so G = F + (3/2)yF’ + const. Since G(0) = 0, we can assume
F(0) =0and G = F + (3/2)yF’. Hence the general solution to the first
equation is ¢1 = pz +y>F’ and ps = puz +yF + (3/2)y?F’, for any choice
of F' € yKlyl.

Using the second equation we can express ¢} as a function of F' and pi:

o = (=2p1 + 22 + 2u3F + 4ypy — 6y° FF' — pzy® F" — 4y°(F')?
—4y°FF" — 3y*F'F") /6y (3.2)
The third equation yields pf, as a function of F,p; and g:

o= yp1(2F" 4+ yF") — 1 — pi(ps + y°F') + (2us + y(2F + 3yF'))q)
‘=
2y

(3.3)
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Inserting the values into the fourth equation we obtain a (very big)
differential equation for p; and F":

6roy® =y (2(191 — 2 — paF) — dypy + y* (6FF' + ps F")
+4y3((F1)2 + FF//) + 3y4F/F//) _ 3y2p1 (2F/ + yF”)

—3u1y — 3ypi(ps + y*F') — 5 (203 +y(2F + 3yF")) - (2p
=245 — 203 F — dyph + 6y> FF' + pizy® F" + 4y>(F')?

+4y3FF” + 3y4F/F//)> (NB + yzF/)

(3.4)
Now we set

3 1 3
A= yp1—q1p2+iqf = —Zu§+yp1—ugyF—usyzF’—ySFF’—Zy“(F’)Z

and we can express (3.4) as a differential equation for A and ¢;:

2 2 2

i | M3 p2 B , (ug Mz)
A— 2=+ 2g — 2= =4yAA g - =
6( 4+4C]1 6y) Y +6 4(]1 Gy

— 2y} + 3umyiq — 6oy (3.5)

Moreover we have

1
A(0) = _1“3’ A'(0) = p2 and  uzA”(0) = —6u1 — 24347 (0). (3.6)

In fact, from the definition of A we have that A(0) = —g1(0)p2(0) +
3¢1(0)2 = — 3. The other two conditions follow from the requirement
that ¢{(y) and p{(y) defined by (3.2) and (3.3) are polynomials.

This proves Theorem 1.2 and is a great simplification with respect
to (3.4), not only in the number of terms involved, but in the type of
differential equation. In fact, (3.4) is a quadratic first order differential
equation for A, called an Abel differential equation of second kind. For
q1 it is a cuartic equation with no derivative of ¢; involved. However
we were not able to obtain a solution of (3.5) with g # 0 and such
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that (3.6) is satisfied (which would yield a counterexample to the JC),
nor could we discard the existence of such a solution (which would prove
B > 16). In the sequel, we will analyze some aspects of this differential
equation.

3.1 Solutions without (3.6).

If we don’t require (3.6), then there exist solutions of (3.5) with
po # 0. Take for example A = 1 —y® — y5/4 and q¢1(y) = y> + 2.
Then (3.5) is satisfied for pg =1, u1 = 0 = po and puz = 2. If we try to
construct a counterexample, we obtain p1(y) = y° + 2y + % ¢ Kly]. In
fact this solution yields

3 2,3 5 2, 2 y© oyt 1
P=zy+22°(y"+ 1)+ (y° +2y —|—§ +7+?+?

and
5

2
Q=x2y+x(y3+2)+yg+y2+§

Note that P,Q € Klxz,y,y~ '] and [P,Q] = z'y + puo + pnz + pax® + paa®,
with Mo = 1 75 0.

3.2 The case us = s = 1 = po = 0: Homogeneous
solutions.

Consider the case ug = p2 = p1 = o = 0. Then (3.5) reads

and clearly, any irreducible factor of A must be y, since any other linear
factor of A would have multiplicity 2¢ on the left hand side and 2k — 1
on the right hand side. Then we can assume A = y* for some k and

necessarily ¢2 = 4y* (1 + \/23]“), hence k = 2(j + 1) and ¢; = 2Ry’ ™1,

94 Pro Mathematica, 27, 53-54 (2013), 83-98, ISSN 1012-3938



A differential equation for polynomials related to the Jacobian conjecture

for R := £24/1% %. Then it is straightforward to verify that

py = (% + %) Ryt and p; = y¥H! (1 - (% + %) R2). We also obtain
g = M@t and po = My¥ 1! for some A\, A;. Hence P and @ are
(p, o)-homogeneous for (p, o) = (4,1).

