
HYPERSATO STRUCTURES

Jaime Cuadros Valle1

November, 2013

Abstract

We define hypersato structures: these structures admit three

inequivalent Sasakian structures such that each of these

structures shares a common Reeb vector field ξ and a

common contact form η with the others two. It is interesting

to notice that hypersato manifolds can be viewed as U(1)

principal orbibundles with base space a 4n-dimensional

hyperkähler orbifold. We also discuss some results on the

moduli problem of these structures.
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1 Introduction

In [10], inspired by a paper of Satô [22], we defined hypersato struc-

tures: a manifold is said to be hypersato if it admits three inequivalent

Sasakian structures such that each of these structures shares a common

Reeb vector field ξ and a common contact form η with the others two.

These are a variation on the definition of 3-Sasakian structures [6] which

admit three different Sasakian structures (Φi, ξi, ηi)i=1,2,3, and only oc-

cur in dimensions manifolds of dimension 4n + 3. Hypersato structures

can be found in certain manifolds of dimension 4n + 1. A manifold

endowed with hypersato structure is provided with three (1, 1) tensors

which leads to the existence of three complex structures on its associated

transverse structure. We will expand some ideas from [10] and also take

advantage of the fact that all these manifolds are spin and admit null

Sasaki metrics (and hence η-Einstein by a result of El Kacimi Alaoui,

see [13]) to apply previous results given in [11]. It is interesting to notice

that hypersato manifolds can be viewed as U(1) principal orbibundles

with base space a 4n-dimensional hyperkähler orbifold. We also discuss

some results on the moduli problem of these structures.

2 3-Structures of Second Type

Let us briefly review some aspects of Sasakian geometry, the stan-

dard reference here is [9].

Consider a (2n+ 1)-dimensional manifold M , one says that M is a

contact manifold if there exists a nowhere vanishing 1-form η, called a

contact form, on M such that

η ∧ (dη)n 6= 0.

It is not difficult to show that any contact manifold (M,η) admits

a unique vector field ξ, called the Reeb vector field, satisfying the two
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conditions

ξcη = 1, ξcdη = 0.

If additionally (M,η, ξ) admits a (1, 1) tensor Φ such that the triple

(ξ, η,Φ) satisfies

η(ξ) = 1 and Φ2 = −I + ξ ⊗ η,

where I is the identity endomorphism on TM, one says that M admits

an almost contact structure, and a smooth manifold with such a

structure is called an almost contact manifold. A Riemannian metric

g on M is said to be compatible with the almost contact structure if

for any vector fields X,Y on M we have

g(ΦX,ΦY ) = g(X,Y )− η(X)η(Y ). (2.1)

An almost contact structure with a compatible metric is called an al-

most contact metric structure. A contact metric structure (ξ, η,Φ, g)

is called K-contact if ξ is a Killing vector field of g. This metric is called

Sasakian if the metric cone (C(M) = M × R+, dr2 + r2g) is Kähler.

Here the Kähler form is given by d(r2η) and the complex structure I in

C(M) is given by the rule

IY = ΦY + η(Y )r
∂

∂r
and I

∂

∂r
= −ξ.

The Reeb vector field ξ defines a one dimensional Riemannian folia-

tion: the characteristic foliation Fξ defined on M whose leaves are

geodesics with respect to the Sasakian metric g, it is not difficult to

verify that this metric is bundle-like.

Definition 2.1. The characteristic foliation Fξ is said to be quasi-

regular if there is a positive integer k such that each point has a foliated

coordinate chart (U, x) such that each leaf of Fξ passes through U at

most k times. If k = 1 then the foliation is called regular. If Fξ is not

quasi-regular, it is said to be irregular.
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Let (M, ξ, η,Φ, g) be a Sasakian manifold, and consider the subbun-

dle D = ker η. There is an orthogonal splitting of the tangent bundle

as

TM = D ⊕ Lξ, (2.2)

where Lξ is the trivial line bundle generated by the Reeb vector field

ξ. The subbundle D is called contact subbundle is just the normal

bundle to the characteristic foliation Fξ. It is naturally endowed with

both a complex structure J = Φ|D and a symplectic structure dη. Hence,

(D, J, dη) gives M a transverse Kähler structure with Kähler form dη and

metric gD defined by

gD(X,Y ) = dη(X, JY ) (2.3)

which is related to the Sasakian metric g given by

g = gD ⊕ η ⊗ η. (2.4)

For compact quasi-regular Sasakian manifolds the space of leaves is

a compact Riemannian orbifold Z. But since the transverse geometry

is Kähler, the orbifold must be Kähler as well. Moreover, in the quasi-

regular case, it follows that M is the total space of a V -bundle over Z,
and the curvature of the connection form η is precisely the pullback of

the Kähler form on Z. Thus, Z satisfies an orbifold integrability condi-

tion. This integrability condition builds up a bridge between Sasakian

geometry on compact manifolds to projective algebraic geometry. For

instance, at the level of cohomology groups this relationship is quite

explicit. To see this, first we have to review basic cohomology.

A smooth p-form α on M is called basic if

ξcα = 0, Lξα = 0,

and we let ΛpB denote the sheaf of germs of basic p-forms on M , ΩpB will

denote the set of global sections of ΛpB on M. The sheaf of ΛpB is a module

under the ring, Λ0
B , of germs of smooth basic functions on M . We let
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C∞B (M) = Ω0
B , i.e., the ring of smooth basic functions on M . Since the

exterior differentiation preserves basic forms we get a de Rham complex

· · · −→ ΩpB
d−→ Ωp+1

B −→ · · ·

whose cohomology H∗B(Fξ) is called the basic cohomology of (M,Fξ).
The basic cohomology ring H∗B(Fξ) is an invariant of the foliation

Fξ and hence, of the Sasakian structure on M . When M is compact, the

relationship between the de Rham cohomology and the basic cohomology

is given by the following generalization of the Gysin sequence

· · · → Hp
B(Fξ)

ι∗→ Hp(M,R)
jp→ Hp−1

B (Fξ)
δ→ Hp+1

B (Fξ)→ · · ·

where ι∗ is the natural inclusion and δ the connecting homomorphism

given by δ[α] = [dη∧α] and jp is defined by composing the map induced

by contraction with ξ and the isomorphism Hr(Ω(M)T) ≈ Hr(M,R).

