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1 Introduction

In a recent article [1], we managed to describe the shape of possible

minimal counterexample to JC (the Jacobian conjecture as stated in [3])

given by a pair of polynomials (P,Q) with gcd(deg(P ),deg(Q)) = B,

where

B :=


∞ if JC is true,

min
(
gcd(deg(P ),deg(Q))

)
where (P,Q) is a counterexample

to JC, if JC is false.

We arrived at the following theorem (See [1, Theorem 8.10]):

Theorem 1.1 If B = 16, then there exist µ0, µ1, µ2, µ3 ∈ K with

µ0 6= 0 and P,Q ∈ L := K[x, y] such that

`1,−1(P ) = x3y + µ3x
2, `1,−1(Q) = x2y + µ3x

and

[P,Q] = x4y + µ0 + µ1x+ µ2x
2 + µ3x

3. (1.1)

Moreover, there exists j ∈ N such that {(j, 1)} = Dir(P ) = Dir(Q),

stj,1(P ) = (3, 1), stj,1(Q) = (2, 1), enj,1(P ) = (0,m), enj,1(Q) = (0, n),

where m = 3j + 1 and n = 2j + 1.

By [2, Theorem 2.23] we know that B ≥ 16. Hence, if we can prove that

such a pair cannot exist, necessarily B > 16.

In Section 2 we will show how the existence of such a pair (P,Q) would

allow the construction of a counterexample to the Jacobian Conjecture.

We use the notations of [1].

In Section 3 we write, according to Theorem 1.1,

P = x3y + x2p2(y) + xp1(y) + p0(y) and Q = x2y + xq1(y) + q0(y).
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Then the condition (1.1) translates into a system of four first order dif-

ferential equations for the polynomials p0, p1, q0, q1, q2. We reduce this

system to a single equation for two polynomials and we prove the fol-

lowing theorem:

Theorem 1.2 B = 16 if and only if there exist A, q1 ∈ K[y] and

µ0, µ1, µ2, µ3 ∈ K with µ0 6= 0,

A(0) = −1

4
µ2
3, A′(0) = µ2 and µ3A

′′(0) = −6µ1 − 2µ3q
′′
1 (0), (1.2)

such that

6

(
A− q21

4
+
µ3

4
q1 −

µ2

6
y

)2

=4yAA′ + 6
(µ3

4
q1 −

µ2

6
y
)2

− µ2yq
2
1 + 3µ1y

2q1 − 6µ0y
3. (1.3)

We were not able to obtain a solution of (1.3) satisfying (1.2) with

µ0 6= 0 (which would yield a counterexample to the JC), nor could we

discard the existence of such a solution (which would prove B > 16). We

analyze some particular cases of (1.3), for example we show that for µ3 =

µ2 = µ1 = µ0 = 0 the only possible solutions are (ρ, σ)-homogeneous

for (ρ, σ) = (j, 1), where j + 1 = deg(q1). We also recognize (1.3) as an

Abel differential equation of second kind, for which no general solution

is known. Using a standard trick we write this equation in a shorter

form in (3.7) and in (3.8).

2 Construction of an counterexample

We reverse the order of the construction leading to Theorem 8.10

of [1]. Starting from a pair (P,Q) as in Theorem 1.1, we apply different

automorphisms of L and L(1) and obtain a counterexample (P̃ , Q̃) with

gcd(deg(P̃ ),deg(Q̃)) = 16.
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Recall from [1] the automorphisms ψ1 ∈ Aut(L) and ψ3 ∈ Aut(L(1))

given by

ψ1(x) := y, ψ3(x) := x−1,

ψ1(y) := −x, ψ3(y) := x3y.

For (ρ, σ) ∈ V and k ∈ {1, 3}, we define (ρk, σk) := ψk(ρ, σ) by

ψ1(ρ, σ) := (σ, ρ) and ψ3(ρ, σ) :=

{
(−ρ, 3ρ+ σ) if (ρ, σ) ≤ (−1, 2),

(ρ,−3ρ− σ) if (ρ, σ) > (−1, 2).

We have following lemma (See [1, Lemma 6.6]):

Lemma 2.1 Let P ∈ L(1). The maps ψ1 and ψ3 satisfy the following

properties:

1. For all i, j ∈ N0 we have vρ1,σ1
(ψ1(xiyj)) = vρ,σ(xiyj), and if

P ∈ L, then

`ρ1,σ1(ψ1(P )) = ψ1 (`ρ,σ(P )) and ``ρ1,σ1(ψ1(P )) = ψ1 (``ρ,σ(P )) .

