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Abstract

Liu (1996) discussed a class of robust normal/independent distributions

which contains a group of thick-tailed cases. In this article, we develop a

skewed version of these distributions in the multivariate setting, and we

call them multivariate skew normal/independent distributions. We de-

rive several useful properties for them. The main virtue of the members

of this family is that they are easy to simulate and lend themselves to

an EM-type algorithm for maximum likelihood estimation. For two mul-

tivariate models of practical interest, the EM-type algorithm has been

discussed with emphasis on the skew-t, the skew-slash, and the contam-

inated skew-normal distributions. Results obtained from simulated and

two real data sets are also reported.
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1. Introduction

A normal distribution is a routine assumption for analyzing real data,
but it may be unrealistic, specially when strong skewness and heavy-
tailed appear. In practice, we generate a great number of data that
are skewed or heavy-tailed, for instance, information on family income,
the CD4 cell count from AIDS studies, etc. Thus, one needs to develop
a flexible class of models that can readily adapt to the non-normality
behavior of certain phenomena. Flexible models that include several
known distributions, including normal distribution, are of particular im-
portance, since such models can adapt to distributions that are in the
neighborhood of the normal model (DiCiccio and Monti (2004) [13]).
Lange and Sinsheimer (1993) [22] developed a normal/independent dis-
tribution which contains a group of thick-tailed distributions that is of-
ten used for robust inference of symmetrical data (Liu (1996) [25]). In
this article we further generalize the normal/independent (NI) distri-
butions and combine skewness with heavy-tailed. These new classes of
distributions are attractive not only because they model both cases, but
because they have a stochastic representation for easy implementation of
the EM-algorithm, and so facilitate the study of many useful properties.
Our proposal extends some of the recent results found in Azzalini and
Capitanio (2003) [6], Gupta (2003) [17], and Wang and Genton (2006)
[31].

Azzalini (1985) [4] proposed a univariate skew-normal distribution
that was generalized to the multivariate case by Azzalini and Dalla–Valle
(1996) [7] and Arellano–Valle et al. (2005) [2]. The multivariate skew-
normal density extends the multivariate normal model by allowing a
shape parameter to account for skewness. The probability density func-
tion of the generic element of a multivariate skew-normal distribution is
given explicitly by

f(y) = 2φp(y|µ,Σ)Φ1(λ
⊤Σ−1/2 (y − µ)) , y ∈ Rp, (1.1)

where φp(.|µ,Σ) stands for the probability density function of the p-
variate normal distribution with mean vector µ and covariate matrix
Σ, while Φ1(.) represents the cumulative distribution function of the
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standard normal distribution, here Σ−1/2 satisfies Σ−1/2Σ−1/2 = Σ−1.
When we have λ = 0, the skew normal distribution reduces to the normal
distribution (Y ∼ Np(µ,Σ)). A p-dimensional random vector Y with
probability density function as in (1.1) will be denoted by SNp(µ,Σ,λ).
Its marginal stochastic representation, which can be used to derive sev-
eral of its properties, is given by

Y
d
= µ+Σ1/2(δ|T0|+(Ip−δδ⊤)1/2T1), with δ =

λ√
1 + λ⊤λ

, (1.2)

where T0 ∼ N1(0, 1) and T1 ∼ Np(0, Ip) are independent, |T0| denotes
of course the absolute value of T0, and “

d
= ” stands for “distributed as”.

From (1.2) it follows that the expectation and variance of Y are given,
respectively, by

E[Y] = µ+
√
2/πΣ1/2δ (1.3)

and
V ar[Y] = Σ− (2/π)Σ1/2δδ⊤Σ1/2. (1.4)