Here T denotes the closure of the leaves of ξ, which is a torus, and

Hr(Ω(M))T denotes the T-invariant cohomology defined from the T-

invariant r-forms in Ω(M)T. Since the transverse geometry is Kähler

one can define basic Dolbeault cohomology groups Hp,q
B (Fξ) that give rise

to a transverse Hodge decomposition. These groups are fundamental

invariants of the Sasakian structure which share many of the properties

of the ordinary Dolbeault cohomology of a Kähler structure. The ba-

sic Betti numbers and the basic Hodge numbers are defined as follows:

bBr (Fξ) = dimHr
B(Fξ) and hp,qB (Fξ) = dimHp,q

B (Fξ). Of course they

satisfy bBr (Fξ) =
∑
p+q=r h

p,q
B (Fξ).

If the Sasakian structure is quasi-regular the one obtains (a direct

consequence of work of Girbau, Haefiger and Sundaraman [15]) the fol-

lowing isomorphism identifying orbifold cohomology and basic cohomol-

ogy (c.f [9])

H∗orb(M/Fξ,R) = H∗(M/Fξ,R) ≈ H∗B(Fξ).

Now let us complexity the contact subbundle D so it has a first

Chern class c1(D) ∈ H2(M,Z). Consider the long exact sequence given
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above and the map H2(M,Z) −→ H2(M,R) whose kernel is the torsion

part of H2(M,Z). One can show there is a sequence

H2(M,Z)

↓
0→ R δ−→ H2

B(Fξ)
ι∗−→ H2(M,R) −→ H1

B(Fξ) ≈ H1(M,R) −→ · · · .
(2.5)

The map δ is given by δ(c) = c[dη] where c ∈ R. Now on a Sasakian

manifold the vector bundle D1,0 is holomorphic with respect to the CR

structure so we can compute the free part of c1(D) = c1(D1,0) from

the Kähler transverse geometry in the usual way. That is c1(D) can be

represented by a basic real closed (1, 1)-form ρB . The class cB1 = [ρB ] ∈
H2
B(Fξ) is independent of the transverse metric and the basic connection

used to compute it, and depends ony on the foliated manifold (M,Fξ)
with its CR-structure. We refer to this class c1(Fξ) ∈ H2

B(Fξ) as the

basic first Chern class of the foliation Fξ.
A Sasakian structure (ξ, η,Φ, g) is said to be positive (negative)

if c1(Fξ) is represented by a positive (negative) definite (1, 1) form. If

either of these two conditions is satisfied (ξ, η,Φ, g) is said to be definite,

and otherwise (ξ, η,Φ, g) is called indefinite. (ξ, η,Φ, g) is said to be

null if c1(Fξ) = 0.

The motivation for the following definition, given in [22], was to

discuss a structure similar to 3-Sasakian structures (see Definition 3.3

below) in manifolds of dimension 4n+ 1.

Definition 2.2. Let M be a differentiable manifold of dimension n,

which admits two contact structures (Φ1, ξ, η) and (Φ2, ξ, η) such that

Φ1Φ2 + Φ2Φ1 = 0.

Then we say that M has a contact 3-structure of second type.

If we consider a third endomorphism Φ3 = Φ1Φ2, a straightforward

calculation shows that the triple (Φ3, ξ, η) is a contact structure as well.
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The following equalities, that relate these three different structures are

valid:

Φ2
1 = Φ2

2 = Φ2
3 = −I + η ⊗ ξ

Φ3 = Φ1Φ2 = −Φ2Φ1, Φ1 = Φ2Φ3 = −Φ3Φ1, Φ2 = Φ3Φ1 = −Φ1Φ3

(2.6)

Φ1ξ = Φ2ξ = Φ3ξ = 0, ηΦ1 = ηΦ2 = ηΦ3 = 0

Remark 2.1. Unlike 3-Sasakian structures, we require from these struc-

tures to have, for the three distinct endomorphisms, just one Reeb vector

field and one contact form. Of course, this detail would lead us to sub-

stantial differences between these two structures.

As usual we have the splitting TM = D ⊕ Lξ and is clear from the

relations given in (2.6) that the contact bundle admits a quaternionic

structure at every point, i.e., such that Dp = {X ∈ TpM | η(X) = 0} has

dimension 4n+1 at every point. Thus, we have the following proposition.

Proposition 2.3. Let M be differential manifold that admits a 3-structure

of second type, then the dimension of M is 4n+ 1.

�

Remark 2.2. It is a well-known result [23] that a differentiable manifold

with a quaternionic structure in it, does not admit a fourth structure.

Hence, it is impossible to have a fourth contact structure (Φ4, ξ, η).

3 Hypersato Structures

In this section we add metric to the contact 3-structures of sec-

ond type. It is known [22] that these structures admit positive definite

metrics g compatible with the three structures under discussion, that is,

metrics satisfying

η(X) = g(X, ξ)

g(Φ1X,Φ1Y ) = g(Φ2X,Φ2Y ) = g(Φ3X,Φ3Y ) = g(X,Y )− η(X)η(Y )
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for any vector field X,Y on M . Metrics with this quality are called

associated metrics to the structure. However this metric is not coming,

necessarily, from the contact structure, that is, metrics gi of the form

gi(X,Y ) = dη(ΦiX,Y ) that will produce contact metric structures which

are the structures of interest to us. In contact 3-structures of second type

it will be possible to define three metrics with this feature (similar to

3-Sasakian structures). We have the following definition.

