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Abstract

In this work we describe the basic facts of non-life insurance and then

explain risk processes. In particular, we will explain in detail the asymp-

totic behavior of the probability that an insurance product may end up

in ruin during its lifetime. As expected, the behavior of such asymp-

totic probability will be highly dependent on the tail distribution of

each claim.
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1. Introduction

Insurance mathematics, which is also called actuarial mathematics, is

studied with a mathematical viewpoint in Europe and the United States.

There are scientific journals which mainly deal with actuarial mathemat-

ics (e.g. Scandinavian Actuarial Journal). However, it is not a very pop-

ular topic in the Japanese mathematical community. This may also be

true for Peru. There is a professional qualification for this activity called

actuary. An actuary has to design, price, and control the so called insur-

ance commodities. They play a significant role in insurance companies

as they make a final decision for the design of insurance commodities.

Many mathematical tools are needed in order to perform this job. The

main mathematical techniques required are related to probability theory

and mathematical statistics.

In order to obtain this professional qualification, one must pass an

examination. The examination is divided into three parts: life insurance,

non-life insurance, and annuity. Life insurance mathematics is one of

the basic exams and perhaps the most important one. A life insurance

contract between the insurance company and a customer is a long time

bound. Hence, the interest rate for bank deposits during a long time

span and the life of a person may be considered as random phenomena.

Therefore, we need to know their distribution. Regarding the life of a

person this is the so called life expectancy (or death probability). Some

special unique symbols are used in life insurance mathematics. These

symbols are unique in this world and are not commonly seen in the

mathematical world. But they have been standardized worldwide, and

they are also used in non-life insurance and annuity. Therefore, in order

to study insurance mathematics, one should be accustomed with the use

of these symbols.

On the other hand, for non-life insurance, the period of contracts are

relatively short. So, the influence of interest rates is neglected. Instead,

two other factors are considered: the frequency of occurrence of accidents

and their size. These can be regarded, respectively, as a probability law
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and a random variable with certain distribution function.

In this work, we describe the basic facts of non-life insurance and

then explain risk processes, which are still an important research object

in non-life insurance and applied probability. This is an application of the

theory of stochastic processes. In particular, we will explain in detail the

asymptotic behavior of the probability that an insurance product may

end up in ruin during its lifetime. That is, given an initial investment

amount set aside for payments and a premium rate per unit of time, we

will discuss how to compute the probability that at some point in time

the money amount of the total claims will be higher than the initial

investment plus all the premium collected up to that point in time. As

expected, the behavior of such asymptotic probability will be highly

dependent on the tail distribution of each claim. We will call these

classes light tail or heavy tailed depending on the probability of creating

a large claim.

2. Non-life (damage) Insurance

There are many examples of non-life insurance: car insurance, weather

related insurance, fire and earthquake insurance, aviation insurance,

travel insurance, marine insurance, and so on. Let us consider for in-

stance car insurance. Imagine a car owner. He may suffer a car accident.

This accident is unpredictable, so it is a random phenomenon and, even,

a rare event. Also the amount of money required for the repair of the car

depends of the size of the accident and it is also unpredictable, another

random phenomenon.

In this chapter, we summarize fundamental facts in non-life insur-

ance necessary for the understanding of risk processes explained later

on.

The request of insurance payment from a customer of a non-life

insurance is called a claim. The total amount of claims in a prefixed

unit time interval is the sum of the amounts of claims occurred in the

time interval from all the customers. The number of claims and their

Pro Mathematica, 28, 55 (2014), 85-127 87



Makoto Yamazato

amount in each term (or fixed time interval) are not constant. So, we

consider each of these quantities as random variables.

2.1 Number of claims

First, we assume the homogeneity of an objective population (group) in

the sense that all contracts are equal within a population for which each

individual has the same risk. Assume that each one of n contracts in a

unit time interval may be the source of a claim independent of each other

with given probability p. Then the probability that k claims occur in

one unit of time is given by the binomial distribution nCkp
k(1− p)n−k.

LetN be a random variable which represents the number of claims in

the unit time interval. The distribution of N is the binomial distribution

B(n, p). If the number of contracts n is very large and the probability p

of occurrence of the claim is very small, then the distribution of N can

be regarded via an approximation argument as the Poisson distribution.

This is explained mathematically by the following argument. Assume

λ = np and let n → ∞. Then the distribution of N converges to the

Poisson distribution with parameter λ since using the moment generating

function formula for a binomial distribution we have

MN (θ) = E(eθN ) = (1 + (eθ − 1)λ/n)n → exp(λ(eθ − 1)).

The right hand side is the moment generating function of the Poisson

distribution with parameter λ (denoted as Po(λ)). For N ∼ Po(λ) recall

that we have E(N) = V (N) = λ.

If the objective population is not homogeneous, i.e., if contracts

with various risks are mixed in the population, then the variance of N

is greater than its expectation (V (N) > E(N)). In such a case, the

negative binomial distribution may fit as the distribution of N . The fol-

lowing is a mathematical explanation for this assertion. Let Yλ ∼ Po(λ),

(λ > 0), W ∼ Γ(α, β) (i.e., the gamma distribution with parameters α

and β) and assume {Yλ} and W are independent. Let N = YW . This

means the parameter of the Poisson random variable may vary according
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to the value of W (ω). In this context we have

P (N = k) =

∫ ∞
0

P (Yλ = k|W = λ)P (W ∈ dλ)

=

∫ ∞
0

λk

k!
e−λ

βα

Γ(α)
λα−1e−βλdλ

=
βα

k!Γ(α)

∫ ∞
0

λk+α−1e−(β+1)λdλ

=
βαΓ(k + α)

(β + 1)k+αk!Γ(α)

=

(
k + α− 1

k

)(
1

β + 1

)k (
β

β + 1

)α
.

In this setting, the distribution of N is the negative binomial distri-

bution with parameter (α, β
β+1 ), usually denoted as NB(α, β

β+1 ). Notice

that if we construe Yλ as a stochastic process with time parameter λ (the

so-called Poisson process to be defined later), then NW is the value at

time 1 of the process obtained by subordination of Yλ by a gamma pro-

cess. Another way of interpreting this structure is to say that there

are various types of customers. Each type will generate its own Poisson

random variable with parameter W and the density associated to each

customer is given by the law of the random variable W , which itself

follows the gamma distribution.

If N ∼ NB(n, p), then its moment generating function is given by

MN (θ) = E(eθN )

=

∞∑
k=0

eθk
(
k + n− 1

k

)
pn(1− p)k

=

∞∑
k=0

(
−n
k

)
pn(1− p)keθk

= pn(1− (1− p)eθ)−n.
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Hence the expectation and the variance appear as

E(N) =
n(1− p)

p
, V (N) =

n(1− p)
p2

,

respectively. Unless p = 1, we always get V (N) > E(N).

2.2 The total claim amount

Consider now the amount of claims. We assume the claim sizes to be pos-

itive random variables, mutually independent and identically distributed.

We denote them by X1, X2, . . .. Let S be the total amount of claims, so

S =
∑N
k=1Xk. Its expectation is

E(S) = E(

N∑
k=1

Xk) = E(

n∑
k=1

Xk|N = n)P (N = n)

= E(X1)

∞∑
n=0

nP (N = n)

= E(X)E(N).

Here X is a random variable whose law is identical with the law of all Xi.

The net premium (i.e., the price of the insurance to be paid by each

client) is given by estimating E(N) and E(S) from past data and then

setting the net premium as E(X) = E(S)/E(N). The above calculation

gives E(S|N) = NE(X). Let us calculate the variance. Define the

conditional variance V (S|N) by V (S|N) = E((S − E(S|N)2)|N).

Applying this equality, we obtain

V (S) = E
(
E
(

(S − E(S))2|N
))

= E

(
E
((

(S − E(S|N)) + (E(S|N)− E(S))
)2

|N
))

= E
(
V (S|N)

)
+ V

(
E(S|N)

)
.

90 Pro Mathematica, 28, 55 (2014), 85-127



Non-life Insurance Mathematics

Here, we used the fact that E(S|N)−E(S) is σ(N)-measurable. Notice

that we did not need X and N to be independent at this stage in order

to derive this equality. However, using the independence of X and N ,

we have V (S|N) = NV (X) and E(S|N) = NE(X). Therefore one gets

V (S) = E(N)V (X) + V (N)(E(X))2.

In the particular case N ∼ Po(λ), then V (N) = E(N) = λ implies

V (S) = λ((E(X))2 + V (X)) = λE(X2).