Several extensions of the above model has been proposed. For ex-
ample we have the skew-t distributions (Sahu et al., (2003) [27], Gupta,
(2003) [17]), skew-Cauchy distributions (Arnold and Beaver (2000) [3]),
skew-slash distributions (Wang and Genton (2006) [31]), skew-slash-t
distributions (Tan and Peng (2006) [29]), and skew-elliptical distribu-
tions (Azzalini and Capitanio (1999) [5], Branco and Dey (2001) [9],
Sahu et al. (2003) [27], Genton and Loperfido (2005) [16]). In this paper
we define a new unified family of asymmetric distributions that offers a
much needed flexibility by combining both skewness with heavy-tailed.
This family contains, as a special case, the multivariate skew-normal
distribution defined by Arellano-Valle et al. (2005) [2], the multivari-
ate skew-slash distribution defined by Wang and Genton (2006) [31],
the multivariate skew-t distribution defined by Azzalini and Capitanio
(2003) [6], and all the distributions studied by Lange and Sinsheimer
(1993) [22] in the symmetric context. Thus, our proposal is a more
flexible class than the existing skewed distributions, since it allows easy
implementation of inferences in any type of models. We point out that
the results and methods provided here are not available elsewhere in the
literature.
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The plan of the article is as follows. In Section 2, the normal/inde-
pendent distributions (NI) are reviewed for completeness. In Section 3,
the skew-normal normal/independent distributions (SNI) are described,
and the main results are presented. In Section 4, we derive the maximum
likelihood estimates (MLE) for two important applications of SNI dis-
tributions. Analytical expressions for the observed information matrix
are worked in Section 5. An illustrative example is presented in Section
6, depicting the usefulness of the proposed methodology. Our conclud-
ing remarks are presented in Section 7. We also include an appendix as
Section 8.

2. Normal/independent distributions

The symmetric family of NI distributions has attracted much attention
in the last few years, mainly because it includes distributions such as
the Student-t, the slash, the power exponential, and the contaminated
normal distributions. All these distributions have heavier tails than the
normal.

We say that a p-dimensional vector Y has a NI distribution with
location parameter µ ∈ Rp and positive definite scale matrix Σ (see for
instance, Lange and Sinsheimer (1993) [22]) if its density function has
the form

f(y) =

∫ ∞

0

φp(y|µ, u−1Σ)dH(u;ν), (2.1)

where H(u;ν) is a cumulative distribution function of a unidimensional
positive random variable U indexed by the parameter vector ν. For a
random vector with a probability density function as in (2.1), we shall
use the notation Y ∼ NIp(µ,Σ;H). Now, when µ = 0 and Σ = Ip, we
simply use Y ∼ NIp(H).

The stochastic representation of Y is given by

Y = µ+ U−1/2Z, (2.2)

with Z ∼ Np(0,Σ) and U a positive random variable with cumulative
distribution function H independent of Z. Examples of NI distributions
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are described subsequently (see also Lange and Sinsheimer (1993) [22]).
For this family, the distributional properties of the Mahalanobis dis-
tance

d = (y − µ)⊤Σ−1(y − µ),

are also described because they are extremely useful in testing the good-
ness of fit and for detecting outliers.

2.1 Examples of NI distributions

• The Student-t distribution Y ∼ tp(µ,Σ, ν) with ν > 0 degrees of free-
dom. The use of the t-distribution as an alternative to the normal dis-
tribution has frequently been suggested in the literature. For example
Little (1988) [24] and Lange et al. (1989) [23] use the Student-t distri-
bution for robust modeling. The variable Y has density

f(y) =
Γ(p+ν

2 )

Γ( ν2 )π
p/2

ν−p/2|Σ|−1/2

(
1 +

d

ν

)−( p+ν
2 )

. (2.3)

In this case, we have U ∼ Gamma(ν/2, ν/2), where the cumulative
distribution function H(u; ν) has density

h(u; ν) =
(ν/2)ν/2uν/2−1

Γ(ν/2)
exp (−1

2
νu), (2.4)

and finite reciprocal moments E[U−m] = (ν/2)mΓ(ν/2−m)
Γ(ν/2) , for m < ν/2.

From Lange and Sinsheimer (1993) [22] we also get

d = (y − µ)⊤Σ−1(y − µ) ∼ pF (p, ν).

• The slash distribution Y ∼ SLp(µ,Σ, ν) with shape parameter ν > 0.
This distribution presents heavier tails than the normal distribution. It
also includes the limiting normal case as ν ↑ ∞. Its probability density
function is given by

f(y) = ν

∫ 1

0

uν−1φp(y|µ, u−1Σ) du. (2.5)
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Here H(u; ν) has density

h(u; ν) = νuν−1I(0,1), (2.6)

with reciprocal moments E[U−m] =
ν

ν −m
, for m < ν. The Maha-

lanobis distance has cumulative distribution function given by

Pr(d ≤ r) = Pr(χ2
p ≤ r)− 2νΓ(p/2 + ν)

rνΓ(p/2)
Pr(χ2

p+2ν ≤ r).