Definition 3.1. A M4n+1 manifold that has a 3-structure of second

type in it, is called hypersato if each of these structures (Φi, ξ, η) is

Sasakian. The corresponding metrics {g}i=1,2,3 associated to the hyper-

sato structures Si are given by the obvious

gi = dη ◦ (Φi ⊗ I) + η ⊗ η. (3.1)

Remark 3.1. Recall that, implicitly, this definition requires the com-

patibility of the three endomorphisms Φi with the symplectic form dη,

that is,

dη(ΦiX,ΦiY ) = dη(X,Y ) for all X,Y dη(ΦiX,X) > 0 for all X 6= 0.

(3.2)

The first condition will allow us to have a contact metric compatible

with the endomorphisms. The second condition will give us a strictly

(strongly) pseudo-convex Levi form Lη on the corresponding CR-structure.

If we attempt to use one these metrics, say g1 = dη ◦(Φ1⊗I)+η⊗η
as part of the one of the other Sasakian structure, say S2 = (Φ2, ξ, η) we

will obtain the same Sasakian structure, that is, S1 = S2. This follows

from a result of Tanno [9]. Below we reformulate this result as follows

Theorem 3.2. Let S1 = (ξ1, η1,Φ1, g) and S2 = (ξ2, η2,Φ2, g) be two

Sasakian structures on a hypersato manifold M4n+1 sharing the same

metric, then either S1 = S2 or one is conjugate of the other, i.e., S2 =

(−ξ1,−η1,−Φ1, g).

�
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Recall that the group of the tangent bundle of a 3-Sasakian manifold

is reducible to the group Sp(n)×I3, where I3 is the three by three identity

matrix, see [6] for details. The following is an expected result.

Proposition 3.3. The structure group on any manifold M4n+1 admit-

ting hypersato structure is reducible to Sp(n)× 1.

Proof. Consider {Uα} an open covering of M . Let Xi be a unit vector

field over Uα orthonormal to ξ with respect to a compatible metric g.

Then we obtain 4n+ 1 orthonormal vector fields ξ,Xi,Φ1Xi,Φ2Xi and

Φ3Xi on Uα with i = 1 . . . n. Repeating the argument for every Uα we

obtain an adapted frame B

ξ,Xi,Φ1Xi,Φ2Xi,Φ3Xi, i = 1 . . . n.

We can write the structure tensors g,Φ1,Φ2 and ξ in terms of this frame:

g =

 1 0
. . .

0 1

 , Φ1 =


0 In 0 0

−In 0 0 0

0 0 0 In 0

0 0 −In 0

0 0



Φ2 =


0 0 In 0

0 0 0 −In
−In 0 0 0 0

0 In 0 0

0 0

 , ξ = (0, 0, . . . , 0, 1)t

where In denotes the n × n identity matrix. If we consider another

adapted frameW, there is an orthogonal matrix C of the form

(
A4n 0

0 1

)
such that B = CW. Since the tensors g,Φ1 and Φ2 have the same com-

ponents as before, A4n has to be of the form

A4n =


a b c d

−b a −d c

−c d a −b
−d −c b a
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where a, b, c and d are n × n matrices. Hence the group of the tangent

bundle of M can be reduced to Sp(n)× 1 �

Corollary 3.4. Every hypersato manifold M is a spin manifold.

Proof. From the natural splitting TM = D⊕Lξ where Lξ is the trivial

(real) line bundle generated by ξ one obtains

w2(M) = w2(TM) = w2(D),

which is the mod 2 reduction of c1(D) ∈ H2(M,Z). But from Proposition

3.3 we have that c1(D) = 0. �
Recall the exact sequence given in (5). Now, if c1(D) = 0 we have

that the basic first Chern class c1(Fξ) ∈ H2
B(Fξ) is of the form a[dη] for

a ∈ R. In [13] it was shown that the transverse Monge-Ampère problem

has solution for the null (a = 0) and negative case (a < 0), so this implies

the existence of either null or negative Sasaki η-Einstein structures. For

hypersato structures we have the following result

Theorem 3.5. A hypersato structure (M4n+1, ξ, η,Φi, g) is a null Sasaki

η-Einstein structure.

Proof. Since M4n+1 admits a hypersato structure, M admits a one

dimensional Riemannian foliation Fξ. In terms of Haefliger cocycles, we

have a foliated atlas (Uα, φα), local submersions fα : Uα → R4n = C2n

and continuous maps ταβ : fα(Uα ∩ β) → fβ(Uα ∩ β) satisfying certain

cocycle conditions, see [9] for details. Furthermore, in [9] it is shown

that a Riemannian foliation (M,Fξ) has metrics hα in fα(Uα) = Ũα
with hα = τ∗αβhβ (here the hα’s are the pull-backs on R4n by f ′αs). So

it is enough to prove this result locally.

Since all hypersato structures satisfy c1(D) = 0 we have that c1(Fξ) =

a[dη] is definite or null. Let us assume that c1(Fξ) is definite, then

Λ2n,0Ũα is non-trivial (here Λ2n,0Ũα denotes Λ2n,0D∗C restricted to Ũα ).

The Levi-Civita connection ∆ of hα induces a connection ∆̃ on Λ2n,0Ũα.

Since hα is, almost by definition, compatible with Φi|D for i = 1, 2, 3, hα
is invariant under the action of Sp(n), that is, Hol0(∆) ⊆ Sp(n). Recall
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that the action of any Γ ∈ Sp(n) ⊂ SU(n) on an open set U ⊂ C2n

induces multiplication by the determinant det(Γ) on Λ2n,0Ũα. It follows

that

Hol0(∆̃) = det Hol0(∆) = {1},

hence ∆̃ is flat, that is, the curvature of ∆̃ is zero, but this curvature is

exactly the Ricci form of hα. Thus, c1(Fξ) = 0. �

We apply Theorem 8.1.14 in [9] and we immediately obtain

Corollary 3.6. Compact hypersato manifolds (M4n+1, ξ, η,Φi, g) are

quasi-regular.

�
In the sequel we will need the definition of hyperkähler structures.

In the literature there are several definitions [19], [17] (most of them

equivalent). Here we give a definition that will be suitable to our pur-

poses.

