A DIFFERENTIAL EQUATION FOR POLYNOMIALS RELATED TO THE JACOBIAN CONJECTURE

Christian Valqui ${ }^{1}$, Jorge A. Guccione ${ }^{2}$ and Juan J. Guccione ${ }^{2}$

October, 2013

Abstract

We analyze a possible minimal counterexample to the Jacobian Conjecture P, Q with $\operatorname{gcd}(\operatorname{deg}(P), \operatorname{deg}(Q))=16$ and show that its existence depends only on the existence of solutions for a certain Abel differential equation of the second kind.

MSC(2010): 16S32, 16W20
Keywords: Jacobian, Abel differential equation.

[^0]
1 Introduction

In a recent article [1], we managed to describe the shape of possible minimal counterexample to JC (the Jacobian conjecture as stated in [3]) given by a pair of polynomials (P, Q) with $\operatorname{gcd}(\operatorname{deg}(P), \operatorname{deg}(Q))=B$, where

$$
B:= \begin{cases}\infty & \text { if JC is true } \\ \min (\operatorname{gcd}(\operatorname{deg}(P), \operatorname{deg}(Q))) & \text { where }(P, Q) \text { is a counterexample } \\ & \text { to JC, if JC is false. }\end{cases}
$$

We arrived at the following theorem (See [1, Theorem 8.10]):
Theorem 1.1 If $B=16$, then there exist $\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3} \in K$ with $\mu_{0} \neq 0$ and $P, Q \in L:=K[x, y]$ such that

$$
\ell_{1,-1}(P)=x^{3} y+\mu_{3} x^{2}, \quad \ell_{1,-1}(Q)=x^{2} y+\mu_{3} x
$$

and

$$
\begin{equation*}
[P, Q]=x^{4} y+\mu_{0}+\mu_{1} x+\mu_{2} x^{2}+\mu_{3} x^{3} \tag{1.1}
\end{equation*}
$$

Moreover, there exists $j \in \mathbb{N}$ such that $\{(j, 1)\}=\operatorname{Dir}(P)=\operatorname{Dir}(Q)$,
$\mathrm{st}_{j, 1}(P)=(3,1), \quad \mathrm{st}_{j, 1}(Q)=(2,1), \mathrm{en}_{j, 1}(P)=(0, m), \mathrm{en}_{j, 1}(Q)=(0, n)$, where $m=3 j+1$ and $n=2 j+1$.

By [2, Theorem 2.23] we know that $B \geq 16$. Hence, if we can prove that such a pair cannot exist, necessarily $B>16$.
In Section 2 we will show how the existence of such a pair (P, Q) would allow the construction of a counterexample to the Jacobian Conjecture. We use the notations of [1].
In Section 3 we write, according to Theorem 1.1,

$$
P=x^{3} y+x^{2} p_{2}(y)+x p_{1}(y)+p_{0}(y) \quad \text { and } \quad Q=x^{2} y+x q_{1}(y)+q_{0}(y) .
$$

Then the condition (1.1) translates into a system of four first order differential equations for the polynomials $p_{0}, p_{1}, q_{0}, q_{1}, q_{2}$. We reduce this system to a single equation for two polynomials and we prove the following theorem:

Theorem 1.2 $B=16$ if and only if there exist $A, q_{1} \in K[y]$ and $\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3} \in K$ with $\mu_{0} \neq 0$,

$$
\begin{equation*}
A(0)=-\frac{1}{4} \mu_{3}^{2}, \quad A^{\prime}(0)=\mu_{2} \quad \text { and } \quad \mu_{3} A^{\prime \prime}(0)=-6 \mu_{1}-2 \mu_{3} q_{1}^{\prime \prime}(0) \tag{1.2}
\end{equation*}
$$

such that

$$
\begin{align*}
6\left(A-\frac{q_{1}^{2}}{4}+\frac{\mu_{3}}{4} q_{1}-\frac{\mu_{2}}{6} y\right)^{2}= & 4 y A A^{\prime}+6\left(\frac{\mu_{3}}{4} q_{1}-\frac{\mu_{2}}{6} y\right)^{2} \\
& -\mu_{2} y q_{1}^{2}+3 \mu_{1} y^{2} q_{1}-6 \mu_{0} y^{3} \tag{1.3}
\end{align*}
$$

We were not able to obtain a solution of (1.3) satisfying (1.2) with $\mu_{0} \neq 0$ (which would yield a counterexample to the JC), nor could we discard the existence of such a solution (which would prove $B>16$). We analyze some particular cases of (1.3), for example we show that for $\mu_{3}=$ $\mu_{2}=\mu_{1}=\mu_{0}=0$ the only possible solutions are (ρ, σ)-homogeneous for $(\rho, \sigma)=(j, 1)$, where $j+1=\operatorname{deg}\left(q_{1}\right)$. We also recognize (1.3) as an Abel differential equation of second kind, for which no general solution is known. Using a standard trick we write this equation in a shorter form in (3.7) and in (3.8).