• The contaminated normal distribution Y ∼ CNp(µ,Σ, ν, γ), with 0 ≤
ν ≤ 1, 0 < γ ≤ 1 (Little (1988) [24]). This distribution may also be
applied for modeling symmetric data with outlying observations. The
parameter ν represents the percentage of outliers, while γ may be inter-
preted as a scale factor. Its probability density function is

f(y) = νφp(y|µ,
Σ

γ
) + (1− ν)φp(y|µ,Σ). (2.7)

In this case the cumulative distribution functionH(u;ν) is given by

h(u;ν) = νI(u=γ) + (1− ν)I(u=1), ν = (ν, γ)⊤, (2.8)

where here I(A) is the indicator function of the set A. Clearly we have
E[U−m] = ν/γm + 1− ν and

Pr(d ≤ r) = νPr(χ2
p ≤ γr) + (1− ν)Pr(χ2

p ≤ r).

The power-exponential distribution is the type NI. However, the
scale distribution H(u;ν) is not computationally attractive and will not
be dealt with in this work.

3. Multivariate SNI distributions and main
results

In this section, we define the multivariate SNI distributions and study
some of their properties (v.g., moments, kurtosis, linear transformations,
and marginal and conditional distributions).
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Definition 3.1. A p-dimensional random vector Y follows a SNI dis-
tribution with location parameter µ ∈ Rp, scale matrix Σ (a p × p
positive-definite matrix) and skewness parameter λ ∈ Rp if its probabil-
ity density function is given by

f(y)=2

∫ ∞

0

φp(y|µ, u−1Σ)Φ1(u
1/2λ⊤Σ−1/2(y − µ)) dH(u) (3.1)

=2

∫ ∞

0

up/2

(2π)p/2
|Σ|−1/2e

−
u

2
dλ

Φ1(u
1/2λ⊤Σ−1/2(y − µ)) dH(u),

where U is a positive random variable with cumulative distribution func-
tion H(u;ν).

For a random vector with probability density function as in (3.1),
we use the notion Y ∼ SNIp(µ,Σ,λ;H). When µ = 0 and Σ = Ip, we
get a standard SNI distribution and denote it by SNIp(λ;H).

It is clear from (3.1) that when λ = 0, we get back the NI distri-
bution defined in (2.1). For a random vector with probability density
function as in (3.1), we write the Mahalanobis distance as

dλ = (y − µ)⊤Σ−1(y − µ).

In Definition 3.1, note that the cumulative distribution function
H(u;ν) is indexed by the vector ν. Thus, if we suppose that ν∞ is such
that ν ↑ ν∞, and H(u;ν) converges weakly to the distribution function
H∞(u) = H(u;ν∞) of the unit point mass at 1, then the density function
in (3.1) converges to the density function of a random vector having a
skew-normal distribution. The proof of this result is similar to the one
present in Lange and Sinsheimer (1993) [22] for the NI case.

For a SNI random vector, the stochastic representation given below
can be used to quickly simulate pseudo-realizations of Y, and also to
study many of their properties.

Proposition 3.2. For Y ∼ SNIp(µ,Σ,λ;H) we have

Y
d
= µ+ U−1/2Z, (3.2)

with Z ∼ SNp(0,Σ,λ) and U a positive random variable with cumulative
distribution function H independent of Z. (Compare Equation (1.1).)
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Proof. This follows from the hypothesis Y|U = u ∼ SNp(µ, u
−1Σ,λ).

Notice that the stochastic representation given in (2.2) for the NI
case is a specialization of (3.2) for λ = 0. Hence, we have extended
the family of NI distributions to the skewed case. Besides, from (1.2) it
follows that (3.2) can be written as

Y
d
= µ+

1

U1/2
Σ1/2{δ|X0|+ (In − δδT )1/2X1}, (3.3)

where δ = λ/
√

1 + λ⊤λ, and U , X0 ∼ N1(0, 1) and X1 ∼ Np(0, Ip) are
independent. The marginal stochastic representation given in (3.3) is
very important since it allows us to implement the EM-algorithm for a
wide class of linear models similar to those of Lachos et al. (2007) [20].