Definition 3.7. Let Z be a smooth manifold equipped with three com-

plex structures {Ij}j=1,2,3 that satisfy the quaternionic identities

I1I2 = −I2I1 = I3 (3.3)

Z is said to be hypercomplex or to admit hypercomplex structure.

A Riemannian metric g on a hypercomplex manifold (Z, I1, I2, I3) is

called hyperhermitian if it is compatible with respect to every complex

structure J induced by I1, I2, I3. In addition, if the hyperhermitian

metric is Kähler for all complex structures in Z, then one says that

this manifold is hyperkähler. Similarly, we can define hyperkähler

structures for orbifolds.

Remark 3.2. The definition of hyperkähler manifolds (M4n, g) given

above, is equivalent to the inclusion of the holonomy group of the met-

ric g in the group Sp(n) (see [19]), that is (M, g) admits hyperkähler

structure if Hol(g) ⊂ Sp(n). In the sequel, we will indisctintly use both

definitions.
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Definition 3.8. Let M be a Riemannian manifold. One says that

(M, g) is 3-Sasakian if its corresponding metric cone (C(M), g) = (M×
R+, dr2 + r2g) is hyperkähler.

It is known (see [6]) that on a compact 3-Sasakian manifold M

has dimension 4n + 3 and we have obtain three inequivalent Reeb vec-

tor fields which generate a 3-dimensions foliation F3. Hence the space

of leaves M/F3 has the structure of a quaternionic Kähler orbifold of

dimension 4n such that the natural projection π : M →M/F3 is a prin-

cipal orbibundle with group SU(2) = Sp(1) or SO(3) and a Riemannian

orbifold submersion.

The situation for hypersato structures is different since we have at

our disposal only one Reeb vector fiel and hence, only an S1 action

on the manifold. However from the definition one concludes that the

transverse structure of hypersato manifold ends up having three different

complex structures, hence three different Kähler 2-forms ωi . Moreover,

from Theorem 3.5 we obtain as transverse space a hyperkähler orbifold.

On the other hand, if one starts with a projective hyperkähler orb-

ifold Z with [p∗ω1] ∈ H2
orb(X,Z), then we have an S1 V-bundle defined

by [ω1] where M is the total space with Sasakian structure (ξ, η,Φ1)

such that dη = π∗ω1. Here dη is the curvature of the connection form η.

From the finer bundle determined by [ω1] it is easy to guarantee that the

lift of one complex structure I1 on Z (according to the choice of index

above) works for Φ1. However for the remaining two I2 and I3 we have

to be more careful. Define Φ
i

on the total space M as follows:

Φ
i
(X̃) = Ĩi(X),

where X ∈ Z and X̃ denotes the horizontal lifting of X. Clearly, defined

in this way, Φ
i

is the endomorphism that we were looking for, just extend

it to all TM , in the usual way, adding the condition Φi ◦ ξ = 0. In doing

so, we have Φ2
i

= −I + ξ ⊗ η. Another technical problem that arises is

how to ensure that there exists, in fact, a projection. Notice that, so

far, the action of Φ
i

on X ∈ TM could take this vector field to the
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vertical part Lξ. That case would be omitted if we assume that Φi(X) is

invariant under the flow of ξ, that is, if the Lie derivative £ξΦi
= 0, this

condition together with the integrability of the CR-structure establish

the normality on the total space with respect to each of the three Φi
′s,

that is, the corresponding almost complex structures Ji on the cone

C(M) are integrable.

Something that remains to be shown is that each Φ
i

is compatible

in the sense of equation (2.1). This is a consequence of the invariance

of Φi under the flow of ξ and the definition ΦiX: any horizontal vector

field of the form Φ
i
(X̃) ∈M is the lift of a vector field in Z.

dη(ΦiX,ΦiY ) = dη(ΦiX̃,Φi Ỹ )

= π∗ω1(ĨiX, ĨiY )

= π∗ω1(X,Y )

= dη(X,Y ).

We put all this discussion in form of propositions.

Proposition 3.9. Let (M4n+1, ξ, η,Φ
i
) be a compact hypersato mani-

fold. Then M is the total space of a principal circle V-bundle over a

hyperkähler orbifold Z.

�

Proposition 3.10. Let (Z4n, ωi, Ii) be a hyperkähler orbifold with at

least one integral class [p∗ωi0 ] ∈ H2
orb(Z,Z). Let M denote the total space

of the circle V-bundle defined by the class of the fixed form [ωi0 ]. Then

the manifold admits a hypersato structure (ξ, η,Φi) such that [dη] =

π∗i0 [ωi0 ], where πi0 is the natural projection map defined by [ωi0 ], and

Φ
i
(X̃) = Ĩi(X) with £ξΦi

= 0, for i 6= i0

�
Now let us try to find some manifolds that admit this structure. In

dimension 5 it is helpful to bear in mind what possibilities we have on the
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transverse space. Compact hypercomplex four-manifolds were classified

by Boyer in [5] where it was shown that a compact hypercomplex four-

manifold is either a torus, a K3 surface or a special type of Hopf surface.

One can endow tori and K3 surfaces with hyperkähler metrics (see [4] for

details). On the other hand, any Hopf surface has first Betti number one,

so Hopf surfaces are the only one compact hypercomplex four-manifolds

where the hyperhermitian metrics are never hyperkähler. From Theorem

A in [11] we have the immediate

Theorem 3.11. Let M5 = #k(S2 × S3) with 3 6 k 6 21. Then M5

admits hypersato structures.

�

Remark 3.3. The close relationship that one observes between null

Sasakian and hypersato structures holds for dimension 5 in a natural

way, this follows from the fact that hyperkähler manifolds (orbifolds)

and Calabi-Yau manifolds (orbifolds) coincide in dimension 4. In higher

dimensions, at least for simply connected manifolds, hyperkähler mani-

folds have been defined in order to have as many similarities as possible

with K3 surfaces, these higher dimensional analogues are called complex

symplectic manifolds if priority is given to the algebraic geometry of the

underlying complex manifold, see [17] for an excellent reference. Now

we exhibit more examples, for this we need to apply some techniques

developed by Boyer, Galicki and Ornea in [8].