The moment generating function MS(θ) = E(eθS) of S is given by

MS(θ) = E(E(eθS |N)) = E(MX(θ)N )

= E(exp(N logMX(θ))) = MN (logMX(θ)).

If N ∼ Po(λ), then the moment generating function of S is

MS(θ) = exp(λ(MX(θ)− 1)),

and the distribution function is given by

FS(x) = P (SN ≤ x) =

∞∑
n=0

λn

n!
e−λFn∗X (x),

where FX is the distribution function of X and Fn∗X (n ≥ 1) is the n-fold

convolution of F and F 0∗
X (x) =

∫
(−∞,x]

δ0(dx). Here δ0(dx) denotes the

point mass measure at 0.

The distribution of S discussed previously corresponds to the so

called compound Poisson distribution.

If N ∼ NB(n, p), we have

E(S) =
n(1− p)

p
E(X), V (S) =

n(1− p)
p

V (X) +
n(1− p)

p2
(E(X))2.

The moment generating function of S is given by

MS(θ) = pn
(

1− (1− p)MX(θ)
)−n

,
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and the distribution function by

FS(x) =

∞∑
k=0

F k∗X (x)

(
n+ k − 1

k

)
pn(1− p)k.

The distribution of S in this case is called the compound negative

binomial distribution.

3. Collective Risk Models

In the previous chapter, we considered the total claim amount in a unit

time interval. In this chapter, we observe the dynamical behavior of the

amount of claims. We say that a family of parametrized random vari-

ables is a stochastic process regarding the parameter as a time variable.

Usually the parameter runs through [0,∞) or {0, 1, 2, . . .}.

3.1 Compound Poisson processes

A stochastic process {N(t); t ∈ [0,∞)} taking values in {0, 1, . . .} is

called a Poisson process with parameter λ if it satisfies the following

four conditions.

(1) N(0) = 0,

(2) for 0 ≤ s < t, the law of N(t) − N(s) is Poisson with parameter

λ(t− s),
(3) for 0 ≤ t0 < t1 < · · · < tn, the random variables N(t0), N(t1) −
N(t0), . . . , N(tn)−N(tn−1) are mutually independent, and

(4) {N(t); t ∈ [0,∞)} is right continuous with left limits.

Construction of a Poisson process. Let T1, T2, . . . be a sequence

of independent random variables with common exponential distribution

with parameter λ > 0 and let S0 = 0, Sn = T1 + · · ·+Tn (n ≥ 1). Define

Nt = N(t) by

Nt = N(t) = n, if Sn ≤ t < Sn+1.
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Obviously we have N0 = 0, and Nt is by definition right continuous

with left limits. Let us prove conditions (2) and (3) simultaneously. For

0 ≤ t1 < t2 < · · · < tn and 0 ≤ k1 ≤ · · · ≤ kn, we have

P (Nt1 = k1, Nt2 −Nt1 = k2 − k1, . . . , Ntn −Ntn−1 = kn − kn−1)

= P (Nt1 = k1, Nt2 = k2, . . . , Ntn = kn)

= P (Sk1 ≤ t1 < Sk1+1, · · · , Skn ≤ tn < Skn+1)

=

∫
· · ·
∫
Dn∩{tn<skn+ukn+1}

λkn+1e−λ(skn+ukn+1)du1 · · · dukn+1 (1)

= In,

where sk = u1 + · · ·+ uk, for k = 1, 2, . . ., and

Dn = {s1 ≤ · · · ≤ sk1 ≤ t1 < sk1+1 ≤ · · · ≤ skn ≤ tn} ⊂ Rkn+1.

Integrating (1) with respect to ukn+1 on [tn − skn ,∞), we obtain In =

λkne−λtn
∫
Dn

ds1 · · · dskn . Set

E` = {t`−1 < sk`−1+1 ≤ · · · ≤ sk` ≤ t`}

for ` = 1, 2, . . . , n. Then we get Dn = E1 × · · · × En, and so∫
E`

dsk`−1
· · · dsk` =

(t` − t`−1)k`−k`−1

(k` − k`−1)!
.

Hence we have

In =
(λt1)k1

k1!
e−λt1

n∏
i=2

{λ(ti − ti−1)}ki−ki−1

(ki − ki−1)!
e−λ(ti−ti−1).

Letting n = 2 we obtain

P (Nt −Ns = k) =

∞∑
j=0

P (Ns = j,Nt −Ns = k)

=

∞∑
j=0

(λs)j

j!
e−λs

{λ(t− s)}k

k!
e−λ(t−s)

=
{λ(t− s)}k

k!
e−λ(t−s).
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Plugging this last relation into the first one we conclude the equality

P (Nt1 = k1, Nt2 −Nt1 = k2 − k1, . . . , Ntn −Ntn−1 = kn − kn−1)

= P (Nt1 = k1)

n∏
i=2

P (Nti −Nti−1 = ki − ki−1).

Next we define what a Lévy process is. A stochastic process {Xt; t ∈
[0,∞)} on Rd is called a Lévy process if it satisfies the following four

conditions.

(1) X0 = 0,

(2) for any n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, the random variables

Xt0 , Xt1 −Xt0 , . . . , Xtn −Xtn−1
are mutually independent,

(3) for 0 ≤ s < t, the distribution of Xt −Xs is identical to the distri-

bution of Xt−s, and

(4) {Xt; t ∈ [0,∞)} is right continuous with left limits.

In the sequel (a ∧ b) represents the minimum between a, b ∈ R.

Theorem 3.1. If {Xt} is a Lévy process on Rd, then its characteristic

function E(ei<θ,Xt>), with θ ∈ Rd, is given by

exp[t{i〈θ, γ〉 − |σθ|
2

2
+

∫
Rd\{0}

(ei<θ,x> − 1− i〈θ, x〉1{|x|≤1})ν(dx)}],

here γ is in Rd and σ is a d× d-symmetric nonnegative definite matrix,

while ν is a nonnegative measure on Rd\{0} satisfying
∫

(|x|2∧1)ν(dx) <

∞.

Proof. We refer to Sato [7] for the proof.

A Lévy process {Xt} on Rd is called a compound Poisson process

if its characteristic function is represented as

exp{t
∫
Rd\{0}

ei<θ,x> − 1 ν(dx)}.
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Here ν(dx) is a measure on Rd\{0} that satisfies
∫
Rd\{0} ν(dx) <∞.

Construction of a compound Poisson processes. Let F be a prob-

ability measure on Rd\{0} and X1, X2, · · · be a sequence of Rd-valued

independent random variables with common distribution F . Let {Nt} be

a Poisson process with parameter λ > 0, independent from X1, X2, · · ·.
Then, the stochastic process defined by

Yt =

{
0 if Nt = 0,

X1 + · · ·+XNt otherwise

is a compound Poisson process with ν(dx) = λF (dx).

Let us proof this fact. For times 0 = t0 ≤ t1 < t2 . . . < tn and sets

B1, B2, . . . , Bn ∈ B(Rd) we have (the sums are always taken along all

possible 0 = m0 ≤ m1 ≤ m2 ≤ · · · ≤ mn)

P (Yt1 ∈ B1, Yt2 − Yt1 ∈ B2, . . . , Ytn − Ytn−1
∈ Bn) =

=
∑ n∏

i=1

P (Xmi−1+1 + · · ·+Xmi ∈ Bi)P (Nti −Nti−1
= mi −mi−1)

=
∑ n∏

i=1

P (X1 + · · ·+Xmi−mi−1
∈ Bi)P (Nti−ti−1

= mi −mi−1)

=
∑ n∏

i=1

P (Ymi−mi−1
∈ Bi, Nti−ti−1

= mi −mi−1)

=

n∏
i=1

P (Yti−ti−1 ∈ Bi).

On the other hand, if t ≥ s, from

P (Yt − Ys ∈ B) =
∑

0≤m≤n

P (Xm+1 + · · ·+Xn ∈ B,Ns = m,Nt = n)

=
∑

0≤m≤n

P (X1 + · · ·+Xn−m ∈ B,Ns = m,Nt = n)
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=
∑

0≤m≤n

P (X1 + · · ·+Xn−m ∈ B,Nt−s = n−m)×

×P (Ns = m)

=
∑

0≤m≤n

P (Yt−s ∈ B,Nt−s = n−m)P (Ns = m)

= P (Yt−s ∈ B)

we get Yt − Ys ∼ Yt−s.
Also, by the very definition of Y we get

P (Yt ∈ A) = δ0(A) +
∑
n≥1

P (X1 + · · ·+Xn ∈ A)P (N(t) = n)

=
∑
n≥0

Fn∗(A)
(λt)n

n!
e−λt.