In the next proposition, we derive a general expression for the mo-
ment generating function of a SNI random vector.

Proposition 3.3. For Y ∼ SNIp(µ,Σ,λ;H) and s ∈ Rp, we have

My(s) = E[es
⊤Y] =

∫ ∞

0

2es
⊤µ+ 1

2u
−1s⊤ΣsΦ1(u

−1/2δ⊤Σ1/2s)dH(u).

(3.4)

Proof. From Proposition 3.2, we obtain Y|U = u ∼ SNp(µ, u
−1Σ,λ).

Next we get My(s) = EU [E[es
⊤Y|U ]] from well known properties of

conditional expectation. As U is a positive random variable with cumu-
lative distribution function H, we derive the proof from the fact that

Z ∼ SNp(µ,Σ,λ) implies Mz(s) = 2es
⊤µ+ 1

2 s
⊤ΣsΦ1(δ

⊤Σ1/2).

The next proposition shows that a SNI random vector is invariant
under linear transformations. This, in turn, implies that the marginal
distributions of Y ∼ SNIp(µ,Σ,λ;H) are still SNI.

Proposition 3.4. Let Y ∼ SNIp(µ,Σ,λ;H). Then for any fixed vector
b ∈ Rm and matrix A ∈ Rm×p of full row rank we get

V = b+AY ∼ SNIp(b+Aµ,AΣA⊤,λ∗;H), (3.5)
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here we have λ∗ = δ∗/(1 − δ∗⊤δ∗)1/2 with δ∗ = (AΣA⊤)−1/2AΣ1/2δ.
Moreover, if m = p and A is non-singular, then we get λ∗ = λ. Also,
for any a ∈ Rp, we obtain

a⊤Y ∼ SNIp(a
⊤µ,a⊤Σa, λ∗;H),

where λ∗ = α/(1− α2)1/2, with α = {a⊤Σa(1 + λ⊤λ)}−1/2a⊤Σ1/2λ.

Proof. The proof of this result is direct from Proposition 3.3 since we

have Mb+AY(s) = es
⊤bMY(A⊤s). When A is non-singular, it is easy

to see that δ∗ = δ holds.

Applying Proposition 3.4 to A = [Ip1
,0p2

], with p1+p2 = p, we ob-
tain the following additional properties of a SNI random vector, related
to the marginal distribution this time.

Corollary 3.5. Let Y ∼ SNIp(µ,Σ,λ;H) and suppose Y is partitioned
as Y⊤ = (Y⊤

1 ,Y
⊤
2 )

⊤ of dimensions p1 and p2 = p−p1, respectively. Let

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, µ = (µ⊤

1 ,µ
⊤
2 )

⊤

be the corresponding partitions of Σ and µ. Then, the marginal density

of Y1 is SNIp1
(µ1,Σ11,Σ

1/2
11 υ̃;H), where υ̃ =

υ1 +Σ−1
11 Σ12υ2√

1 + υ⊤
2 Σ22.1υ2

, with

Σ22.1 = Σ22 −Σ21Σ
−1
11 Σ12 and υ = Σ−1/2λ = (υ⊤

1 ,υ
⊤
2 )

⊤. �

Proposition 3.6. Let Y ∼ SNIp(µ,Σ,λ;H). Then the distribution of
Y2, conditionally on Y1 = y1 and U = u, has density

f(y2|y1, u) = φp2(y2|µ2.1, u
−1Σ22.1)

Φ1(u
1/2υ⊤(y − µ))

Φ1(u1/2υ̃⊤(y1 − µ1))
, (3.6)

with µ2.1 = µ2 +Σ21Σ
−1
11 (y1 − µ1). Furthermore, we get

E[Y2|y1, u] = µ2.1 + u−1/2 φ1(u
1/2υ̃⊤(y1 − µ1))

Φ1(u1/2υ̃⊤(y1 − µ1))

Σ22.1υ2√
1 + υ⊤

2 Σ22.1υ2

.