4 Hypersato Structures and The Join Con-

struction

In the next lines we recall the join construction for regular struc-

tures, for details about this construction on the quasi-regular case we

refer to [8]. We denote by SM the set of regular Sasakian manifolds.

For each pair of positive integers (k1, k2) with gcd(k1, k2) = 1 we have
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the graded multiplication (here, the set SM is graded by dimension,

that is, SM = ⊕∞n=0SM2n+1):

?k1, k2 : SM2n1+1 × SM2n2+1 → SM2(n1+n2)+1. (4.1)

defined as follows: consider M1,M2 ∈ SM. There is the natural free

action of T 2, induced by the free action of the Reeb vector field on both

M1, M2, on M1 × M2 and the quotient manifold is the product of

the corresponding Kähler manifolds Z1 × Z2. If [ωi] ∈ H2(Zi,Z) then

[k1ω1 + k2ω2] ∈ H2(Z1 × Z2,Z) defines a S1-bundle over the manifold

Z1 × Z2 whose total space is the manifold M1 ?k1,k2 M2 and refer to it

as the (k1, k2)-join of M1 and M2. This Sasakian structure is unique

up to gauge transformation. This defines the map (4.1).

As stated above, this construction can be generalized to the quasi-

regular case (however, we will not go further than the regular case). We

have the following result [8].

Proposition 4.1. The (k1, k2)-join of two compact null Sasaki mani-

folds is null Sasaki manifold.

�
Let us denote by HS the set of compact hypersato orbifolds. This

set is topologized with the Cm,α topology, and HS is graded by HS =

⊕∞n=1HS4n+1.

Proposition 4.2. The join of two hypersato orbifolds is hypersato.

Moreover, the join operation ? is continuous on both factors. This oper-

ation defines an operation on hypersato structures:

Z+ × Z+ ×HS ×HS −→ HS

[(k1, k2), (M1,M2)] 7→ M1 ?k1,k2 M2.

Proof. The join of two orbifolds M1 and M2 that posses hypersato

structures comes from the product (Z1×Z2, g1× g2) of two hyperkähler

orbifolds (Z1, g1) and (Z2, g2) each with Hol(gi) ⊂ Sp(n). Hence Hol(g1×
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g2) = Hol(g1) × Hol(g2) ⊂ Sp(2n). Thus, M1 ?k1,k2 M2 has hypersato

structure. �

For non-simply connected hypersato structures, we consider com-

pact Heisenberg manifolds M (which are the quotient of the Heisenberg

group by a lattice subgroup of it). It is not difficult to see that M is a

circle bundle over an abelian variety [8]. Folland has proved that these

Heisenberg manifolds are in one to one correspondence, up to holomor-

phic equivalence, with polarized abelian varieties [14]. Based on this

result, let us specialize the join construction to abelian varieties. The

product of an abelian variety of dimension n and one of dimension m is

in a natural way isomorphic to an abelian variety of dimension m + n.

Suppose A is an abelian surface isomorphic to a product of two ellip-

tic curves A = E1 × E2. As mentioned above, for each elliptic curve

Ei, together with a Kähler class [ωi] ∈ H2(Ei,Z), there is a Heisenberg

manifold N3
i of dimension 3 with null Sasakian structure. If we apply

Proposition 4.2 we have that A = E1×E2 with [k1ω1+k2ω2] ∈ H2(A,Z)

defines a null Sasakian structure on N3
1 ? N

3
2. On the other hand, for

[k1ω1 + k2ω2] ∈ H2(A,Z) there is a Heisenberg manifold N5 admitting

this null Sasakian structure. Thus we have the following

Corollary 4.3. Let A be an abelian surface isomorphic to the product

of two elliptic curves A = E1 × E2. Let N3
1 and N5

2 the corresponding

null Sasakian structures induced by that integral classes [ω1] ∈ H2(E1,Z)

and [ω2] ∈ H2(E2,Z). Then, for every positive integers k1, k2, [k1ω1 +

k2ω2] ∈ H2(A,Z) defines a circle bundle S1 ↪→ N5 → A2n. Moreover,

N5 = N3
1 ?N

3
2 admits hypersato structure.

�

When an abelian variety A is reducible, that is, it is the product

of abelian varieties, provided that dimRA ≡ 0 mod 4, one can always

generalize this idea, and one has that reducible hypersato manifolds of

Heisenberg type are products Nn1
?Nn2

?. . .?Nnk
, with n1+n2+. . .+nk =
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dimRA+ 1. So we have the following diagram

N2n1+1 ?N2n2+1 ? . . . ?N2nk+1 −−−−−−−→ N2(n1+n2+...+nk)+1y y
An1
×An2

× . . .×Ank
−−−−−−−→ An1+n2+...nk

.

(4.2)

It may happen that for quasi-regular hypersato manifolds M1 ?k1,k2
M2 is not a manifold but only an orbifold. In [8] we find under what

conditions M1 ?k1,k2 M2 is a manifold. Let υi denote the order of the

quasi-regular Sasakian manifold Mi, that is, υi is the least common

multiple of the orders of the leaf holonomy groups of Mi. We have the

following proposition, that is a rephrasing of Proposition 2.1 in [8] in

terms of hypersato structures.

Proposition 4.4. Let M1 and M2 two quasi-regular hypersato mani-

folds. For each pair of relative prime positive integers k1, k2, the orbifold

M1 ?k1,k2 M2 is a smooth quasi-regular hypersato manifold if and only

if gcd(υ1k2, υ2k1) = 1. In particular, If Mi are regular hypersato mani-

folds, then so is M1 ?k1,k2 M2.