2 Construction of an counterexample

We reverse the order of the construction leading to Theorem 8.10 of [1]. Starting from a pair (P, Q) as in Theorem 1.1, we apply different automorphisms of L and $L^{(1)}$ and obtain a counterexample (\tilde{P}, \tilde{Q}) with $\operatorname{gcd}(\operatorname{deg}(\tilde{P}), \operatorname{deg}(\tilde{Q}))=16$.

Recall from [1] the automorphisms $\psi_{1} \in \operatorname{Aut}(L)$ and $\psi_{3} \in \operatorname{Aut}\left(L^{(1)}\right)$ given by

$$
\begin{array}{ll}
\psi_{1}(x):=y, & \psi_{3}(x):=x^{-1} \\
\psi_{1}(y):=-x, & \psi_{3}(y):=x^{3} y
\end{array}
$$

For $(\rho, \sigma) \in \overline{\mathfrak{V}}$ and $k \in\{1,3\}$, we define $\left(\rho_{k}, \sigma_{k}\right):=\bar{\psi}_{k}(\rho, \sigma)$ by

$$
\bar{\psi}_{1}(\rho, \sigma):=(\sigma, \rho) \quad \text { and } \quad \bar{\psi}_{3}(\rho, \sigma):= \begin{cases}(-\rho, 3 \rho+\sigma) & \text { if }(\rho, \sigma) \leq(-1,2) \\ (\rho,-3 \rho-\sigma) & \text { if }(\rho, \sigma)>(-1,2)\end{cases}
$$

We have following lemma (See [1, Lemma 6.6]):
Lemma 2.1 Let $P \in L^{(1)}$. The maps ψ_{1} and ψ_{3} satisfy the following properties:

1. For all $i, j \in \mathbb{N}_{0}$ we have $v_{\rho_{1}, \sigma_{1}}\left(\psi_{1}\left(x^{i} y^{j}\right)\right)=v_{\rho, \sigma}\left(x^{i} y^{j}\right)$, and if $P \in L$, then

$$
\ell_{\rho_{1}, \sigma_{1}}\left(\psi_{1}(P)\right)=\psi_{1}\left(\ell_{\rho, \sigma}(P)\right) \text { and } \ell \ell_{\rho_{1}, \sigma_{1}}\left(\psi_{1}(P)\right)=\psi_{1}\left(\ell \ell_{\rho, \sigma}(P)\right) .
$$

2. If $(\rho, \sigma) \leq(-1,2)$, then we have $v_{\rho_{3}, \sigma_{3}}\left(\psi_{3}\left(x^{i} y^{j}\right)\right)=v_{\rho, \sigma}\left(x^{i} y^{j}\right)$ for all $i \in \mathbb{N}_{0}$ and $j \in \mathbb{Z}$,

$$
\ell_{\rho_{3}, \sigma_{3}}\left(\psi_{3}(P)\right)=\psi_{3}\left(\ell_{\rho, \sigma}(P)\right) \quad \text { and } \ell \ell_{\rho_{3}, \sigma_{3}}\left(\psi_{3}(P)\right)=\psi_{3}\left(\ell \ell_{\rho, \sigma}(P)\right) .
$$

3. If $(\rho, \sigma)>(-1,2)$, then $v_{\rho_{3}, \sigma_{3}}\left(\psi_{3}\left(x^{i} y^{j}\right)\right)=-v_{\rho, \sigma}\left(x^{i} y^{j}\right)$ for all $i \in \mathbb{N}_{0}$ and $j \in \mathbb{Z}$,

$$
\ell_{\rho_{3}, \sigma_{3}}\left(\psi_{3}(P)\right)=\psi_{3}\left(\ell \ell_{\rho, \sigma}(P)\right) \text { and } \ell \ell_{\rho_{3}, \sigma_{3}}\left(\psi_{3}(P)\right)=\psi_{3}\left(\ell_{\rho, \sigma}(P)\right) .
$$

Moreover clearly $\operatorname{Jac}\left(\psi_{1}\right)=\left[\psi_{1}(x), \psi_{1}(y)\right]=1$ and $\operatorname{Jac}\left(\psi_{3}\right)=-x$. Let (P, Q) be as in Theorem 1.1.