Hence we obtain

E(ei<θ,Yt>) =
∑
n≥0

∫
ei<θ,y>Fn∗(dy)

(λt)n

n!
e−λt

=
∑
n≥0

(

∫
ei<θ,y>F (dy))n

(λt)n

n!
e−λt

= exp{t
∫
Rd\{0}

(ei<θ,x> − 1)ν(dx)}.

3.2 Risk processes

Let Yt be a compound Poisson process on [0,∞) with characteristic

function

E(eiθYt) = exp{λt
∫

(0,∞)

(eiθx − 1)F (dx)}.

We call R(t) = ct − Yt the risk process and U(t) = u + R(t) the

surplus reserve process. We assume here that the expectation µ =
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∫
(0,∞)

xF (dx) =
∫∞

0
1 − F (x) dx of F is finite. We call the parameter

ρ = c
λµ − 1 the safety loading. We always assume ρ > 0.

Let τu be the hitting time of (−∞, 0) for U(t); that is,

τu = inf{t ≥ 0;U(t) ∈ (−∞, 0)}.

This hitting time is called ruin time and E(u) = P (τu < ∞) the ruin

probability in insurance mathematics. Here c represents the rate of

premiums that the insurer receives per unit of time and u is the initial

capital of the insurance company.

Lemma 3.2. For A,B,C ∈ B(R), we have

P (R(T1) ∈ A,R(T1 + t) ∈ B, T1 ∈ C) =∫
C

∫
A

P (z +R(t) ∈ B)P (cs−X1 ∈ dz)P (T1 ∈ ds).

Proof. For A,B,C ∈ B(R), we have

P (R(T1) ∈ A,R(T1 + t) ∈ B, T1 ∈ C) =

=

∞∑
m=1

∫
C

P (cs−X1 ∈ A,Ns+t −Ns = m− 1, R(T1 + t) ∈ B|T1 = s)

×P (T1 ∈ ds)

=

∞∑
m=1

∫
C

P (cs−X1 ∈ A,Ns = 1, Ns+t −Ns = m− 1,

c(s+ t)− (X1 + · · ·+Xm) ∈ B|T1 = s)P (T1 ∈ ds)

=

∞∑
m=1

∫
C

P (ct−X1 ∈ A, T2 + · · ·+ Tm ≤ t < T2 + · · ·+ Tm+1,

c(s+ t)− (X1 + · · ·+Xm) ∈ B|T1 = s)P (T1 ∈ ds)

=

∞∑
m=1

∫
C

P (cs−X1 ∈ A, c(s+ t)− (X1 + · · ·+Xm) ∈ B)

×P (T2 + · · ·+ Tm ≤ t < T2 + · · ·+ Tm+1)P (T1 ∈ ds)
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=

∞∑
m=1

P (Nt = m− 1)×

×
∫
C

P (cs−X1 ∈ A, cs−X1 + ct− (X2 · · ·+Xm) ∈ B)P (T1 ∈ ds)

=

∞∑
m=1

P (Nt = m− 1)×

×
∫
C

∫
A

P (z + ct− (X2 · · ·+Xm) ∈ B)P (cs−X1 ∈ dz)P (T1 ∈ ds)

=

∫
C

∫
A

P (z +R(t) ∈ B)P (cs−X1 ∈ dz)P (T1 ∈ ds).

The following theorem exhibits a closed formula for the ruin prob-

ability based on the claim distribution.

Theorem 3.3. Let h(y) = 1−F (y)
µ and H(x) =

∫ x
0
h(y)dy. Then H is a

distribution function and the following equality

E(u) = 1− ρ

1 + ρ

∞∑
n=0

Hn∗(u)

(1 + ρ)n

holds.

Proof. Let ϕ(u) = 1 − E(u) be the chance of never get ruined. As the

ruin can never happen before the first event, we have

ϕ(u) = P (U(t) ≥ 0, for all t ≥ 0)

= P (u+R(T1) ≥ 0, u+R(T1 + t) ≥ 0, for all t ≥ 0)

=

∫ ∞
0

∫
(0,u+cs]

P (u+ cs− z +R(t) ≥ 0, for all t ≥ 0)×

×P (X1 ∈ dz)P (T1 ∈ ds)

=

∫ ∞
0

λe−λs{
∫

(0,u+cs]

ϕ(u+ cs− z)F (dz)}ds.
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With the change of variable t = u+ cs, we arrive at

ϕ(u) =
λ

c
eλu/c

∫ ∞
u

e−λt/c{
∫

(0,t]

ϕ(t− z)F (dz)}dt.

Hence ϕ(u) is continuous, right differentiable, and satisfies

ϕ′(u) =
λ

c
ϕ(u)− λ

c
{
∫

(0,u]

ϕ(u− z)F (dz)}. (2)

Noting that by Fubini’s theorem we have∫ u

0

(∫
(0,v]

ϕ(v − x)F (dx)
)
dv =

∫
(0,u]

(

∫ u−x

0

ϕ(v)dv)F (dx)

=

∫ u

0

ϕ(v)(

∫
(0,u−v]

F (dx))dv

=

∫ u

0

ϕ(u− v)F (v)dv, (3)

one then integrates (2) to obtain

ϕ(u) = ϕ(0) +
λ

c

(∫ u

0

ϕ(v)dv −
∫ u

0

(

∫
(0,v]

ϕ(v − x)F (dx))dv

)

= ϕ(0) +
λ

c

∫ u

0

ϕ(u− z)[1− F (z)]dz.

= ϕ(0) +
1

1 + ρ

∫ u

0

ϕ(u− z)H(dz). (4)

Letting u→∞, by monotone convergence we get

ϕ(∞) = ϕ(0) +
λµ

c
ϕ(∞), (5)

where µ =
∫∞

0
1− F (z) dz.

On the other hand, let

Ω0 = {ω ∈ Ω : lim
t→∞

Rt(ω)

t
= c− λµ}.
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Then the strong law of large numbers implies limt→∞
Nt(ω)
t = λ > 0 and

limt→∞
1

Nt(ω)

∑Nt(ω)
i=1 Xi(ω) = µ for almost all ω. Therefore P (Ω0) = 1.

Since c > λµ, for ω ∈ Ω0, there is u > 0 such that for all t ≥ 0 we

have Rt(ω) > −u. Hence we get

ϕ(∞) = lim
u→∞

ϕ(u)

= lim
u→∞

P (∩t≥0{Rt > −u})

= lim
n→∞

P (∩t∈Q+
{Rt > −n})

= P (∪n≥1 ∩t∈Q+
{Rt > −n}) = 1.

By this equality and (5), we have

ϕ(0) =
ρ

1 + ρ
and E(0) =

1

1 + ρ
.

Set Ĥ(θ) =
∫∞

0
e−θxh(x)dx and ϕ̂(θ) =

∫
[0,∞)

e−θxϕ(dx). Then by (4)

we get

ϕ̂(θ) =
ρ

1 + ρ
+

1

1 + ρ
ϕ̂(θ)Ĥ(θ).

So at the end we conclude

ϕ̂(θ) =

ρ
1+ρ

1− 1
1+ρĤ(θ)

.

Example 3.4. Let F (x) = 1 − e−x/µ. Then H(x) = 1 − e−x/µ and

hence by the above theorem, E(x) = 1
1+ρe

−ρx/(1+ρ)µ.

Remark 3.5. Let Y1, Y2, . . . be a sequence of independent random vari-

ables with distribution function H, and M be a random variable inde-

pendent of Y1, Y2, . . . which have geometric distribution with parameter

ρ(1 + ρ)−1, that is,

P (M = n) =
ρ

1 + ρ
(1 + ρ)−n, n = 0, 1, · · · .
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Then we have

E(u) = P (Y1 + Y2 + · · ·+ YM > u).

Theorem 3.6. For G(u, y) = P (U(τu) ∈ [−y, 0), τu < ∞) we have

G(0, y) = λ
c

∫ y
0

(1− F (u)du.

Proof. In the case of our concern, we must have τu =
∑m
k=1Tk for some

m ≥ 1. As in Lemma 3.2, we have then

G(u, y) = P (U(T1) ∈ [−y, 0))

+

∞∑
m=2

P (U(T1) ≥ 0, . . . , U(

m−1∑
k=1

Tk) ≥ 0, U(

m∑
k=1

Tk) ∈ [−y, 0))

=

∫ ∫
−y≤u+ct−x<0

λe−λtF (dx)dt

+

∫ ∫
0≤u+ct−x<u+ct

G(u+ ct− x, y)λe−λtF (dx)dt.