2. If (ρ, σ) ≤ (−1, 2), then we have vρ3,σ3
(ψ3(xiyj)) = vρ,σ(xiyj) for

all i ∈ N0 and j ∈ Z,

`ρ3,σ3
(ψ3(P )) = ψ3 (`ρ,σ(P )) and ``ρ3,σ3

(ψ3(P )) = ψ3 (``ρ,σ(P )) .

3. If (ρ, σ) > (−1, 2), then vρ3,σ3(ψ3(xiyj)) = −vρ,σ(xiyj) for all

i ∈ N0 and j ∈ Z,

`ρ3,σ3(ψ3(P )) = ψ3 (``ρ,σ(P )) and ``ρ3,σ3(ψ3(P )) = ψ3 (`ρ,σ(P )) .

Moreover clearly Jac(ψ1) = [ψ1(x), ψ1(y)] = 1 and Jac(ψ3) = −x.

Let (P,Q) be as in Theorem 1.1.
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FIRST STEP:

Set P1 := ψ3(P ) and Q1 := ψ3(Q) and (ρ̃, σ̃) := (−j, 3j + 1). Using

Lemma 2.1 one checks that PredP1
(ρ̃, σ̃) = PredQ1

(ρ̃, σ̃) = (1,−1),

enρ̃,σ̃(P1) = (0, 1), enρ̃,σ̃(Q1) = (1, 1), w(``−1,3(P1)) = m(3, 1),

and

w(``−1,3(Q1)) = n(3, 1), `−1,2(P1) = y+µ3x
−2, `−1,2(Q1) = xy+µ3x

−1,

where m := 3j + 1 and n := 2j + 1. Moreover, using that

[ϕ(P ), ϕ(Q)] = ϕ([P,Q])[ϕ(x), ϕ(y)],

for all morphisms ϕ, we obtain

[P1, Q1] = −(y + µ0x+ µ1 + µ2x
−1 + µ3x

−2).

SECOND STEP

Set P2 := ϕ0(P1) and Q2 := ϕ0(Q1), where ϕ0(y) := y − (µ0x + µ1 +

µ2x
−1 +µ3x

−2) and ϕ0(x) := x (note that Jac(ϕ0) = 1). Then P2, Q2 ∈
L and

[P2, Q2] = −y, Dir(P2) = Dir(Q2) = {(ρ̃, σ̃), (1, 1)}, enρ̃,σ̃(P2) = (0, 1),

and

enρ̃,σ̃(Q2) = (1, 1), `1,1(P2) = λPR
m
2 and `1,1(Q2) = λQR

n
2 ,

for R2 = x3(y − µ0x).

THIRD STEP

Since P2, Q2 ∈ L, we can apply ψ1. We set P3 := ψ1(P2), Q3 := ψ1(Q2)

and (ρ, σ) := (3j + 1,−j). Then

[P3, Q3] = −x, Dir(P3) = Dir(Q3) = {(ρ, σ), (1, 1)}, enρ,σ(P3) = (1, 0),
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Figure 1: Illustration of the first two steps, for j = 1.

and

enρ,σ(Q3) = (1, 1), `1,1(P3) = λ̃PR
m
3 and `1,1(Q3) = λ̃QR

n
3 ,

for R3 = y3(y + 1
µ0
x).

FOURTH STEP(Figure 2)

We set P4 := ψ3(P3), Q4 := ψ3(Q3) and (ρ̂, σ̂) := (−3j−1, 8j+3). Then

Dir(P4) = Dir(Q4) = {(ρ̂, σ̂), (−1, 4)}, enρ̂,σ̂(P4) = (−1, 0).
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Figure 2: Illustration of the fourth step.

Moreover [P4, Q4] = 1 and

enρ̂,σ̂(Q4) = (2, 1), `−1,4(P4) = λ̃PR
m
4 and `−1,4(Q4) = λ̃QR

n
4 ,

for R4 = y3x12(y + 1
µ0
x−4).

FIFTH STEP

Set P5 := ϕ1(P4) and Q5 := ϕ1(Q4), where ϕ1(y) := y − 1
µ0
x−4 and

ϕ1(x) := x (note that Jac(ϕ1) = 1). Then

`−1,4(P5) = λ̃PR
m
5 and `−1,4(Q5) = λ̃QR

n
5 ,

for R5 = yx12(y − 1
µ0
x−4)3.