FIRST STEP:

Set $P_{1}:=\psi_{3}(P)$ and $Q_{1}:=\psi_{3}(Q)$ and $(\tilde{\rho}, \tilde{\sigma}):=(-j, 3 j+1)$. Using Lemma 2.1 one checks that $\operatorname{Pred}_{P_{1}}(\tilde{\rho}, \tilde{\sigma})=\operatorname{Pred}_{Q_{1}}(\tilde{\rho}, \tilde{\sigma})=(1,-1)$,

$$
\operatorname{en}_{\tilde{\rho}, \tilde{\sigma}}\left(P_{1}\right)=(0,1), \quad \mathrm{en}_{\tilde{\rho}, \tilde{\sigma}}\left(Q_{1}\right)=(1,1), \quad w\left(\ell \ell_{-1,3}\left(P_{1}\right)\right)=m(3,1)
$$

and
$w\left(\ell \ell_{-1,3}\left(Q_{1}\right)\right)=n(3,1), \ell_{-1,2}\left(P_{1}\right)=y+\mu_{3} x^{-2}, \ell_{-1,2}\left(Q_{1}\right)=x y+\mu_{3} x^{-1}$,
where $m:=3 j+1$ and $n:=2 j+1$. Moreover, using that

$$
[\varphi(P), \varphi(Q)]=\varphi([P, Q])[\varphi(x), \varphi(y)]
$$

for all morphisms φ, we obtain

$$
\left[P_{1}, Q_{1}\right]=-\left(y+\mu_{0} x+\mu_{1}+\mu_{2} x^{-1}+\mu_{3} x^{-2}\right)
$$

SECOND STEP

Set $P_{2}:=\varphi_{0}\left(P_{1}\right)$ and $Q_{2}:=\varphi_{0}\left(Q_{1}\right)$, where $\varphi_{0}(y):=y-\left(\mu_{0} x+\mu_{1}+\right.$ $\mu_{2} x^{-1}+\mu_{3} x^{-2}$) and $\varphi_{0}(x):=x$ (note that $\operatorname{Jac}\left(\varphi_{0}\right)=1$). Then $P_{2}, Q_{2} \in$ L and
$\left[P_{2}, Q_{2}\right]=-y, \operatorname{Dir}\left(P_{2}\right)=\operatorname{Dir}\left(Q_{2}\right)=\{(\tilde{\rho}, \tilde{\sigma}),(1,1)\}, \operatorname{en} \tilde{\tilde{\rho}, \tilde{\sigma}}\left(P_{2}\right)=(0,1)$, and

$$
\operatorname{en}_{\tilde{\rho}, \tilde{\sigma}}\left(Q_{2}\right)=(1,1), \quad \ell_{1,1}\left(P_{2}\right)=\lambda_{P} R_{2}^{m} \quad \text { and } \quad \ell_{1,1}\left(Q_{2}\right)=\lambda_{Q} R_{2}^{n}
$$

for $R_{2}=x^{3}\left(y-\mu_{0} x\right)$.

THIRD STEP

Since $P_{2}, Q_{2} \in L$, we can apply ψ_{1}. We set $P_{3}:=\psi_{1}\left(P_{2}\right), Q_{3}:=\psi_{1}\left(Q_{2}\right)$ and $(\bar{\rho}, \bar{\sigma}):=(3 j+1,-j)$. Then
$\left[P_{3}, Q_{3}\right]=-x, \quad \operatorname{Dir}\left(P_{3}\right)=\operatorname{Dir}\left(Q_{3}\right)=\{(\bar{\rho}, \bar{\sigma}),(1,1)\}, \quad \mathrm{en}_{\bar{\rho}, \bar{\sigma}}\left(P_{3}\right)=(1,0)$,

Figure 1: Illustration of the first two steps, for $j=1$.
and

$$
\operatorname{en}_{\bar{\rho}, \bar{\sigma}}\left(Q_{3}\right)=(1,1), \quad \ell_{1,1}\left(P_{3}\right)=\tilde{\lambda}_{P} R_{3}^{m} \quad \text { and } \quad \ell_{1,1}\left(Q_{3}\right)=\tilde{\lambda}_{Q} R_{3}^{n},
$$

for $R_{3}=y^{3}\left(y+\frac{1}{\mu_{0}} x\right)$.

FOURTH STEP(Figure 2)

We set $P_{4}:=\psi_{3}\left(P_{3}\right), Q_{4}:=\psi_{3}\left(Q_{3}\right)$ and $(\hat{\rho}, \hat{\sigma}):=(-3 j-1,8 j+3)$. Then

$$
\operatorname{Dir}\left(P_{4}\right)=\operatorname{Dir}\left(Q_{4}\right)=\{(\hat{\rho}, \hat{\sigma}),(-1,4)\}, \operatorname{en}_{\hat{\rho}, \hat{\sigma}}\left(P_{4}\right)=(-1,0)
$$

A differential equation for polynomials related to the Jacobian conjecture

Figure 2: Illustration of the fourth step.

Moreover $\left[P_{4}, Q_{4}\right]=1$ and

$$
\operatorname{en}_{\hat{\rho}, \hat{\sigma}}\left(Q_{4}\right)=(2,1), \quad \ell_{-1,4}\left(P_{4}\right)=\tilde{\lambda}_{P} R_{4}^{m} \quad \text { and } \quad \ell_{-1,4}\left(Q_{4}\right)=\tilde{\lambda}_{Q} R_{4}^{n}
$$

for $R_{4}=y^{3} x^{12}\left(y+\frac{1}{\mu_{0}} x^{-4}\right)$.