However, the first integral equals

=

∫ ∞
0

{F (u+ ct+ y)− F (u+ ct)}λe−λtdt

=

∫ ∞
u

{F (s+ y)− F (s)}λ
c
e−λ(s−u)/cds

=
λ

c
eλu/c

∫ ∞
u

{F (s+ y)− F (s)}e−λs/cds,

while the second is

=

∫ ∞
0

(∫
(0,u+ct]

G(u+ ct− x, y)F (dx)
)
λe−λtdt

=

∫ ∞
u

(∫
(0,s]

G(s− x, y)F (dx)
)λ
c
e−λ(s−u)/cds.
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From the above calculations we conclude that G is right differen-

tiable in u and satisfies

∂

∂u
G(u, y) =

λ

c
[G(u, y)− {F (u+ y)− F (u)} −

∫
(0,u]

G(u− x, y)F (dx)].

Integrating from 0 to M with respect to u, we have

G(M,y)−G(0, y) = −λ
c

[ ∫ M

0

{F (u+ y)− F (u)}du

+

∫ M

0

{G(u, y)−
∫

(0,u]

G(u− x, y)F (dx)}du
]
.

By (3) we get∫ M

0

{G(u, y)−
∫ u

0

G(u− x, y)F (dx)}du =

=

∫ M

0

G(M − x, y)(1− F (x))dx→ 0 (M →∞).

Here we have applied the equality G(∞, y) = 0 and the Lebesgue’s dom-

inated convergence theorem. Hence we conclude

−G(0, y) = G(∞, y)−G(0, y)

= −λ
c

∫ ∞
0

{F (u+ y)− F (u)}du

= −λ
c

∫ ∞
0

{(F (u+ y)− 1) + (1− F (u))}du

= −λ
c

∫ y

0

(1− F (u))du.

Let F , G be two distribution functions. The number L(F,G) =

inf{h > 0 : F (x−h)−h ≤ G(x) ≤ F (x+h) +h, for all x ∈ R} is called

the Lévy’s distance from F to G.
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Problem 3.7. Show that L satisfies the axioms of distance in a metric

space.

Lemma 3.8. Let Fn, F be distribution functions. For every continuity

point of F we have limFn(x) = F (x) if and only if limL(Fn, F ) = 0.

Proof. We first deal with the reverse implication. If h ≥ L(Fn, F ), then

for each x we have

F (x− h)− h ≤ Fn(x) ≤ F (x+ h) + h.

As the inequality

F (x− h)− h ≤ F (x) ≤ F (x+ h) + h

always holds, we get |F (x)−Fn(x)| ≤ F (x+h)−F (x−h)+2h. Hence, if

x is a continuity point of F (x), we have the limit limn→∞ Fn(x) = F (x).

Conversely, choose 0 < ε < 1 arbitrary. As any increasing right

continuous function has at most a countable number of discontinuities,

we can choose continuity points x0 < x1 < . . . , xk of F so that F (x0) < ε,

F (xk) > 1 − ε, and xi − xi−1 < ε, i = 1, . . . , k. Choose n0 so that

|F (xi) − Fn(xi)| < ε for all 0 ≤ i ≤ k and n ≥ n0. Then for x with

xi−1 < x < xi we get

Fn(x− ε)− ε ≤ Fn(xi−1)− ε < F (xi−1)

≤ F (x)

≤ F (xi) ≤ Fn(xi) + ε ≤ Fn(x+ ε) + ε,

and for x < x0,

Fn(x− 2ε)− 2ε ≤ Fn(x0)− ε− F (x0) ≤ 0 ≤ F (x) < ε ≤ ε+ Fn(x+ ε).

For x > xk, we have the similar estimate, thus we obtain L(Fn, F ) ≤
2ε.

Lemma 3.9. Let F,G be distribution functions. If G has a bounded

density g, then we have

sup
x
|F (x)−G(x)| ≤ (1 + sup

x
g(x))L(F,G).
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Proof. Set g∗ = supx g(x). Let h > 0 be so that G(x− h)− h ≤ F (x) ≤
G(x+ h) + h holds for any x > 0. Then as we have

G(x)−h(g∗+1) ≤ G(x−h)−h ≤ F (x) ≤ G(x+h)+h ≤ G(x)+h(g∗+1),

we obtain |F (x) −G(x)| ≤ h(1 + g∗). Finally, take the supremum with

respect to x and then the infimum with respect to h in order to stablish

the result.

Theorem 3.10 (Rényi). Let Y1, Y2, . . . be a sequence of nonnegative

independent and identically distributed random variables. Let Mε be a

geometric random variable with parameter ε independent of {Yn}n≥1.

Set Sε = Y1 + · · · + YMε and let α = EY1 and Fε(x) = P (εα−1Sε ≤ x).

We have then

lim
ε→0

sup
x≥0
|Fε(x)− 1 + e−x| = 0.

Proof. Conditioning with respect to Mε and using the independent and

identically distributed property of the sequence Yi, one obtains

E(exp(iθεα−1Sε)) =

∞∑
n=0

E[exp{iθεα−1(Y1 + · · ·+ Yn)}]P (Mε = n)

=

∞∑
n=0

(E exp(iθεα−1Y1))nε(1− ε)n

=
ε

1− (1− ε)E exp(iθεα−1Y1)
→ 1

1− iθ
(ε→ 0).

Note that for the last equality we have used L’Hopital’s rule. Then we

have

lim
ε→0
|Fε(x)− 1 + e−x| = 0

for all x ≥ 0 by Lemma 3.8 (see also Lemma 4.17). Finally, by Lemmas

3.8 and 3.9, one obtains the claimed result.
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Theorem 3.11. If E(X2
1 ) <∞, then we have

lim
ρ→0

sup
u≥0

∣∣∣E(u)− exp{ −2ρµu

(1 + ρ)E(X2
1 )
}
∣∣∣ = 0.

Proof. Let Y1, Y2, · · · be nonnegative independent identically distributed

random variables with density function 1−F (x)
µ and let M be a geometric

random variable with parameter ρ
1+ρ independent of Y1, Y2, . . ., that is,

that behave like

P (M = n) =
ρ

1 + ρ
(1 + ρ)−n, n = 0, 1, · · · .

By Remark 3.5, we have then

E(u) = P (Y1 + · · ·+ YM > u).

Set ε = ρ
1+ρ , Sε = Y1 + · · · + YM and x = ρ

1+ρ
u

E(Y1) , and then apply

Rényi’s theorem. So we have

lim
ρ→0

sup
u≥0

∣∣∣E(u)− exp{ −ρu
(1 + ρ)EY1

}
∣∣∣

= lim
ε→0

sup
x

∣∣∣P (
εSε
E(Y1)

> x)− e−x
∣∣∣ = 0.

Due to integration by parts we have E(Y1) = µ−1
∫∞

0
y(1 − F (y))dy =

1
2µE(X2

1 ). The conclusion follows.

Example 3.12. If the distribution of the random variable X1 is an

exponential distribution with mean µ, then because of E(X2
1 ) = 2µ2

and Example 3.4 we obtain

|E(u)− exp{ −2ρµu

(1 + ρ)E(X2
1 )
}| = ρ

1 + ρ
exp{ −ρu

(1 + ρ)µ
}.

Hence we get

lim
ρ→0

sup
u≥0
|E(u)− exp{ −2ρµu

(1 + ρ)E(X2
1 )
}| = lim

ρ→0

ρ

1 + ρ
= 0,

and the asymptotic behavior of ruin probability as ρ→ 0 is compatible

with the conclusion of Theorem 3.11.
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4. Asymptotics of Ruin Probabilities (light

tail claims)

In the rest of this article we will describe the asymptotic behavior of the

ruin probability as the initial surplus u tends to infinity. First we will dis-

cuss the Cramér-Lundberg approximation which is treated in standard

actuarial textbooks. Roughly speaking, this is related to an exponential

decay of the tail of the claim distribution.

4.1 Cramér-Lundberg approximation

A distribution function F (x) satisfies the Cramér-Lundberg condi-

tion if there is an r∗ > 0 such that

λ

c

∫ ∞
0

er
∗x[1− F (x)]dx = 1.

The parameter r∗ is called the Cramér-Lundberg exponent or ad-

justment coefficient. In actuarial textbooks this exponent is usually

denoted by R. Here, in order to avoid confusion, we use r∗. The above

equation is rewritten using the integration by parts formula as∫
[0,∞)

er
∗xF (dx) = 1 +

cr∗

λ
.