SIXTH STEP(Figure 3)

If P5, Q5 ∈ L, then we have a counterexample to JC, since [P5, Q5] = 1,

deg(P ) = 16m and deg(Q) = 16n with m - n and n - m.

Else set (ρ1, σ1) := SuccP5
(−1, 4). Then [`ρ1,σ1

(P5), `ρ1,σ1
(Q5)] = 0

and so

`ρ1,σ1
(P5) = λ̂PR

m
6 and `−1,4(Q5) = λ̂QR

n
6 ,

Pro Mathematica, 27, 53-54 (2013), 83-98, ISSN 1012-3938 89



Christian Valqui, Juan Guccione, Jorge Guccione

x

y

P̃

x

y

P5

x

y

Q̃

x

y

Q5

ϕ(1) ◦ ϕ(2) ◦ ϕ(3)

Figure 3: Illustration of the sixth step.
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for some R6 = y + λkx
−k with λk ∈ K× and k ∈ {1, 2, 3}. Note

that (ρ1, σ1) = (−1, k). If necessary, we apply successively ϕ(k) given

by ϕ(k)(y) := y − λkx−k and ϕ(k)(x) := x, to obtain finally the desired

counterexample (P̃ , Q̃) given by

(P̃ , Q̃) := (ϕ(1)(ϕ(2)(ϕ(3)(P5))), ϕ(1)(ϕ(2)(ϕ(3)(Q5)))) ∈ L.

3 Differential equations for polynomials

According to Theorem 1.1 we write

P = x3y + x2p2(y) + xp1(y) + p0(y) and Q = x2y + xq1(y) + q0(y).

Then the equality (1.1) yields

x4y = [x3y, x2y]

µ3x
3 = [x3y, xq1(y)] + [x2p2(y), x2y]

µ2x
2 = [x3y, q0(y)] + [x2p2(y), xq1(y)] + [xp1(y), x2y]

µ1x = [x2p2(y), q0(y)] + [xp1(y), xq1(y)] + [p0(y), x2y]

µ0 = [xp1(y), q0(y)] + [p0(y), xq1(y)].

The first equality is trivially true. Noting that

[xkpk(y), xjqj(y)] = xk+j−1(kpk(y)q′j(y)− jp′k(y)qj(y)),

we obtain the system of four differential equations for the five polyno-

mials p0, p1, p2, q0, q1:

µ3 = 3yq′1 − q1 + 2p2 − 2yp′2

µ2 = 3yq′0 + 2p2q
′
1 − p′2q1 + p1 − 2yp′1

µ1 = 2p2q
′
0 + p1q

′
1 − p′1q1 − 2yp′0

µ0 = p1q
′
0 − p′0q1.

Note that `1,−1(P ) = x3y + µ3x
2 and `1,−1(Q) = x2y + µ3x imply

q1(0) = µ3 and p2(0) = µ3. Moreover, if we write P =
∑
i,j ai,jx

iyj ,
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then we can assume a2,1 = p′2(0) = 0, replacing P by P −a2,1Q. Writing

Q =
∑
i,j bi,jx

iyj , [P,Q] =
∑
i,j ci,jx

iyj and noting that

ci,j =
∑

(k,l)+(s,t)=(i,j)+(1,1)

(kt− ls)ak,lbs,t, (3.1)

one verifies that

0 = c3,1 = 2a3,1b1,1 = 2b1,1,

using b2,0 = b2,2 = a3,2 = a3,0 = 0 and b3,k = a4,k = 0 for all k. It

follows that q′1(0) = b1,1 = 0 and so we can and will assume

q1(0) = µ3, q′1(0) = 0, p2(0) = µ3 and p′2(0) = 0.

This allows to solve the first equation in full generality. In fact, write

q1 = µ3 + y2F ′ and p2 = µ3 + yG for some F,G ∈ K[y]. From the first

equation we obtain

µ3 = 3y(2yF ′ + y2F ′′)− (µ3 + y2F ′) + 2(µ3 + yG)− 2y(G+ yG′),

from which we deduce the equality

2G′ = 5F ′ + 3yF ′′ = (2F + 3yF ′)′

and so G = F + (3/2)yF ′ + const. Since G(0) = 0, we can assume

F (0) = 0 and G = F + (3/2)yF ′. Hence the general solution to the first

equation is q1 = µ3 + y2F ′ and p2 = µ3 + yF + (3/2)y2F ′, for any choice

of F ∈ yK[y].