FIFTH STEP

Set $P_{5}:=\varphi_{1}\left(P_{4}\right)$ and $Q_{5}:=\varphi_{1}\left(Q_{4}\right)$, where $\varphi_{1}(y):=y-\frac{1}{\mu_{0}} x^{-4}$ and $\varphi_{1}(x):=x$ (note that $\operatorname{Jac}\left(\varphi_{1}\right)=1$). Then

$$
\ell_{-1,4}\left(P_{5}\right)=\tilde{\lambda}_{P} R_{5}^{m} \quad \text { and } \quad \ell_{-1,4}\left(Q_{5}\right)=\tilde{\lambda}_{Q} R_{5}^{n}
$$

for $R_{5}=y x^{12}\left(y-\frac{1}{\mu_{0}} x^{-4}\right)^{3}$.

SIXTH STEP(Figure 3)

If $P_{5}, Q_{5} \in L$, then we have a counterexample to JC, since $\left[P_{5}, Q_{5}\right]=1$, $\operatorname{deg}(P)=16 m$ and $\operatorname{deg}(Q)=16 n$ with $m \nmid n$ and $n \nmid m$.

Else set $\left(\rho_{1}, \sigma_{1}\right):=\operatorname{Succ}_{P_{5}}(-1,4)$. Then $\left[\ell_{\rho_{1}, \sigma_{1}}\left(P_{5}\right), \ell_{\rho_{1}, \sigma_{1}}\left(Q_{5}\right)\right]=0$ and so

$$
\ell_{\rho_{1}, \sigma_{1}}\left(P_{5}\right)=\hat{\lambda}_{P} R_{6}^{m} \quad \text { and } \quad \ell_{-1,4}\left(Q_{5}\right)=\hat{\lambda}_{Q} R_{6}^{n},
$$

Christian Valqui, Juan Guccione, Jorge Guccione

Figure 3: Illustration of the sixth step.
for some $R_{6}=y+\lambda_{k} x^{-k}$ with $\lambda_{k} \in K^{\times}$and $k \in\{1,2,3\}$. Note that $\left(\rho_{1}, \sigma_{1}\right)=(-1, k)$. If necessary, we apply successively $\varphi^{(k)}$ given by $\varphi^{(k)}(y):=y-\lambda_{k} x^{-k}$ and $\varphi^{(k)}(x):=x$, to obtain finally the desired counterexample (\tilde{P}, \tilde{Q}) given by

$$
(\tilde{P}, \tilde{Q}):=\left(\varphi^{(1)}\left(\varphi^{(2)}\left(\varphi^{(3)}\left(P_{5}\right)\right)\right), \varphi^{(1)}\left(\varphi^{(2)}\left(\varphi^{(3)}\left(Q_{5}\right)\right)\right)\right) \in L .
$$

3 Differential equations for polynomials

According to Theorem 1.1 we write

$$
P=x^{3} y+x^{2} p_{2}(y)+x p_{1}(y)+p_{0}(y) \quad \text { and } \quad Q=x^{2} y+x q_{1}(y)+q_{0}(y) .
$$

Then the equality (1.1) yields

$$
\begin{aligned}
x^{4} y & =\left[x^{3} y, x^{2} y\right] \\
\mu_{3} x^{3} & =\left[x^{3} y, x q_{1}(y)\right]+\left[x^{2} p_{2}(y), x^{2} y\right] \\
\mu_{2} x^{2} & =\left[x^{3} y, q_{0}(y)\right]+\left[x^{2} p_{2}(y), x q_{1}(y)\right]+\left[x p_{1}(y), x^{2} y\right] \\
\mu_{1} x & =\left[x^{2} p_{2}(y), q_{0}(y)\right]+\left[x p_{1}(y), x q_{1}(y)\right]+\left[p_{0}(y), x^{2} y\right] \\
\mu_{0} & =\left[x p_{1}(y), q_{0}(y)\right]+\left[p_{0}(y), x q_{1}(y)\right] .
\end{aligned}
$$