Theorem 4.1. We have

E(u) ≤ E(exp[−r∗U(τu)] : τu <∞) = e−r
∗u.

Proof. Since U(τu) ≤ 0, the first inequality is obvious. Define

Z(t) = exp[−r∗{R(t) + u}]

and Ft = σ{Z(s); s ≤ t}. Then Z(t) is an {Ft}-martingale. In fact, by

the Cramér-Lundberg condition and the independent increment property
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of the risk process, we have

E(Z(t+ s)|Ft) = e−r
∗[R(t)+u]E(e−r

∗R(s))

= Z(t) exp[λs(E(er
∗X1)− 1)]e−r

∗cs

= Z(t).

Therefore by the optional sampling theorem, we obtain

E(Z(τu ∧ t)|F0) = Z(0) = e−r
∗u.

On the other hand,

E(Z(τu ∧ t)|F0) = E(Z(τu ∧ t))
= E(Z(τu) : τu ≤ t) + E(Z(t) : τu > t)

holds. The first term of the right hand side of the above equality tends

to E(Z(τu) : τu < ∞) as t → ∞. By the strong law of large numbers

we get limt→∞ Z(t) = 0 a.s. and R(t, ω) + u ≥ 0 for ω ∈ {τu(ω) > t};
hence 0 ≤ Z(t)1{τu>t} ≤ 1. Now, by the bounded convergence theorem,

we get

lim
t→∞

E(Z(t)1{τu>t}) = E( lim
t→∞

Z(t)1{τu>t})

= 0.

Therefore, we must have

E(Z(τu) : τu <∞) = e−r
∗u.

Theorem 4.2 (The law of large numbers). If R(t) is the risk process,

then we have

P
(

lim
t→∞

R(t)

t
= E(R(1))

)
= 1.
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Proof. Note that R(n) =
∑n−1
i=0 (R(i + 1) − R(i)), n = 1, 2, . . . , are the

sums of independent and identically distributed random variables and

E(R(n)) = nE(R(1)) is finite. By the usual strong law of large numbers,

we can thus conclude

P ( lim
n→∞

R(n)

n
= E(R(1))) = 1.

Set Vn = supn<t≤n+1 |R(t) − R(n)|. Then {Vn} is a sequence of in-

dependent and identically distributed random variables. We show that

E(V0) < ∞. Let Sj = R(j2−n), M0 = 0, and Mk = max1≤j≤k |Sj |,
k = 1, 2, . . . ,m = 2n. For a, b > 0, write Ak = {Mk−1 ≤ a + b < |Sk|}.
Then we have {Mm > a + b} = ∪mk=1Ak and Aj ∩ Ak = ∅ (j 6= k). So

we get

P (|Sm| > a) ≥
m∑
k=1

P (Ak ∩ {|Sm| > a})

≥
m∑
k=1

P (Ak ∩ {|Sm − Sk| ≤ b})

=

m∑
k=1

P (Ak)P (|Sm − Sk| ≤ b)

≥ P (Mm > a+ b) min
1≤k≤m

P (|Sm − Sk| ≤ b).

As P (Mm ≤ b/2) ≤ P (|Sm−Sk| ≤ b) is verified for k = 1, · · · ,m, we get

P (|Sm| > a) ≥ P (Mm > a+ b)P (Mm ≤ b/2).

We obtain P (|R(1)| > a) ≥ P (V0 > a + b)P (V0 ≤ b/2) letting m → ∞.

From∫
(0,∞)

P (|R(1)| > x)dx =

∫
(0,∞)

xP (|R(1)| ∈ dx) = E(|R(1)|)

and

E(V0 − b : V0 > b)≤
∫

(0,∞)

P (V0 > x+ b)dx ≤ E(|R(1)|)/P (V0 ≤ b/2)
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(with b big enough) we can conclude then E(V0) < ∞. The strong law

of large numbers implies so limn→∞
Vn
n = 0. For n ≤ t < n+ 1, we have∣∣∣∣R(t)

t
− E(R(1))

∣∣∣∣ ≤ ∣∣∣∣R(n)

n
− E(R(1))

∣∣∣∣+
|R(t)−R(n)|

n
+
|R(n)|
n2

,

and hence the conclusion.

DefineK(x) =
∑∞
n=0 F

n∗(x) for a distribution function F on (0,∞).

Note that for any x > 0 there is ` such that F `∗(x) < 1 We also have

Fn∗(x) =

∫ x

0

F (x− y)dF (n−1)∗(y) ≤ F (x)F (n−1)∗(x) ≤ Fn(x) (6)

for n ≥ 2. Then, we obtain

∞∑
n=0

Fn∗(x) ≤ `
∞∑
k=0

(F `∗(x))k <∞.

Theorem 4.3 (Renewal equation). Let F be a distribution function on

(0,∞) and y : [0,∞)→ R be a bounded Borel measurable function. Then

the bounded measurable solution of the renewal equation

z(x) = y(x) +

∫ x

0

z(x− u)F (du) (7)

which vanishes on x < 0 is z(x) =
∫ x

0
y(x− u)K(du).

Proof. Let z1, z2 be two bounded measurable solutions of (7). Then

z = z1 − z2 satisfies z = z ∗ F . By this equality, z = z ∗ Fn∗ holds for

any n ≥ 1. Letting n → ∞, we have z(x) ≤
(
supu≥0 z(u)

)
Fn∗(x) →

0. Finally, the fact that
∫ x

0
y(x − u)K(du) satisfies the equation (7) is

straightforward.

A distribution function F on R is called arithmetic if there is

λ > 0 such that the points of increase of F are contained in the set

{nλ : n = 0,±1,±2, . . .}. Otherwise, F is non-arithmetic.
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Lemma 4.4. Let F be a distribution on (0,∞) and Σ a set formed by

the points of increase of F, F 2∗, F 3∗, . . .. If F is non-arithmetic, then for

given ε > 0 and x sufficiently large the interval (x, x+ ε) contains points

of Σ.

Proof. Let 0 < a < b be two points in the set Σ and put h = b− a. Let

In = (na, nb) = (na, na+ nh). If n > a/h, (na, (n+ 1)a] is contained in

In and hence every point x > x0 = a2/h belongs to at least one among

the intervals I1, I2, . . .. The n + 1 points na + kh, k = 0, . . . , n, belong

to Σ, and they partition In into n subintervals of length h. Thus every

point x > x0 is at a distance ≤ h/2 from a point in Σ. Suppose that

there exists δ > 0 such that h ≥ δ is satisfied for all possible choices.

It follows that the points na + kh exhaust all points of Σ ∩ In. Since

(n+1)a ∈ Σ and (n+1)a < nb are satisfied, there is 1 ≤ k ≤ n for which

we have na+a = na+kh and hence a = kh, and thus all points of Σ∩In
are multiples of h. Now let c be an arbitrary point of increase of F . For

n sufficiently large the interval In contains a point of the form kh + c,

and, as this belongs to Σ, it follows that c is a multiple of h. This shows

that the distribution F is arithmetic. This is a contradiction. Hence for

each ε > 0 it is possible to choose a, b in order to have h < ε.

Proposition 4.5. Let F be a non-arithmetic distribution function on

(0,∞). If the uniformly continuous solution of

z(x) =

∫
R
z(x− u)F (du) (8)

satisfies z(x) ≤ z(0) for every x ∈ R, then z is a constant.

Proof. As we have

z(0) =

∫ ∞
0

z(−u)F `∗(du),

for ` = 1, 2, . . ., and z(−u) ≤ z(0), then z(−y) = z(0) holds for F `∗-a.a.

y and, for all ` = 1, 2, . . .. Since F is non-arithmetic, for any ε > 0

there is x0 such that for any x > x0 the interval (x, x + ε) contains a
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point of increase of F `∗ for some ` ≥ 1 (by Lemma 4.4). By the uniform

continuity of z, we get z(−y) → z(0) as y → ∞. Due to (6), for any

x ≥ 0, we have F `∗(x)→ 0 as `→∞. Hence, we get

z(x)− z(0) =

∫ ∞
0

(z(x− u)− z(0))F `∗(du)→ 0

as `→∞.

Let f be a real valued function defined on [0,∞). Then f is called

directly integrable if the following conditions are met. If we set

mk(h) = inf(k−1)h≤x≤kh f(x), plus Mk(h) = sup(k−1)h≤x≤kh f(x) for

h > 0, and s(h) = h
∑
kmk(h), S(h) = h

∑
kMk(h), then s(h), S(h) are

absolutely convergent and we have limh→0(S(h)− s(h)) = 0.