�
As mentioned in Section 3, in (real) dimension 4 the only compact

manifolds admitting hyperkähler structure are tori and K3 surfaces. in

[10] we show that the total space of projective K3 surfaces, via Seifert

bundles, is given by 21 connected sums of S2 × S3. For tori, we have

the Heisenberg manifolds N4n+1. Now if we consider the product of a

non-singular projective K3 surface X and an abelian surface A4n of real

dimension 4n, via the join construction we obtain:

S1 ↪→ #21(S2 × S3) ?
k1,k2

N4n+1 → X ×A4n.

From the above discussion we have that #21(S2 × S3) ?
k1,k2

N5 is a

hypersato manifold of real dimension 4n + 5 for any k1, k2 such that

gcd(k1, k2) = 1. Moreover, using Theorem A in [11] we can extend this

idea and obtain the following result.
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Corollary 4.5. #k(S2×S3)?
k1,k2

N4n+1 and #k(S2×S3)?
k1,k2

#l(S2×
S3) admit hypersato structures for 3 6 k, l 6 21. Moreover, these two

orbifolds are quasi- regular hypersato manifolds if and only if gcd(υ1k2, υ2k1) =

1.

�
Next, we state the following structure theorem for Ricci-flat mani-

folds due to Beauville [3]. Here we give a simplified version, enough for

our purposes.

Theorem 4.6. Any simply connected Calabi-Yau manifold is given as

a product
∏
i Yi ×

∏
j Zj where:

a) Each Yi is a projective Calabi-Yau manifold with H0(Yi,Ω
p
Yi

) = 0 for

0 < p < dim(Vi);

b) The manifolds Zj are simply connected hyperkähler.

�
This theorem has certain analogue for regular null Sasaki manifolds.

Let us suppose X is a compact simply connected Calabi-Yau manifold

that is reducible, that is, the product of two projective manifolds Y ×Z,

where Y and Z are given as in a) in b), respectively. We have the circle

bundle S1 ↪→ M1 → Y defined by certain class [ω1] ∈ H2(Y,Z) which

endows M1 with a null Sasaki structure. Similarly, [ω2] ∈ H2(Z,Z)

defines the circle bundle S1 ↪→M2 → Z, with M2 admitting a hypersato

structure. Its product defines the circle bundle S1 ↪→ M1 ?k1,k2 M2 →
Y × Z = X. Moreover M1 ?k1,k2 M2 is a null Sasakian manifold for any

k1, k2 such that gcd(k1, k2) = 1. So we have

Lemma 4.7. Reducible simply connected regular null Sasakian mani-

folds can be factored, in the sense given in the previous paragraph, in

terms of (regular) null and hypersato structures.

�
In the literature, it is common to find a stronger condition in the

definition of hyperkähler manifolds. It is said that a manifold (M4n, g)

admits hyperkähler structure if the holonomy group of g equals Sp(n). If
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this is the case, a result, similar to the one given in Lemma 4.7, for simply

connected hypersato structures is not possible. If a simply connected

hyperkähler manifold (M, g) is the product of two hyperkähler manifolds

X = Y × Z, Kunneth formula will imply that dimH0(M,Ω2
X) > 1.

However, simply connected hyperkähler manifolds –that is, manifolds

with Hol(g) =Sp(n)– admit a holomorphic symplectic form ω, hence

H0(M,Ω2
X) = Cω. Hyperkähler manifolds with this stronger condition

are called irreducible. Actually, we have the following proposition, due

to Beauville [3], that will be used in the next section.

Proposition 4.8. Let X be a compact Kähler manifold of dimension

2n. The following conditions are equivalent:

(i) X admits a Kählerian metric g such that Hol(g) ⊂ Sp(n) (respec-

tively, Hol(g) = Sp(n)),

(ii) X admits a symplectic structure (respectively, X is simply con-

nected and, up to scalar, admits a unique symplectic structure).

�

5 Deformations for Hypersato Manifolds

In this section we will take advantage of some known results on

deformation of hyperkähler manifolds. The main reference used here is

[3]. As done in Section 4 in [11], we will deform the hypersato structure

in a manifold (M4n+1, ξ, η,Φi, g) deforming one of the complex struc-

tures of the hyperkähler manifold M/Fξ. This deformation will produce

deformations of the hypersato structure (at least when the hyperkähler

manifold is irreducible).

5.1 Deformations of Transverse Holomorphic Sasakian

Structures

An analogue to the theory of local deformations of complex struc-

tures developed by Kodaira and Spencer (see [20]). This theory was
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developed by Duchamp and Kalka and by Gomez-Mont, (see [12] and

[15] for details on this theory). We briefly review some basic notions of

this theory.

A germ of a deformation of a transverse holomorphic foliation F on

a manifold M with base space (B, 0) is given by an open cover {Uα} of M

and a family of local submersions fα,t : Uα → Cn parametrized by (B, 0)

that are holomorphic in t ∈ B for each x ∈ Uα. Consider the holomorphic

family of biholomorphism ρtαβ : fβ,t(Uα ∩ Uβ) → fα,t(Uα ∩ Uβ). Then

we have the (expected) condition

fα,t = ρtαβ ◦ fβ,t on Uα ∩ Uβ . (5.1)

Infinitesimal deformations are obtained, as in the complex case, by dif-

ferentiating equation (5.4) with respect to t and evaluating at t = 0.

Let us denote by ΘF the sheaf that encodes information about

the aforementioned infinitesimal deformations. (Formally, first, one de-

fines the sheaf of germs of vector fields on M that are infinitesimal

automorphisms of the transverse holomorphic foliation F , then this

sheaf is quotiented by the sheaf of smooth vector fields tangent to the

leaves of F to obtain ΘF .) Here, we also have a Kodaira-Spencer map

ρ : T0B → H1(M,ΘF ) that sends ∂
∂t to certain class in H1(M,ΘF ) de-

fined by a section θα,β of the sheaf ΘF |Uα∩Uβ. One can consider the full

cohomology ring H∗(M,ΘF ), these were proven to be finite dimensional.

In [15] it is showed that there is a Kuranishi space of deformations

given by the map Φ : U → H2(M,ΘF ), for U open set in H1(M,ΘF ),

here, as before, the base of parametrizations is given by Φ−1(0).