The first equality is trivially true. Noting that

$$
\left[x^{k} p_{k}(y), x^{j} q_{j}(y)\right]=x^{k+j-1}\left(k p_{k}(y) q_{j}^{\prime}(y)-j p_{k}^{\prime}(y) q_{j}(y)\right),
$$

we obtain the system of four differential equations for the five polynomials $p_{0}, p_{1}, p_{2}, q_{0}, q_{1}$:

$$
\begin{aligned}
& \mu_{3}=3 y q_{1}^{\prime}-q_{1}+2 p_{2}-2 y p_{2}^{\prime} \\
& \mu_{2}=3 y q_{0}^{\prime}+2 p_{2} q_{1}^{\prime}-p_{2}^{\prime} q_{1}+p_{1}-2 y p_{1}^{\prime} \\
& \mu_{1}=2 p_{2} q_{0}^{\prime}+p_{1} q_{1}^{\prime}-p_{1}^{\prime} q_{1}-2 y p_{0}^{\prime} \\
& \mu_{0}=p_{1} q_{0}^{\prime}-p_{0}^{\prime} q_{1} .
\end{aligned}
$$

Note that $\ell_{1,-1}(P)=x^{3} y+\mu_{3} x^{2}$ and $\ell_{1,-1}(Q)=x^{2} y+\mu_{3} x$ imply $q_{1}(0)=\mu_{3}$ and $p_{2}(0)=\mu_{3}$. Moreover, if we write $P=\sum_{i, j} a_{i, j} x^{i} y^{j}$,
then we can assume $a_{2,1}=p_{2}^{\prime}(0)=0$, replacing P by $P-a_{2,1} Q$. Writing $Q=\sum_{i, j} b_{i, j} x^{i} y^{j},[P, Q]=\sum_{i, j} c_{i, j} x^{i} y^{j}$ and noting that

$$
\begin{equation*}
c_{i, j}=\sum_{(k, l)+(s, t)=(i, j)+(1,1)}(k t-l s) a_{k, l} b_{s, t}, \tag{3.1}
\end{equation*}
$$

one verifies that

$$
0=c_{3,1}=2 a_{3,1} b_{1,1}=2 b_{1,1}
$$

using $b_{2,0}=b_{2,2}=a_{3,2}=a_{3,0}=0$ and $b_{3, k}=a_{4, k}=0$ for all k. It follows that $q_{1}^{\prime}(0)=b_{1,1}=0$ and so we can and will assume

$$
q_{1}(0)=\mu_{3}, \quad q_{1}^{\prime}(0)=0, \quad p_{2}(0)=\mu_{3} \quad \text { and } \quad p_{2}^{\prime}(0)=0
$$

This allows to solve the first equation in full generality. In fact, write $q_{1}=\mu_{3}+y^{2} F^{\prime}$ and $p_{2}=\mu_{3}+y G$ for some $F, G \in K[y]$. From the first equation we obtain

$$
\mu_{3}=3 y\left(2 y F^{\prime}+y^{2} F^{\prime \prime}\right)-\left(\mu_{3}+y^{2} F^{\prime}\right)+2\left(\mu_{3}+y G\right)-2 y\left(G+y G^{\prime}\right)
$$

from which we deduce the equality

$$
2 G^{\prime}=5 F^{\prime}+3 y F^{\prime \prime}=\left(2 F+3 y F^{\prime}\right)^{\prime}
$$

and so $G=F+(3 / 2) y F^{\prime}+$ const. Since $G(0)=0$, we can assume $F(0)=0$ and $G=F+(3 / 2) y F^{\prime}$. Hence the general solution to the first equation is $q_{1}=\mu_{3}+y^{2} F^{\prime}$ and $p_{2}=\mu_{3}+y F+(3 / 2) y^{2} F^{\prime}$, for any choice of $F \in y K[y]$.
Using the second equation we can express q_{0}^{\prime} as a function of F and p_{1} :

$$
\begin{align*}
q_{0}^{\prime}= & \left(-2 p_{1}+2 \mu_{2}+2 \mu_{3} F+4 y p_{1}^{\prime}-6 y^{2} F F^{\prime}-\mu_{3} y^{2} F^{\prime \prime}-4 y^{3}\left(F^{\prime}\right)^{2}\right. \\
& \left.-4 y^{3} F F^{\prime \prime}-3 y^{4} F^{\prime} F^{\prime \prime}\right) / 6 y \tag{3.2}
\end{align*}
$$

The third equation yields p_{0}^{\prime} as a function of F, p_{1} and q_{0}^{\prime} :

$$
\begin{equation*}
p_{0}^{\prime}=\frac{y p_{1}\left(2 F^{\prime}+y F^{\prime \prime}\right)-\mu_{1}-p_{1}^{\prime}\left(\mu_{3}+y^{2} F^{\prime}\right)+\left(2 \mu_{3}+y\left(2 F+3 y F^{\prime}\right)\right) q_{0}^{\prime}}{2 y} \tag{3.3}
\end{equation*}
$$