Theorem 4.6 (Renewal theorem). Assume that F is a non-arithmetic

distribution function on (0,∞) and y : [0,∞)→ R is directly integrable.

Then for any solution z of the renewal equation (7), we have that

lim
x→∞

z(x) =
1

µ

∫ ∞
0

y(u)du

holds with µ =
∫∞

0
xF (dx).

Proof. The definition of K gives
∫∞

0
(K(x)−K(x− y))F `∗(dy) ≤ `. For

any α > 0, there is ` ≥ 1 such that F `∗(α) < 1. Then for x > α we have

` ≥
∫ ∞
α

(K(x)−K(x− y)F `∗(dy) ≥ (1− F `∗(α))(K(x)−K(x− α)).

By this inequality, for each fixed interval I, we get supt≥0K(I+ t) <∞.

By Helly’s selection theorem there exists a sequence {tk} and a measure

L on R such that limk→∞ tk = ∞ and Ktk((a, b]) = K((a, b] + tk) →
L((a, b]) at the continuity points of L. Let w be a continuous function

which vanishes on [0, a]c. If we set zw(x) =
∫∞
−∞ w(x− s)K(ds), we get

zw(tk + x) =

∫ ∞
−∞

w(x− s)Ktk(ds)→
∫ ∞
−∞

w(x− s)L(ds) = ζ(x).
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Note that the function zw satisfies the renewal equation

zw(tk + x) = w(tk + x) +

∫ ∞
0

zw(tk + x− s)F (ds).

The left hand side of the above equality tends to ζ(x) as k →∞, while

the right hand side tends to
∫∞

0
ζ(x− s)F (ds) by bounded convergence.

Thus ζ satisfies (8). Since ζ is bounded and uniformly continuous, by

(8), we get ζ(x) = ζ(0). So L is a translation invariant measure and

therefore is a multiple of Lebesgue measure. Hence there exists β > 0

such that

K(tk)−K(tk − h)→ βh.

Further, note that

1 =

∫ ∞
0

K((tk − u, tk])F (du)→ βµ

implies β = 1
µ . Owing to this fact, we obtain K(t) −K(t − h) → h

µ as

t → ∞. Since y is directly integrable, denoting by Mn the supremum

and by mn the infimum of y(u) on ((n− 1)h, nh], we have∑
n

mnK([tk − nh, tk − (n− 1)h)) ≤ z(tk) =

∫ 0

−∞
y(−u)Ktk(du)

≤
∑
n

MnK([tk − nh, tk − (n− 1)h)).

By bounded convergence, the left and right tend to h
µ

∑∞
n=1mn

and h
µ

∑∞
n=1Mn, respectively, as k → ∞. As h → 0, each side reaches

1
µ

∫∞
0
y(u)du.

Lemma 4.7. Let f(x) be a nonnegative and non-increasing function

satisfying
∫∞

0
f(x)eRxdx < ∞ for R > 0. Then f(x)eRx is directly

integrable on [0,∞).

Proof. For s(h) = h{f(h) + f(2h)eRh + · · ·} and S(h) = h{f(0)eRh +

f(h)e2Rh + · · ·} we have s(h) ≤
∫∞

0
f(x)eRxdx <∞ and S(h)− s(h) =

hf(0)eRh + (e2Rh − 1)s(h), hence also limh→0(S(h)− s(h)) = 0.
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Theorem 4.8. If a distribution function F (x) on (0,∞) satisfies the

Cramér-Lundberg condition and

µ∗ =
λ

c

∫ ∞
0

er
∗xx(1− F (x))dx <∞

holds, then

lim
u→∞

er
∗uE(u) =

1

µ∗r∗
(1− λµ

c
).

Proof. By (4), we get

ϕ(u) = ϕ(0) +
λ

c

∫ u

0

ϕ(u− z)(1− F (z))dz,

or what is the same

1− ϕ(u) = 1− ϕ(0)− λ

c

∫ u

0

(1− F (z))dz

+
λ

c

∫ u

0

(1− ϕ(u− z))(1− F (z))dz.

From this, it follows

er
∗uE(u) =

λ

c
(µ−

∫ u

0

(1− F (z))dz)er
∗u

+

∫ u

0

E(u− z)er
∗(u−z)λ

c
er

∗z(1− F (z))dz.

Therefore the above is a renewal equation on er
∗uE(u). We will now

apply the renewal theorem, Theorem 4.6, to this situation. For this,

note that the distribution λ
c e
r∗z(1−F (z))dz is non-arithmetic. Next, by

the Cramér-Lundberg condition we get
∫∞

0
λ
c (1− F (z))er

∗zdz = 1, and

so we have

λ

c

∫ ∞
0

(µ−
(∫ u

0

(1− F (z))dz
)
er

∗udu

=
λ

c

∫ ∞
0

(∫ ∞
u

(1− F (z))dz
)
er

∗udu
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=
λ

c

∫ ∞
0

(1− F (z))
(∫ z

0

er
∗udu

)
dz

=
λ

c

∫ ∞
0

(1− F (z))
er

∗z − 1

r∗
dz

=
1

r∗
(1− λµ

c
).

Therefore we can apply the renewal theorem in order to get

lim
u→∞

er
∗uE(u) =

1

µ∗r∗

(
1− λµ

c

)
.

Example 4.9. Let F (x) = e−x/µ. Then the Cramér-Lundberg exponent

is r∗ = ρ
µ(1+ρ) and we have µ∗ = c

λ . Hence 1
µ∗r∗ (1 − λµ

c ) = 1
1+ρ . By

Example 3.4, we must have er
∗uE(x) = 1

1+ρ .

4.2 Asymptotics of ruin probability (heavy tailed

claims)

In this section we discuss the case when the tail of each claim does not

satisfy the Cramér-Lundberg condition. In recent years, big disasters

had occurred. These phenomena imply the necessity of discussing the

heavy tailed claims which cannot be treated by the Cramér-Lundberg ap-

proximation. A typical example of such heavy tailed claim is a regularly

varying tail. So, at first, we explain necessary basic facts on distribu-

tions with regularly varying tails. Then we talk about subexponential

distributions where the distributions with regularly varying tails are con-

tained (see Lemma 4.25(i)). For these subexponential distributions the

asymptotics of ruin probability can be easily derived.
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Regular variation

A measurable function ` : [0,∞)→ (0,∞) is called slowly varying at

∞ if for any y > 0 we have

lim
x→∞

`(xy)

`(x)
= 1.

We will use h(x) = log `(ex) in what follows.

Theorem 4.10 (Uniform convergence theorem). If a function ` is slowly

varying at infinity, then for any A > 0 we have

lim
x→∞

sup
0≤y≤A

∣∣∣∣`(xy)

`(x)
− 1

∣∣∣∣ = 0.

Proof. We will verify sup0≤u≤A |h(x+ u)− h(x)| = 0 for a given A > 0.

Choose ε so that 0 < ε < A and define

Ix = [x, x+ 2A],

Ex = {t ∈ Ix : |h(t)− h(x)| ≥ ε

2
},

E∗x = {t ∈ [0, 2A] : |h(x+ t)− h(x)| ≥ ε

2
}.

The sets Ex, E∗x are Borel measurable and |Ex| = |E∗x| (here | · | denotes

Lebesgue measure). By the definition of slow variation, for any y ≥ 0 we

have limx→∞ 1E∗
x
(y) = 0. Hence, the dominated convergence theorem

delivers |E∗x| → 0 as x → ∞. This yields the existence of x0 for which

x ≥ x0 implies |Ex| < ε
2 . For c ∈ [0, A] we have Ix∩Ix+c = [x+c, x+2A],

while |Ix ∩ Ix+c| = 2A − c ≥ A for c ≤ A. In this way, for x ≥ x0, we

obtain

|Ex ∪ Ex+c| < |Ex|+ |Ex+c| = |E∗x|+ |E∗x+c| < ε < A.

Hence, given c ∈ [0, A] and x ≥ x0 we get

|(Ix ∩ Ix+c)\(Ex ∪ Ex+c)| > 0.
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And we conclude Jx = (Ix ∩ Ix+c)\(Ex ∪ Ex+c) 6= ∅. Since all t ∈ Jx
satisfies

|h(t)− h(x)| < ε/2

|h(t)− h(x+ c)| < ε/2,

at the end we get |h(x+ c)− h(x)| < ε.

Lemma 4.11. If ` : [A,∞)→ (0,∞) satisfies

lim
x→∞

`(xy)/`(x) = 1

for any y > 0, then ` and h are bounded in any bounded interval suffi-

ciently far away from the origin.