Using the second equation we can express q′0 as a function of F and p1:

q′0 =
(
−2p1 + 2µ2 + 2µ3F + 4yp′1 − 6y2FF ′ − µ3y

2F ′′ − 4y3(F ′)2

−4y3FF ′′ − 3y4F ′F ′′
)
/6y (3.2)

The third equation yields p′0 as a function of F, p1 and q′0:

p′0 =
yp1(2F ′ + yF ′′)− µ1 − p′1(µ3 + y2F ′) + (2µ3 + y(2F + 3yF ′))q′0

2y
(3.3)
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Inserting the values into the fourth equation we obtain a (very big)

differential equation for p1 and F :

6µ0y
2 = yp1

(
2(p1 − µ2 − µ3F )− 4yp′1 + y2(6FF ′ + µ3F

′′)

+4y3((F ′)2 + FF ′′) + 3y4F ′F ′′
)
−

(
3y2p1(2F ′ + yF ′′)

−3µ1y − 3yp′1(µ3 + y2F ′)− 1
2 (2µ3 + y(2F + 3yF ′)) · (2p1

−2µ2 − 2µ3F − 4yp′1 + 6y2FF ′ + µ3y
2F ′′ + 4y3(F ′)2

+4y3FF ′′ + 3y4F ′F ′′)

)
(µ3 + y2F ′)

(3.4)

Now we set

A := yp1−q1p2+
3

4
q21 = −1

4
µ2
3+yp1−µ3yF−µ3y

2F ′−y3FF ′− 3

4
y4(F ′)2

and we can express (3.4) as a differential equation for A and q1:

6

(
A− q21

4
+
µ3

4
q1 −

µ2

6
y

)2

=4yAA′ + 6
(µ3

4
q1 −

µ2

6
y
)2

− µ2yq
2
1 + 3µ1y

2q1 − 6µ0y
3 (3.5)

Moreover we have

A(0) = −1

4
µ2
3, A′(0) = µ2 and u3A

′′(0) = −6µ1 − 2µ3q
′′
1 (0). (3.6)

In fact, from the definition of A we have that A(0) = −q1(0)p2(0) +
3
4q1(0)2 = − 1

4µ
2
3. The other two conditions follow from the requirement

that q′0(y) and p′0(y) defined by (3.2) and (3.3) are polynomials.

This proves Theorem 1.2 and is a great simplification with respect

to (3.4), not only in the number of terms involved, but in the type of

differential equation. In fact, (3.4) is a quadratic first order differential

equation for A, called an Abel differential equation of second kind. For

q1 it is a cuartic equation with no derivative of q1 involved. However

we were not able to obtain a solution of (3.5) with µ0 6= 0 and such
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that (3.6) is satisfied (which would yield a counterexample to the JC),

nor could we discard the existence of such a solution (which would prove

B > 16). In the sequel, we will analyze some aspects of this differential

equation.

3.1 Solutions without (3.6).

If we don’t require (3.6), then there exist solutions of (3.5) with

µ0 6= 0. Take for example A = 1 − y3 − y6/4 and q1(y) = y3 + 2.

Then (3.5) is satisfied for µ0 = 1, µ1 = 0 = µ2 and µ3 = 2. If we try to

construct a counterexample, we obtain p1(y) = y5 + 2y2 + 2
y /∈ K[y]. In

fact this solution yields

P = x3y + 2x2(y3 + 1) + x

(
y5 + 2y2 +

2

y

)
+
y7

7
+
y4

2
+

1

y2

and

Q = x2y + x(y3 + 2) +
y5

5
+ y2 +

2

y
.

Note that P,Q ∈ K[x, y, y−1] and [P,Q] = x4y+µ0 +µ1x+µ2x
2 +µ3x

3,

with µ0 = 1 6= 0.

3.2 The case µ3 = µ2 = µ1 = µ0 = 0: Homogeneous

solutions.

Consider the case µ3 = µ2 = µ1 = µ0 = 0. Then (3.5) reads

6

(
A− q21

4

)2

= 4yAA′,

and clearly, any irreducible factor of A must be y, since any other linear

factor of A would have multiplicity 2t on the left hand side and 2k − 1

on the right hand side. Then we can assume A = yk for some k and

necessarily q21 = 4yk
(

1±
√

2k
3

)
, hence k = 2(j + 1) and q1 = 2Ryj+1,
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for R := ±2

√
1±

√
4j+2
3 . Then it is straightforward to verify that

p2 =
(

3
2 + 1

j

)
Ryj+1 and p1 = y2j+1

(
1−

(
1
j + 3

4

)
R2
)

. We also obtain

q0 = λy2j+1 and p0 = λ1y
3j+1 for some λ, λ1. Hence P and Q are

(ρ, σ)-homogeneous for (ρ, σ) = (j, 1).