Inserting the values into the fourth equation we obtain a (very big) differential equation for p_{1} and F :

$$
\begin{align*}
6 \mu_{0} y^{2}= & y p_{1}\left(2\left(p_{1}-\mu_{2}-\mu_{3} F\right)-4 y p_{1}^{\prime}+y^{2}\left(6 F F^{\prime}+\mu_{3} F^{\prime \prime}\right)\right. \\
& \left.+4 y^{3}\left(\left(F^{\prime}\right)^{2}+F F^{\prime \prime}\right)+3 y^{4} F^{\prime} F^{\prime \prime}\right)-\left(3 y^{2} p_{1}\left(2 F^{\prime}+y F^{\prime \prime}\right)\right. \\
& -3 \mu_{1} y-3 y p_{1}^{\prime}\left(\mu_{3}+y^{2} F^{\prime}\right)-\frac{1}{2}\left(2 \mu_{3}+y\left(2 F+3 y F^{\prime}\right)\right) \cdot\left(2 p_{1}\right. \\
& -2 \mu_{2}-2 \mu_{3} F-4 y p_{1}^{\prime}+6 y^{2} F F^{\prime}+\mu_{3} y^{2} F^{\prime \prime}+4 y^{3}\left(F^{\prime}\right)^{2} \\
& \left.\left.+4 y^{3} F F^{\prime \prime}+3 y^{4} F^{\prime} F^{\prime \prime}\right)\right)\left(\mu_{3}+y^{2} F^{\prime}\right) \tag{3.4}
\end{align*}
$$

Now we set

$$
A:=y p_{1}-q_{1} p_{2}+\frac{3}{4} q_{1}^{2}=-\frac{1}{4} \mu_{3}^{2}+y p_{1}-\mu_{3} y F-\mu_{3} y^{2} F^{\prime}-y^{3} F F^{\prime}-\frac{3}{4} y^{4}\left(F^{\prime}\right)^{2}
$$

and we can express (3.4) as a differential equation for A and q_{1} :

$$
\begin{align*}
6\left(A-\frac{q_{1}^{2}}{4}+\frac{\mu_{3}}{4} q_{1}-\frac{\mu_{2}}{6} y\right)^{2}= & 4 y A A^{\prime}+6\left(\frac{\mu_{3}}{4} q_{1}-\frac{\mu_{2}}{6} y\right)^{2} \\
& -\mu_{2} y q_{1}^{2}+3 \mu_{1} y^{2} q_{1}-6 \mu_{0} y^{3} \tag{3.5}
\end{align*}
$$

Moreover we have

$$
\begin{equation*}
A(0)=-\frac{1}{4} \mu_{3}^{2}, \quad A^{\prime}(0)=\mu_{2} \quad \text { and } \quad u_{3} A^{\prime \prime}(0)=-6 \mu_{1}-2 \mu_{3} q_{1}^{\prime \prime}(0) \tag{3.6}
\end{equation*}
$$

In fact, from the definition of A we have that $A(0)=-q_{1}(0) p_{2}(0)+$ $\frac{3}{4} q_{1}(0)^{2}=-\frac{1}{4} \mu_{3}^{2}$. The other two conditions follow from the requirement that $q_{0}^{\prime}(y)$ and $p_{0}^{\prime}(y)$ defined by (3.2) and (3.3) are polynomials.

This proves Theorem 1.2 and is a great simplification with respect to (3.4), not only in the number of terms involved, but in the type of differential equation. In fact, (3.4) is a quadratic first order differential equation for A, called an Abel differential equation of second kind. For q_{1} it is a cuartic equation with no derivative of q_{1} involved. However we were not able to obtain a solution of (3.5) with $\mu_{0} \neq 0$ and such
that (3.6) is satisfied (which would yield a counterexample to the JC), nor could we discard the existence of such a solution (which would prove $B>16)$. In the sequel, we will analyze some aspects of this differential equation.

3.1 Solutions without (3.6).

If we don't require (3.6), then there exist solutions of (3.5) with $\mu_{0} \neq 0$. Take for example $A=1-y^{3}-y^{6} / 4$ and $q_{1}(y)=y^{3}+2$. Then (3.5) is satisfied for $\mu_{0}=1, \mu_{1}=0=\mu_{2}$ and $\mu_{3}=2$. If we try to construct a counterexample, we obtain $p_{1}(y)=y^{5}+2 y^{2}+\frac{2}{y} \notin K[y]$. In fact this solution yields

$$
P=x^{3} y+2 x^{2}\left(y^{3}+1\right)+x\left(y^{5}+2 y^{2}+\frac{2}{y}\right)+\frac{y^{7}}{7}+\frac{y^{4}}{2}+\frac{1}{y^{2}}
$$

and

$$
Q=x^{2} y+x\left(y^{3}+2\right)+\frac{y^{5}}{5}+y^{2}+\frac{2}{y}
$$

Note that $P, Q \in K\left[x, y, y^{-1}\right]$ and $[P, Q]=x^{4} y+\mu_{0}+\mu_{1} x+\mu_{2} x^{2}+\mu_{3} x^{3}$, with $\mu_{0}=1 \neq 0$.