Proof. By the uniform convergence theorem (Theorem 4.10) there is x0

such that for all x ≥ x0 we have

sup
0≤u≤1

|h(x+ u)− h(x)| < 1.

Hence we get

|h(x)| ≤ 1 + |h(x0)| on [x0, x0 + 1],

...

|h(x)| ≤ n+ |h(x0)| on [x0, x0 + n].

Remark 4.12. Due to this lemma, a slowly varying function is inte-

grable on finite intervals sufficiently far away from the origin.

Theorem 4.13 (Representation theorem). A function ` is slowly vary-

ing at infinity if and only if it can be represented as

`(x) = c(x) exp{
∫ x

a

e(log u)

u
du} (x ≥ a > 0),

where c and e are measurable functions subject to limx→∞ c(x) > 0 and

limx→∞ e(x) = 0, respectively.
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Proof. Choose x0 large enough so that ` is integrable in any finite interval

in [x0,∞). For x ≥ x0, h is written as

h(x) =

∫ x+1

x

{h(x)− h(t)}dt+

∫ x

x0

{h(t+ 1)− h(t)}dt+

∫ x0+1

x0

h(t)dt.

Set e(x) = h(x + 1) − h(x). Then we have limx→∞ e(x) = 0. From the

uniform convergence theorem we get∣∣∣∣∫ x+1

x

{h(x)− h(t)}dt
∣∣∣∣ =

∣∣∣∣∫ 1

0

{h(x)− h(x+ u)}du
∣∣∣∣

≤
∫ 1

0

sup
0≤u≤1

|h(x)− h(x+ u)|du→ 0

as (x→∞). Set c =
∫ x0+1

x0
h(t)dt and d(x) = c+

∫ x+1

x
{h(x)−h(t)}dt.

Then we have

h(x) = d(x) +

∫ x

x0

e(t)dt,

and so also

`(x) = eh(log x) = ed(log x) exp{
∫ x

x0

e(log v)

v
dv}.

Lemma 4.14 (Hamel equation). If a measurable function f satisfies

f(x+ y) = f(x) + f(y) for all x, y ∈ R, then there is c ∈ R such that f

is represented as f(x) = cx.

Proof. We omit the proof. We refer the interested reader to [3, 5].

Theorem 4.15. Let f : [0,∞) → (0,∞) be measurable. Suppose that

the limit

g(y) = lim
x→∞

f(xy)

f(x)
> 0

exists for every y > 0. Then for some ρ ∈ R we have g(y) = yρ for

y > 0. Furthermore, there exists a function ` slowly varying at infinity

such that f(x) = xρ`(x).
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Proof. For y, z positive, we have

f(xyz)

f(x)
=
f(xyz)

f(xy)

f(xy)

f(x)
.

Therefore by taking limits we obtain g(zy) = g(z)g(y). Set h(x) =

log g(ex). Then for x, y ∈ R we get

h(x+ y) = log g(exey) = log g(ex) + log g(ey) = h(x) + h(y).

By Lemma 4.14, there is ρ ∈ R such that h(x) = ρx. Hence, one has

g(y) = eh(log y) = yρ.

For the second part, it is enough to define `(x) = f(x)/xρ. In fact,

as we have

`(xy)

`(x)
=

f(xy)

(xy)ρ
xρ

f(x)

= y−ρ
f(xy)

f(x)
→ 1 (x→∞),

this function ` is slowly varying at infinity.

Remark 4.16. A positive function near infinity which satisfies the sec-

ond part of the above theorem is called regularly varying at infinity

with exponent ρ.

Lemma 4.17 (Continuity theorem). For n ∈ N, let Fn be a probability

measure on [0,∞) and ωn be its Laplace transform.

(1) If limn→∞ ωn(s) = ω(s) for s > 0, then ω is the Laplace transform

of a measure F with total mass not greater than 1 and limn→∞ Fn(x) =

F (x) for any continuity point x of F .

(2) If limn→∞ Fn(x) = F (x) holds for any continuity point x of a mea-

sure F with total mass not greater than 1, then for s > 0 we have

limn→∞ ωn(s) = ω(s).

Proof. See [3, page 431].
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Lemma 4.18 (Extended continuity theorem). For n ∈ N, let Un be a

measure on [0,∞) and ωn be its Laplace transform.

(1) If for some a > 0 we get limn→∞ ωn(s) = ω(s) for any s > a, then ω

is the Laplace transform of a measure U and it satisfies limn→∞ Un(I) =

U(I) for any continuity interval I.

(2) If for any continuity interval I of U conditions limn→∞ Un(I) = U(I)

and {ωn(a)}n≥1 is bounded are satisfied, then we have limn→∞ ωn(s) =

ω(s) for s > a.

Proof. (1) Choose s0 > a. Note that U0
n(dx) = ωn(s0)−1e−s0xUn(dx) is

a probability measure and its Laplace transform is ωn(s + s0)/ωn(s0).

By the continuity theorem, there exists a measure U0 with total mass

not greater than 1 such that U0
n converges to U0. Hence Un(dx) =

ω(s0)es0xU0
n(dx) converges to ω(s0)es0xU0(dx).

(2) Let t > 0 be a continuity point of U . Then one obtains

lim
n→∞

∫ t

0

e−sxUn(dx) =

∫ t

0

e−sxU(dx).

Furthermore, we have∫ ∞
t

e−sxUn(dx) ≤ e−(s−a)t

∫ ∞
0

e−axUn(dx) < Ae−(s−a)t → 0 (s > a)

as t → ∞, where A = supn ωn(a). For U , a similar property applies.

Hence, one finally obtains limn→∞ ωn(s) = ω(s).

Theorem 4.19 (Tauberian theorem). For a non-decreasing right con-

tinuous function U : [0,∞)→ (0,∞), the following properties

(1) U(x) ∼ cxρ`(x)/Γ(1 + ρ) (x→∞),

(2)
∫

[0,∞)
e−sxdU(x) ∼ cs−ρ`(1/s) (s ↓ 0),

are equivalent; here ` is slowly varying function at infinity and c, ρ ≥ 0.

Proof. Let ω be the Laplace transform of U .

We first proof that (2) implies (1). By (2), one has ω(st)
ω(s) → t−ρ

as s → 0. Let U1/s(x) = U(x/s). Then ω(st)
ω(s) and t−ρ are the Laplace
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transforms of the measures
U1/s(dx)

ω(s) and xρ−1

Γ(ρ) dx, respectively. Applying

the extended continuity theorem, one has that the measure
U1/s(dx)

ω(s) con-

verges to xρ

Γ(ρ)dx. By the assumption, we obtain U(x) ∼ cxρ`(x)/Γ(1+ρ).

Reciprocally, by assumption we have limx→∞
U(tx)
U(x) = tρ. The

Laplace transform of U(tx)
U(x) is ω(s/x)

U(x) and
∫∞

0
e−std(tρ) equals s−ρΓ(ρ +

1). Dividing the interval of integration, we have ω(1/x) ≤ U(x) +∑∞
n=1 e

−2n−1

U(2nx). We can choose x0 so that U(2x) < 2ρ+1U(x) for

x > x0. Thus we obtain U(2nx) < 2n(ρ+1)U(x). Using this gives

ω(1/x)

U(x)
≤ 1 +

∞∑
n=1

e−2n−1

2n(ρ+1) <∞.

Hence we get limx→∞
ω(s/x)
U(x) = s−ρΓ(ρ + 1) by the extended continuity

theorem. By assumption (1), we finally have ω(s) ∼ cs−ρ`(1/s).

Subexponentiality

Define F = 1− F for a distribution function F on [0,∞).

A distribution function F on [0,∞) is called subexponential if it

satisfies

lim
x→∞

F 2∗(x)/F (x) = 2.

We denote the class of subexponential distribution functions by S.

Lemma 4.20. For F ∈ S the following two properties are satisfied.

(1) For any A > 0, we have

lim
x→∞

sup
0≤y≤A

∣∣∣∣F (x− y)

F (x)
− 1

∣∣∣∣ = 0,

(2) For any ε > 0, we have

lim
x→∞

eεxF (x) =∞.
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Proof. For the first part, we fix t ∈ (0, x) in order to have

F 2∗(x) = 1− F 2∗(x) = 1−
∫ x

0

F (x− y)dF (y)

= 1− F (x) +

∫ x

0

F (x− y)dF (y)

= F (x) +
(∫ t

0

+

∫ x

t

)
F (x− y)dF (y)

≥ F (x) + F (x)F (t) + (F (x)− F (t))F (x− t).