Remark 5.1. We have the following (see [15]):

1. If H2(M,ΘF ) = 0, then the Kuranishi family of deformations of

F is isomorphic to an open set in H1(M,ΘF ).

In the case that M is a compact Sasakian manifold we have the

evident

Proposition 5.1. The characteristic foliation Fξ of a Sasakian struc-

ture S is a transverse holomorphic foliation.
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�
For quasi-regular Sasakian structures we have the following result

that follows from an argument on spectral sequences (see [9] for details).

Proposition 5.2. Let S be a quasi-regular Sasakian structure on a com-

pact manifold with charactersitic foliation Fξ and with quotient projec-

tion π : M → X. Then there is an exact sequence

0→ H1(X,TX)→ H1(M,ΘF )→ H0(X,TX)→ H2(X,TX). (5.2)

�
From this exact sequence we obtain the following corollary.

Corollary 5.3. We have

(i) If H1(X,TX) = 0 and H2(X,TX) = 0, then we have H0(X,TX) ∼=
H1(M,ΘF ).

(ii) If H0(X,TX) = 0 then H1(X,TX) ∼= H1(M,ΘF ).

We are particularly interested in the second part of this corollary:

rephrasing (ii): if there are no infinitesimal holomorphic automorphisms,

then all the deformations of the transverse holomorphic structure come

from the deformations of the complex structures on X. However, we have

to be a little careful, unlike the kählerian case, where the locally infinites-

imal deformation of kählerian structures remain kählerian, the Rieman-

nian foliation does not remain Riemannian necessarily. This technical

difficulty can be overcome if we consider local Killing vector fields for

the transverse metric gT , where we take gT = f∗αg for all α. Let us

denote by ΘF,L the sheaf of such vector fields. Being M Sasakian, there

is an orbifold submersion π : M → X onto a compact Kähler orbifold

X whose Kähler metric h satisfies gT = π∗h. The subsheaf of TX that

leaves this metric invariant will be sometimes denoted by TX,L. This

is the main reason why we will be interested solely in polarized moduli

spaces. When finding moduli spaces we will consider a fixed ample line

bundle, or equivalently, a fixed Kähler metric. The sequence (5.2) given

in Propositon 5.2 remains unaltered.
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Proposition 5.4. Let S be a quasi-regular Sasakian structure on a com-

pact manifold with charactersitic foliation Fξ and with quotient projec-

tion π : M → X. Then there is an exact sequence

0→ H1(X,TX,L)→ H1(M,ΘF,L)→ H0(X,TX,L)→ H2(X,TX,L).

(5.3)

�

Let f : N → Z be a principal S1- orbibundle with N a smooth

manifold and Z a Kähler orbifold. Consider the following two sets: the

Lie algebra aut(J, gT ) of infinitesimal automorphisms of the transverse

Kähler structure, with J the transverse complex structure and gT a

compatible Kähler metric, and the Lie algebra aut(ξ, η,Φ, g) of the au-

tomorphism group of the underlying Sasakian structure. It is known

(see Chapter 8 of [9]) that, under polarization [ω] ∈ H2
orb(Z,Z), any

infinitesimal automorphisms X̌ ∈ aut(J, gT ) lifts to an automorphism

X ∈ aut(ξ, η,Φ, g) of the induced Sasakian structure on the total space

N of the circle V -bundle, with orbifold first Chern class [ω], if and only if

X̌ is Hamiltonian, that is, if [X̌ydn]B ∈ H1
orb(Z,R) = H1

B(Fξ) vanishes.

For the null case, we have the following lemma that is a particular case

of more general lemma proved in [11].

Lemma 5.5. Let f : N → Z be a principal S1- bundle with N a smooth

simply connected hypersato manifold and Z a hyperkähler orbifold. Then

H0(Z, TZ) = 0, where TZ denotes the sheaf of holomorphic vector fields

on Z.

Proof. Since the action of ξ is quasi-regular, one can identify the Lie

algebra H0(Z, TZ) of infinitesimal automorphisms of the Kähler orbifold

with aut(J, gT ). For null Sasakian structures, it was proven in [9] that

aut(ξ, η,Φ, g) = {ξ}. It follows from the discussion in the previous para-

graph that Z has no Hamiltonians. For any X̌ ∈ H0(Z, TZ), one has

the equality [X̌ydn]B = [α]B ∈ H1
B(Fξ) = H1

orb(Z,R) = 0, but under

the absence of Hamiltonians, the only possibility for α is to be 0 which

implies X̌ = 0, due to non-degeneracy of the symplectic form dη. �
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Recall that a small deformation is a 1-parameter family of defor-

mations X = (X, f,∆) of a compact complex manifold X0 with ∆ ∈ C
and t ∈ ∆ small. There are some results on stability for complex ana-

lytic manifolds due to Kodaira and Spencer [20] that ensures that any

small deformation of a Kähler manifold remains Kähler. Since the Hodge

number h2,0 is constant in families of compact Kähler manifolds [20], any

small deformation of a irreducible hyperkähler manifold admits a unique

non-trivial two form which is everywhere non-degenerate. Moreover, us-

ing Theorem 3.6, Beauville proves in [3]

Proposition 5.6. Let f : X → B a smooth proper morphism of complex

manifolds. Let 0 ∈ B, and X0, the fiber of f at 0, a hyperkähler manifold.

Then there is a neighborhood U of 0 in B such that Xs is hyperkähler for

s ∈ U . Moreover, any Kähler deformation of an irreducible hyperkähler

manifold is irreducible hyperkähler.

�
If we consider deformations of a complex structure on polarized pro-

jective hyperkähler manifold that are irreducible we will obtain Kähler

deformations that are projective, hence, by Proposition 5.6, projective

hyperkähler deformations that are irreducible. Since every hyperkähler

manifold has trivial canonical bundle, X admits a smooth versal defor-

mation (see [24]). The irreducibility of X implies H0(X,ΩX) = 0. From

the triviality of the canonical bundle KX one obtains the isomorphism

ΩX = TX and thus H0(X,TX) = 0. So the Kuranishi family is universal.