3.2 The case $\mu_{3}=\mu_{2}=\mu_{1}=\mu_{0}=0$: Homogeneous solutions.

Consider the case $\mu_{3}=\mu_{2}=\mu_{1}=\mu_{0}=0$. Then (3.5) reads

$$
6\left(A-\frac{q_{1}^{2}}{4}\right)^{2}=4 y A A^{\prime}
$$

and clearly, any irreducible factor of A must be y, since any other linear factor of A would have multiplicity $2 t$ on the left hand side and $2 k-1$ on the right hand side. Then we can assume $A=y^{k}$ for some k and necessarily $q_{1}^{2}=4 y^{k}\left(1 \pm \sqrt{\frac{2 k}{3}}\right)$, hence $k=2(j+1)$ and $q_{1}=2 R y^{j+1}$,
for $R:= \pm 2 \sqrt{1 \pm \sqrt{\frac{4 j+2}{3}}}$. Then it is straightforward to verify that $p_{2}=\left(\frac{3}{2}+\frac{1}{j}\right) R y^{j+1}$ and $p_{1}=y^{2 j+1}\left(1-\left(\frac{1}{j}+\frac{3}{4}\right) R^{2}\right)$. We also obtain $q_{0}=\lambda y^{2 j+1}$ and $p_{0}=\lambda_{1} y^{3 j+1}$ for some λ, λ_{1}. Hence P and Q are (ρ, σ)-homogeneous for $(\rho, \sigma)=(j, 1)$.

3.3 Standard methods for solving Abel differential equations.

For Abel differential equations no general solution is known. However, some methods are available: The standard method for simplifying an Abel differential equation of the second kind suggests the substitution $A=y^{3 / 2} T$ in (3.5). This yields the equation

$$
\begin{equation*}
T T^{\prime}=F_{1}(y) T+F_{0}(y) \tag{3.7}
\end{equation*}
$$

with

$$
F_{1}(y)=-\frac{1}{4 y^{5 / 2}}\left(3 q_{1}^{2}-3 \mu_{3} q_{1}+2 \mu_{2} y\right)
$$

and

$$
F_{0}(y)=\frac{3}{32 y^{4}}\left(q_{1}^{4}-2 \mu_{3} q_{1}^{3}+4 \mu_{2} y q_{1}^{2}-8 \mu_{1} y^{2} q_{1}+16 \mu_{0} y^{3}\right)
$$

We could't bring the equation (3.7) into any of the 80 solvable cases listed in $[4,1.3 .3]$, nor could we discard the existence of solutions.

Following the book [4] we set $U=\frac{1}{T}$ and then (3.7) reads

$$
\begin{equation*}
U^{\prime}+F_{1}(y) U^{2}+F_{0}(y) U^{3}=0 \tag{3.8}
\end{equation*}
$$

an Abel differential equation of the first kind. Again, we couldn't find a solvable case in [4] that corresponds to (3.8) and it is also impossible to choose $\mu_{0} \neq 0, \mu_{1}, \mu_{2}, \mu_{3}, q_{1}$ and α such that

$$
\left(\frac{F_{0}}{F_{1}}\right)^{\prime}=\alpha F_{1}
$$

which is one of the known cases that allow further simplification of equation (3.8).

3.4 The case $\mu_{3}=0=\mu_{1}$.

Let us analyze the equation (3.7) in one particular case. Note that by (3.1) we have

$$
\mu_{1}=c_{1,0}=2 a_{2,0} b_{0,1}-a_{1,1} b_{1,1}=\mu_{3}\left(2 b_{0,1}-a_{1,1}\right)
$$

Consequently, if $\mu_{3}=0$, then $\mu_{1}=0$. We will consider the case $\mu_{3}=$ $0=\mu_{1}$. In this case

$$
F_{1}(y)=-\frac{1}{4 y^{5 / 2}}\left(3 q_{1}^{2}-2 \mu_{2} y\right)
$$

and

$$
F_{0}(y)=\frac{1}{32 y^{4}}\left(3 q_{1}^{4}+4 \mu_{2} y q_{1}^{2}+48 \mu_{0} y^{3}\right)
$$

Again, we were unable to transform (3.7) into one of the solvable cases of [4].

We also can try to solve the case $\mu_{1}=0$ and $\mu_{3}=0$ directly in (3.5). In that case we can set $S:=\frac{q_{1}^{2}}{4}+\frac{\mu_{2} y}{6}$ and then (3.5) reads

$$
3(A-S)^{2}=2 y A A^{\prime}-2 \mu_{2} y S+\frac{5}{12} \mu_{2}^{2} y^{2}-3 \mu_{0} y^{3}
$$

We couldn't find solutions with $\mu_{0} \neq 0$ such that $S-\frac{\mu_{2} y}{6}$ is a square.