(3.7)
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Proof. As we have f(y2|y1, u) = f(y|u)/f(y1|u), Formula (3.6) for the
density follows after noticing Y|U = u ∼ SNp(µ, u

−1Σ,λ) and Y1|U =

u ∼ SN(µ1, u
−1 Σ11,Σ

1/2
11 υ̃). The expectation suggested in (3.7) is con-

firmed by Lemma 8.2 (in the appendix) if we take A = υ⊤
1 (y1 − µ1) −

υ⊤
2 µ2, B = υ2, µ = µ2.1, and Σ = Σ22.1. This concludes the proof.

Note that given u, when we have Σ21 = 0 and λ2 = 0, it is possible
to obtain independence for the components Y1 and Y2 of a SNI random
vector Y. The following corollary is a by-product of Proposition 3.6,
since we have E[Y2|y1] = EU [E[Y2|y1, U ]|y1].

Proposition 3.7. For Y ∼ SNIp(µ,Σ,λ;H) the first moment of Y2,
conditionally on Y1 = y1, is given by

E[Y2|y1] = µ2.1 +
Σ22.1υ2√

1 + υ⊤
2 Σ22.1υ2

E[U−1/2 φ1(U
1/2υ̃⊤(y1 − µ1))

Φ1(U1/2υ̃⊤(y1 − µ1))
y1],

with µ2.1 = µ2 +Σ21Σ
−1
11 (y1 − µ1). �

The next result can be useful in applications to linear models. For
instance, we can use it when the linear model depends on a vector of un-
observable random effects and a vector of random errors (linear mixed
model) in which the random effects are assumed to have a SNI distribu-
tion and the errors are assumed to have a NI distribution.

Proposition 3.8. Suppose we have X ∼ SNIm(µ1,Σ1,λ, H) and Y ∼
NIp(µ2,Σ2, H). If there is a positive random variable U with cumulative

distribution function H so that we can write X
d
= µ1+U−1/2Z and Y

d
=

µ2+U−1/2W, with Z ∼ SNm(0,Σ1,λ) independent of W ∼ Np(0,Σ2),
then for any matrix A of dimension p×m we have

AX+Y ∼ SNIm(Aµ1 + µ2,AΣ1A
⊤ +Σ2,λ∗;H),

here λ∗ = δ∗/
√

1− δ⊤∗ δ∗, with δ∗ = (AΣ1A
⊤ +Σ2)

−1/2AΣ
1/2
1 δ.

Proof. The proof is based on Proposition 3.3. Note first that surely X
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and Y are independent. Next, letting V = AX+Y we obtain

MV(s) = EU (E[es
⊤AX|U ]E[es

⊤Y|U ])

=

∫ ∞

0

2es
⊤Aµ1+

1
2u

s⊤AΣ1A
⊤sΦ1(

δ⊤Σ1/2
1 A⊤s√
u

)es
⊤µ2+

1
2u

s⊤Σ2s dH(u)

=

∫ ∞

0

2es
⊤(Aµ1+µ2)+

1
2u

s⊤(AΣ1A
⊤+Σ2)sΦ1(

δ⊤Σ1/2
1 A⊤s√
u

) dH(u)

=

∫ ∞

0

2et⊤(Aµ1+µ2)+
1
2u

s⊤(AΣ1A
⊤+Σ2)sΦ1(

δ⊤
∗ Ψ

1/2s√
u

) dH(u),

where Ψ = AΣ1A
⊤ + Σ2, δ∗ = Ψ−1/2AΣ

1/2
1 δ, and the proof follows

from Proposition 3.3.

In the following proposition we derive the mean and the covariance
matrix of a SNI random vector. Furthermore, we present the multidi-
mensional kurtosis coefficient for a random vector SNI, which represent a
extension of the kurtosis coefficient proposed by Azzalini and Capitanio
(1999) [5].

Proposition 3.9. Suppose we have Y ∼ SNIp(µ,Σ,λ;H). Then the
following conditions hold.

a) If E[U−1/2] < ∞, then we have

E[Y] = µ+

√
2

π
E[U−1/2]Σ1/2δ.

b) If E[U−1] < ∞, then we have

V ar[Y] = Σy = E[U−1]Σ− 2

π
E2[U−1/2]Σ1/2δδ⊤Σ1/2.

c) If E[U−2] < ∞, then the multidimensional kurtosis coefficient is

γ2(Y) =
E[U−2]

E2[U−1]
a1y − 4

E[U−3/2]