Moreover, from Corollary 5.3 (ii) all the deformations of the transverse

holomorphic structure that are Sasakian come from the deformations of

one (of the three) complex structure on X. Since each Kähler deforma-

tion gives rise to a hyperkähler manifold, we obtain deformations of the

hypersato structure on the corresponding manifold. In particular, from

Theorem B in [11] we have

Lemma 5.7. The space of deformations of hypersato structures on #21(S2×
S3) has real dimension 38.

�
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There are two standard series of examples of irreducible hyperkähler

manifolds for each dimension (for details, see [3]):

The Hilbert scheme of points on a K3 surface. Consider a K3

surface X. The Hilbert scheme X [r] is the moduli space of all zero-

dimensional subspaces Z ⊂ X of length l(OZ) = r. If X is projective,

then X [r] is projective [18]. X [r] is an irreducible hyperkähler manifold

of dimension 2r.

The generalized Kummer Variety. Let A be a two-dimensional

complex torus. Then A[r+1] is symplectic but not simply-connected. It

admits a smooth surjective map P : A[r+1] → A, which is the com-

position of the map A[r+1] → A(r+1) (here A(r+1) := Ar+1/Sr+1 de-

notes the symmetric product) and the sum map A(r+1) → A. The fiber

Kr = P−1(0) is an irreducible hyperkähler manifold of dimension 2r.

Notice that K1 is the Kummer surface associated to A. In [3] we have

the following lemma.

Lemma 5.8. For r > 1, the Hilbert scheme of a K3 surface S[r] satisfies

H1(S[r], TS[r]) ∼= H1(S, Ts)⊕ C ∼= C21.

Similarly, for r > 1, the generalized Kummer variety Kr has

H1(Kr, TKr
) ∼= H1(A, TA)⊕ C ∼= C5.

�
Analogous argument to the one given in the proof of Lemma 5.7

yields to the following lemma.

Lemma 5.9. Let S[r] and Kr be projective with r > 1. Then the space of

deformations of hypersato structures on a manifold S1 ↪→M4r+1 → S[r]

has real dimension 40. The space of deformations of hypersato structures

on a manifold S1 ↪→M4r+1 → Kr has real dimension 8.

�
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Remark 5.2. Lemma 5.9 not only gives us information about the space

of deformation at the dimensional level. For instance H1(S[r], TS[r]) ∼=
H1(S, Ts)⊕C is saying that the deformations of the Hilbert scheme S[r]

coming from deforming the K3 surface form a hypersurface in the space

of deformation of the S[r]. Similar situation occurs for the generalized

Kummer variety. It will be interesting to obtain explicit versions of

these two series of examples of hyperkähler manifolds at the level of

hypersato structures. Are these related to 21 connected sums of S2×S3

(for the Hilbert schemes) and the Heisenberg manifolds (for generalized

Kummer varieties)? Can we find and explicit description of the moduli

of hypersato structures as achieved for the null case in [11]?
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Chern est Nulle J. Differential Geometry, 18 (1983) 755-782.

[4] Besse, A., Einstein Manifolds, Springer-Verlag, New York, 1987.

[5] Boyer, C.P. A note on hyperhermitian four-manifolds, Proc. Amer.

Math. Soc. 102, no. 1, (1988) 157-164.

[6] Boyer, C.P., Galicki, K. 3-Sasakian Manifolds, Surveys in Differen-

tial Geometry VI: Essays on Einstein Manifolds; A supplement to

the Journal of Differential Geometry pp. 123-184, (eds. C. LeBrun,

M. Wang) Internation Press, Cambridge (1999).

[7] Boyer, C.P., Galicki, K. Sasakian Geometry, Holonomy, and Super-

symmetry, arXiv:math/0703231 (2007).

Pro Mathematica, 27, 53-54 (2013), 99-125, ISSN 1012-3938 123



Jaime Cuadros Valle

[8] Boyer, C.P., Galicki, K., Ornea, L. Constructions in Sasakian Ge-

ometry, Mathematische Zeitschrift, 257 (2007), 907-924 (2007).

[9] Boyer, C.P., Galicki, K. Sasakian Geometry, Oxford University Press,

(2008).

[10] Cuadros Valle, J. on Null Sasakian Structures, UNM Ph.D. thesis,

(2008).

[11] Cuadros Valle, J. Null Sasaki η-Einstein structure in 5-manifolds,

Geom. Dedicata, DOI 10.1007/s10711-013-9859-9, 2013.

[12] Duchamp T., Kalka, M. Deformation Theory of Holomorphic Foli-

ations, J. Differential Geom. 14 (1979), n0. 3, 317-337.

[13] El Kacimi-Alaoui, A. Opérateurs Transversalement elliptiques sur

un feuilletage riemannien et applications, Compositio Math. 73

(1990), no. 1, 57-106.

[14] Folland, G.B. Compact Heisenberg Manifolds as CR Manifolds The

Journal of Geometric Analysis, Vol 14 Number 3 (2004), 521-532.

[15] Girbau, J. Haefliger, A. and Sundaraman, D. On Deformations

of Transversely Holomorphic Foliations, J. Reine Angew. Math 345

(1983), 122-147.
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Resumen

Definimos variedades hipersato: estas variedades admiten tres estruc-

turas del tipo Sasaki inequivalentes de tal manera que estas tres estruc-

turas poseen un campo vectorial del tipo Reeb ξ y una forma de contacto

η en común. Variedades que admiten estructura hipersato pueden con-

siderarse como espacios totales de un fibrado principal U(1) del tipo

orbifold, donde el espacio base admite una métrica singular hiperkähler.

Discutimos también algunos resultados acerca del espacio moduli de

variedades admitiendo estas estructuras.

Palabras Clave: Geometŕıa riemanniana, geometŕıa Sasaki, métricas hiper-

kähler.
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