3.5 Low degree cases.

Finally we solve (3.5) with the initial conditions (3.6) for some low degree cases. One can show that $\operatorname{deg}(A)=2 \operatorname{deg}\left(q_{1}\right)$, and we were able to solve the cases $\operatorname{deg}\left(q_{1}\right)=2,3,4$, assuming q_{1} monic and setting $\mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}$ and the coefficients of q_{1} and A as variables. For $\operatorname{deg}\left(q_{1}\right)=$ 3 we obtain the solution $\mu_{2}=\mu_{1}=\mu_{0}=0$ and $A=-y^{6} / 4-\mu_{3} y^{3} / 2-$ $\mu_{3}^{2} / 4$ which gives

$$
P=x^{3} y+x^{2}\left(2 y^{3}+\mu_{3}\right)+x\left(y^{5}+\mu_{3} y^{2}\right)+\frac{y^{7}}{7}+\frac{\mu_{3} y^{4}}{4}
$$

and

$$
Q=x^{2} y+x\left(y^{3}+\mu_{3}\right)+\frac{y^{5}}{5}+\frac{\mu_{3} y^{2}}{2}
$$

Note that $P, Q \in K[x, y]$ and $[P, Q]=x^{4} y+\mu_{3} x^{3}$. This example is closely related to the example obtained in 3.1 , in fact if we apply the procedure of section 1, with $\mu_{0}=1, \mu_{1}=0=\mu_{2}$ and $\mu_{3}=2$ as in 3.1 then we can construct a pair $P, Q \in K[x, y]$ with $\operatorname{deg}(P)=112, \operatorname{deg}(Q)=80$ and $[P, Q]=2 x^{3}+x^{4} y$.

The only other solutions were the homogeneous solutions with $\mu_{3}=$ $\mu_{2}=\mu_{1}=\mu_{0}=0$. For $\operatorname{deg}\left(q_{1}\right)=5$, after an hour the PC hadn't solved the resulting system. We also were able to show that in the case $\mu_{1}=0=\mu_{2}$ (and q_{1} with arbitrary degree), any solution of (3.5) satisfying (3.6) must have $\mu_{0}=0$.

Based on this partial results, we state the following conjecture:

CONJECTURE: The only solutions of (3.5) are the solutions with $\mu_{2}=\mu_{1}=0$.

If the conjecture is true, then the only solutions of (3.5) satisfying (3.6) are the solutions with $\mu_{2}=\mu_{1}=\mu_{0}=0$, which implies $B>16$.

References

[1] Guccione, Jorge Alberto; Guccione, Juan José; Valqui, Christian, On the shape of possible counterexamples to the Jacobian conjecture, arXiv:1401.1784[math.AC], (8 Jan 2014).
[2] Heitmann, R, On the Jacobian conjecture, Journal of Pure and Applied Algebra, vol. 64, pgs. 35-72, (1990).
[3] Keller, Ott-Heinrich Ganze Cremona-Transformationen, Monatsh. Math. Phys. vol. 47 no. 1, pgs. 299-306, (1939)
[4] Polyanin, A. D. and Zaitsev, V. F., Handbook of Exact Solutions for Ordinary Differential Equations, Chapman\& Hall/CRC, Boca Raton, (2003).

Resumen

Analizamos un posible contraejemplo P, Q a la conjetura del jacobiano con $\operatorname{gcd}(\operatorname{deg}(P), \operatorname{deg}(Q))=16$ y mostramos que su existencia depende exclusivamente de la existencia de soluciones de una cierta ecuación diferencial de Abel de segundo tipo.
Palabras clave: Jacobiano, ecuación diferencial de Abel

Christian Valqui
Sección Matemáticas, Departamento de Ciencias, PUCP, Instituto de Matemática y Ciencias Afines (IMCA), cvalqui@pucp.edu.pe

Jorge A. Guccione
Departamento de Matemática
Instituto de Investigaciones Matemáticas "Luis A. Santaló"
Fac. de Ciencias Exactas y Naturales-UBA, Pabellón 1-Ciudad Universitaria. Intendente Guiraldes 2160 (C1428EGA), Buenos Aires, Argentina. vander@dm.uba.ar

Juan J. Guccione
Departamento de Matemática
Fac. de Ciencias Exactas y Naturales-UBA, Pabellón 1-Ciudad Universitaria. Intendente Guiraldes 2160 (C1428EGA) Buenos Aires, Argentina. Instituto Argentino de Matemática-CONICET Savedra 15 3er piso, (C1083ACA) Buenos Aires, Argentina. jjgucci@dm.uba.ar

[^0]: ${ }^{1}$ Sección Matemáticas, PUCP; Inst. Mat. y Ciencias Afines (IMCA). PUCP-DGI-2013-3036, PUCP-DGI-2012-0011.
 ${ }^{2}$ Dpto. de Mat. Fac. de Ciencias Exactas y Naturales-UBA, Argentina. PIP 112-200801-00900 (CONICET).