3.3 Standard methods for solving Abel differential
equations.

For Abel differential equations no general solution is known. How-
ever, some methods are available: The standard method for simplifying
an Abel differential equation of the second kind suggests the substitution
A =9?/?T in (3.5). This yields the equation

TT = Fi(y)T + Fo(y) (3.7)
with .
Fi(y) = —W(?ﬂﬁ — 3psq1 + 2u2y)
and

3

3272/4((111 = 2u3q; + 4p2yq; — 8y qr + 1610y°)

Foly) =

We could’t bring the equation (3.7) into any of the 80 solvable cases
listed in [4, 1.3.3], nor could we discard the existence of solutions.
Following the book [4] we set U = 4 and then (3.7) reads

U' + Fi(y)U? + Fy(y)U? = 0, (3.8)

an Abel differential equation of the first kind. Again, we couldn’t find a
solvable case in [4] that corresponds to (3.8) and it is also impossible to
choose g # 0, p1, p2, u3, ¢1 and a such that

F !/
(5) -on

which is one of the known cases that allow further simplification of equa-
tion (3.8).
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3.4 The case u3 =0 = p;.

Let us analyze the equation (3.7) in one particular case. Note
that by (3.1) we have

p1 = c1,0 = 2a2,0bo,1 — a1,1b1,1 = p3(2bo1 — a1,1).
Consequently, if pug = 0, then p; = 0. We will consider the case ps =
0 = p1. In this case

Fi(y) = (3¢3 — 2u2y)

1
452

and

Foly) (3q1 + 4payat + 48p0y°).

1
324
Again, we were unable to transform (3.7) into one of the solvable cases
of [4].

We also can try to solve the case 1 = 0 and p3 = 0 directly in (3.5).

In that case we can set S := % + #2% and then (3.5) reads
)
3(A = 8)% = 2yAA" = 213y 8 + T p3y” = 3oy’

We couldn’t find solutions with po # 0 such that S — #2% is a square.

3.5 Low degree cases.

Finally we solve (3.5) with the initial conditions (3.6) for some
low degree cases. One can show that deg(A) = 2deg(q1), and we were
able to solve the cases deg(q1) = 2, 3,4, assuming ¢; monic and setting
Lo, [, fi2, i3 and the coefficients of ¢; and A as variables. For deg(q1) =
3 we obtain the solution ps = 1 = po = 0 and A = —y%/4 — pzy3/2 —
p%/4 which gives

g

4
P =aby+a2(2y° + p3) +  (4° + pay?) + % n ”zy
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and

5 2
Q:x2y+x(y3+u3)+yg+m’2y :

Note that P,Q € K[z, y] and [P, Q] = x*y+puzx®. This example is closely
related to the example obtained in 3.1, in fact if we apply the procedure
of section 1, with pug =1, gy =0 = ps and pu3z = 2 as in 3.1 then we can
construct a pair P,Q € Klz,y] with deg(P) = 112, deg(Q) = 80 and
[P, Q] = 223 + aty.

The only other solutions were the homogeneous solutions with ug =
o = p1 = po = 0. For deg(q1) = 5, after an hour the PC hadn’t
solved the resulting system. We also were able to show that in the
case p1 = 0 = po (and ¢ with arbitrary degree), any solution of (3.5)
satisfying (3.6) must have ug = 0.

Based on this partial results, we state the following conjecture:

CONJECTURE: The only solutions of (3.5) are the solutions with
po = p1 = 0.

If the conjecture is true, then the only solutions of (3.5) satisfy-

ing (3.6) are the solutions with s = p1 = po = 0, which implies B > 16.
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Resumen

Analizamos un posible contraejemplo P, (@ a la conjetura del jacobiano
con ged(deg(P),deg(Q)) = 16 y mostramos que su existencia depende
exclusivamente de la existencia de soluciones de una cierta ecuacién difer-
encial de Abel de segundo tipo.
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