Divide both sides by F (x). Since

F 2∗(x)

F (x)
≥ 1 + F (t) +

(F (x)− F (t))F (x− t)
F (x)

is satisfied, we have(F 2∗(x)

F (x)
− 1− F (t)

)/
(F (x)− F (t)) ≥ F (x− t)

F (x)
.

The left hand side of the above equality converges to 1 as x→∞. One

has then lim supx→∞
F (x−t)
F (x)

≤ 1. Obviously we have F (x−t)
F (x)

≥ 1 and

therefore also

lim
x→∞

F (x− t)
F (x)

= 1.

Since

1 ≤ F (x− t)
F (x)

≤ F (x−A)

F (x)

holds for ≤ t ≤ A, the result follows.

Now we prove the second part. By (1), the distribution F (log u)

is slowly varying at infinity. By the representation theorem (Theorem

4.13), for any ε > 0 we have

uεF (log u) = e
∫ u
1
ε
v dvF (log u)→∞

as u→∞.
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Lemma 4.21. Let F be a distribution function on [0,∞). If F (x) > 0

for any x > 0, then we have

lim inf
x→∞

Fn∗(x)

F (x)
≥ n.

Proof. Note that Fn∗(x) ≤ Fn(x) holds by (6). Therefore we have

Fn∗(x)

F (x)
≥ 1− Fn(x)

1− F (x)
=

n−1∑
k=0

F k(x)→ n (x→∞).

Lemma 4.22. If F ∈ S, then for every n ≥ 1 we have

lim
x→∞

Fn∗(x)/F (x) = n.

Proof. We show the result for n = 3. First note the equalities

1− F 3∗(x) = 1−
∫ x

0

F 2∗(x− y)dF (y)

= 1− F (x) +

∫ x

0

{1− F 2∗(x− y)}dF (y),

1− F 3∗(x)

1− F (x)
= 1 +

∫ x

0

1− F 2∗(x− y)

1− F (x− y)

1− F (x− y)

1− F (x)
dF (y).

By subexponentiality of F and Lemma 4.20 part (1) the integrand on

the right hand side of the latter equality tends to 2 for any y ≥ 0 as

x→∞. We have for t ∈ (0, x) then(∫ t

0

+

∫ x

t

)1− F 2∗(x− y)

1− F (x− y)

1− F (x− y)

1− F (x)
dF (y) (9)

≤sup
x−t≤y≤x

1− F 2∗(y)

1− F (y)

1− F (x− t)
1− F (x)

F (t) +K

∫ x

t

1− F (x− y)

1− F (x)
dF (y),

here K = supy≥0
1−F 2∗(y)
1−F (y) < ∞. Our goal is to find the limit of (9) in

order to get an upper bound. Since we have limx→∞
F

2∗
(x)

F (x)
= 2 and
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F
2∗

(x)

F (x)
≤ 2, we obtain sup

x−t≤y≤x

1− F 2∗(y)

1− F (y)
→ 2 as x → ∞. Moreover,

we have

F (t) ≤
∫ t

0

1− F (x− y)

1− F (x)
dF (y)

≤ sup
0≤y≤t

1− F (x− y)

1− F (x)
F (t)→ F (t)

and∫ x

0

1− F (x− y)

1− F (x)
dF (y) =

F (x)− 1 + 1− F 2∗(x)

1− F (x)
→ −1 + 2 = 1.

Hence, we get ∫ x

t

1− F (x− y)

1− F (x)
dF (y)→ 1− F (t)

as x → ∞. By letting x → ∞, the right hand side of (9) converges to

2F (t) +K(1− F (t)). Next, by letting t→∞, this term converges to 2.

With Lemma 4.21 at hand we conclude

1− F 3∗(x)

1− F (x)
→ 3 as x→∞.

Lemma 4.23. If a distribution function F on [0,∞) is subexponential,

then for any ε > 0 there is K > 0 such that for all x ≥ 0 we have

Fn∗(x)/F (x) ≤ K(1 + ε)n, n = 2, 3, . . . .

Proof. Define αn = supx F
n∗(x)/F (x). Then we have

F (n+1)∗(x)

F (x)
= 1 +

∫ x

0

1− Fn∗(x− y)

1− F (x)
F (dy)

Pro Mathematica, 28, 55 (2014), 85-127 123



Makoto Yamazato

≤ 1 + sup
x≤M

∫ x

0

1

1− F (x)
F (dy) +

+ sup
x≥M

∫ x

0

1− Fn∗(x− y)

1− F (x− y)

1− F (x− y)

1− F (x)
F (dy)

≤ 1 +
1

1− F (M)
+

+ sup
x

1− Fn∗(x)

1− F (x)
× sup
x≥M

∫ x

0

1− F (x− y)

1− F (x)
F (dy)

≤ 1 +
1

1− F (M)
+ αn(1 + ε).

Where we have used that | supx≥M
∫ x

0
1−F (x−y)

1−F (x) F (dy)− 1| < ε works for

sufficiently big M . Therefore we conclude

αn+1 ≤
(

1 +
1

1− F (M)

)1

ε
(1 + ε)n+1.

Lemma 4.24. Let F be a subexponential distribution function on [0,∞).

Assume that the power series
∑∞
n=0 ans

n is analytic at s = 1, where

an ≥ 0, n = 0, 1, 2, . . . and satisfies
∑∞
n=0 an = 1. If we set G(x) =∑∞

n=0 anF
n∗(x), then we get

lim
x→∞

G(x)

F (x)
=

∞∑
n=1

nan.

Proof. The result is obvious from Lemmas 4.22, 4.23 and the dominated

convergence theorem.

Lemma 4.25. Let F be a distribution function on (0,∞).

(1) If 1 − F (x) ∼ x−ρ`(x) for a function ` slowly varying at infinity,

then F ∈ S.

(2) If F satisfies the Cramér-Lundberg condition, then F /∈ S.
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Proof. (1) Assume that the two positive random variables X1 and X2

are independent with common distribution function F . For any ε > 0

we have

P (X1 +X2 ≥ z) ≤ P (X1 ≥ (1− ε)z) + P (X2 ≥ (1− ε)z)
+P (X1 > εz,X2 > εz)

∼ 2(1− ε)−ρz−ρ`(z) + {ε−ρz−ρ`(z)}2.

Hence, one obtains lim supz→∞
P (X1+X2≥z)
P (X1≥z) ≤ 2(1 − ε)−ρ. Since ε is

arbitrary, the inequality

lim sup
z→∞

P (X1 +X2 ≥ z)
P (X1 ≥ z)

≤ 2

follows. On the other hand, using P (X1 + X2 ≥ z) ≥ P (X1 ≥ z) +

P (X2 ≥ z)− P (X1 ≥ z,X2 ≥ z) we have

lim inf
z→∞

P (X1 +X2 ≥ z)
P (X1 ≥ z)

≥ 2.

(2) If F ∈ S, then by Lemma 4.20, part (2), for any ε > 0 we have

eεxF (x) → ∞ as x → ∞. So, for every R > 0, we get
∫∞

0
eRx(1 −

F (x))dx =∞, which leads to a contradiction.

Finally we have the following characterization of the ruin probabil-

ity. Recall that we have assumed c
λµ > 1, i.e., ρ > 0.

Theorem 4.26. Let F be a distribution function on (0,∞) with mean

µ <∞. Then H(x) =
∫ x

0
1−F (y)

µ dy ∈ S implies

E(u) ∼ 1

ρ
H(u) as u→∞.

Proof. By Theorem 3.3 we have

E(u) =
ρ

1 + ρ

∞∑
n=0

Hn∗(u)

(1 + ρ)n
.
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By Lemma 4.24 we conclude

E(u) ∼ ρ

1 + ρ

∞∑
n=0

n

(1 + ρ)n
H(u)

=
1

ρ
H(u)

as u→∞.

In contrast with the light tail case, using the previous theorem, we

easily obtain the behavior as u→∞ of E(u) if F is regularly varying at

infinity.
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Resumen

En este art́ıculo describimos los conceptos básicos relacionados a seguros

que no sean de vida y luego explicamos procesos de riesgo. En particu-

lar, tratamos al detalle el comportamiento asintótico de la probabilidad

de que un producto sea declarado en ruina. Como es suponible, el com-

portamiento en el horizonte depende de la cola de la distribución de las

primas.

Palabras clave: Procesos estocásticos, matemáticas actuariales, seguros no

de vida, probabilidad de ruina, aproximación de Cramér-Lundberg.
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