3.3 Standard methods for solving Abel differential

equations.

For Abel differential equations no general solution is known. How-

ever, some methods are available: The standard method for simplifying

an Abel differential equation of the second kind suggests the substitution

A = y3/2T in (3.5). This yields the equation

TT ′ = F1(y)T + F0(y) (3.7)

with

F1(y) = − 1

4y5/2
(3q21 − 3µ3q1 + 2µ2y)

and

F0(y) =
3

32y4
(q41 − 2µ3q

3
1 + 4µ2yq

2
1 − 8µ1y

2q1 + 16µ0y
3)

We could’t bring the equation (3.7) into any of the 80 solvable cases

listed in [4, 1.3.3], nor could we discard the existence of solutions.

Following the book [4] we set U = 1
T and then (3.7) reads

U ′ + F1(y)U2 + F0(y)U3 = 0, (3.8)

an Abel differential equation of the first kind. Again, we couldn’t find a

solvable case in [4] that corresponds to (3.8) and it is also impossible to

choose µ0 6= 0, µ1, µ2, µ3, q1 and α such that(
F0

F1

)′
= αF1,

which is one of the known cases that allow further simplification of equa-

tion (3.8).
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3.4 The case µ3 = 0 = µ1.

Let us analyze the equation (3.7) in one particular case. Note

that by (3.1) we have

µ1 = c1,0 = 2a2,0b0,1 − a1,1b1,1 = µ3(2b0,1 − a1,1).

Consequently, if µ3 = 0, then µ1 = 0. We will consider the case µ3 =

0 = µ1. In this case

F1(y) = − 1

4y5/2
(3q21 − 2µ2y)

and

F0(y) =
1

32y4
(3q41 + 4µ2yq

2
1 + 48µ0y

3).

Again, we were unable to transform (3.7) into one of the solvable cases

of [4].

We also can try to solve the case µ1 = 0 and µ3 = 0 directly in (3.5).

In that case we can set S :=
q21
4 + µ2y

6 and then (3.5) reads

3(A− S)2 = 2yAA′ − 2µ2yS +
5

12
µ2
2y

2 − 3µ0y
3.

We couldn’t find solutions with µ0 6= 0 such that S − µ2y
6 is a square.

3.5 Low degree cases.

Finally we solve (3.5) with the initial conditions (3.6) for some

low degree cases. One can show that deg(A) = 2 deg(q1), and we were

able to solve the cases deg(q1) = 2, 3, 4, assuming q1 monic and setting

µ0, µ1, µ2, µ3 and the coefficients of q1 and A as variables. For deg(q1) =

3 we obtain the solution µ2 = µ1 = µ0 = 0 and A = −y6/4− µ3y
3/2−

µ2
3/4 which gives

P = x3y + x2(2y3 + µ3) + x
(
y5 + µ3y

2
)

+
y7

7
+
µ3y

4

4
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and

Q = x2y + x(y3 + µ3) +
y5

5
+
µ3y

2

2
.

Note that P,Q ∈ K[x, y] and [P,Q] = x4y+µ3x
3. This example is closely

related to the example obtained in 3.1, in fact if we apply the procedure

of section 1, with µ0 = 1, µ1 = 0 = µ2 and µ3 = 2 as in 3.1 then we can

construct a pair P,Q ∈ K[x, y] with deg(P ) = 112, deg(Q) = 80 and

[P,Q] = 2x3 + x4y.

The only other solutions were the homogeneous solutions with µ3 =

µ2 = µ1 = µ0 = 0. For deg(q1) = 5, after an hour the PC hadn’t

solved the resulting system. We also were able to show that in the

case µ1 = 0 = µ2 (and q1 with arbitrary degree), any solution of (3.5)

satisfying (3.6) must have µ0 = 0.

Based on this partial results, we state the following conjecture:

CONJECTURE: The only solutions of (3.5) are the solutions with

µ2 = µ1 = 0.

If the conjecture is true, then the only solutions of (3.5) satisfy-

ing (3.6) are the solutions with µ2 = µ1 = µ0 = 0, which implies B > 16.
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Resumen

Analizamos un posible contraejemplo P,Q a la conjetura del jacobiano

con gcd(deg(P ),deg(Q)) = 16 y mostramos que su existencia depende

exclusivamente de la existencia de soluciones de una cierta ecuación difer-

encial de Abel de segundo tipo.
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