E2[U−1]
a2y + a3y − p(p+ 2),
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here

a1y = p(p+ 2) + 2(p+ 2)µ⊤
y Σ

−1
y µy + 3(µ⊤

y Σ
−1
y µy)

2,

a2y =

(
p+

2

E[U−1/2]

)
µ⊤

y Σ
−1
y µy

+

(
1 +

2

E[U−1/2]
− π

2

E[U−1]

E2[U−1/2]

)
(µ⊤

y Σ
−1
y µy)

2,

a3y = 2(p+ 2)µ⊤
y Σ

−1
y µy + 3(µ⊤

y Σ
−1
y µy)

2,

where µy = E[Y − µ] =
√

2
π
E[U−1/2]Σ1/2δ.

Proof. The proof of a) and b) follows from Proposition 3.2. To obtain
the expression in c) we use the definition of the multivariate kurtosis
introduced by Mardia (1974) [26]. Without loss of generality we take

µ = 0, so to get µy = E[Y] =
√

2
πE[U−1/2]Σ1/2δ. Note first that the

kurtosis is defined by γ2(Y) = E[{(Y − µy)
⊤Σ−1

y Y − µy)}2]. Now, by
using the stochastic representation of Y given in (2.2) we obtain

(Y−µy)
⊤Σ−1

y Y−µy)
d
= U−1Z⊤Σ−1

y Z−2U−1/2Z⊤Σ−1
y µy+µ⊤

y Σ
−1
y µy,

where Z ∼ SNp(0,Σ,λ). Due to the definition of γ2(Y), the proof fol-
lows after some algebraic manipulations involving the first two moments
of a quadratic form (see Genton, He and Liu, (2001) [15]) and Lemma
8.1.

Note that under the skew-normal distribution condition, i.e, when
U = 1, the multidimensional kurtosis coefficient reduces to γ2(Y) =
2(π−3)(µ⊤

y Σ
−1
y µy)

2, which is the kurtosis coefficient for a skew-normal
random vector (see for instance, Azzalini and Capitanio (1999) [5]).

Proposition 3.10. If Y ∼ SNIp(µ,Σ,λ;H), then for any even func-
tion g the distribution of g(Y − µ) does not depend on λ and has the
same distribution as g(X − µ), where X ∼ NIp(µ,Σ;H). In particu-
lar, if A is a p × p symmetric matrix, then (Y − µ)⊤A(Y − µ) and
(X− µ)⊤A(X− µ) are identically distributed.
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Proof. The proof follows from Proposition 3.3; a similar procedure can
be found in Wang et al. (2004) [30].

As a by-product of Proposition 3.10 we have the following interesting
result.

Corollary 3.11. Let Y ∼ SNIp(µ,Σ,λ;H). Then the quadratic form

dλ = (Y − µ)⊤Σ−1(Y − µ)

has the same distribution as d = (X − µ)⊤Σ−1(X − µ), where X ∼
NIp(µ,Σ;H). �

Corollary 3.11 is interesting because it allows us in practice to check
models (see Section 5). On the other hand, Corollary 3.11 together with
a result from Lange and Sinsheimer (1993) [22, Section 2] allows us to
obtain the m-th moment of dλ.

Corollary 3.12. Let Y ∼ SNIp(µ,Σ,λ;H). Then for any m > 0 we
have

E[dmλ ] =
2mΓ(m+ p/2)

Γ(p/2)
E[U−m].

�

3.1 Examples of SNI distributions

We provide several examples of SNI distributions.

• The skew-t distribution STp(µ,Σ,λ, ν) with ν degrees of freedom. Con-
sider U ∼ Gamma(ν/2, ν/2). Similar procedures to those of Gupta
(2003) [17, Section 2] lead us to the density function

f(y) = 2tp(y|µ,Σ, ν)T1(

√
v + pλ⊤Σ−1/2(y − µ)√

d+ ν
|0, 1, ν + p), y ∈ Rp,

(3.8)
where, as usual, tp(·|µ,Σ, ν) and Tp(·|µ,Σ, ν) denote, respectively, the
probability density function and cumulative distribution function of the
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Student-t distribution tp(µ,Σ, ν) as defined in (2.3). Absorbed by the
skew-t distribution is the skew-Cauchy distribution when ν = 1. Also,
when ν ↑ ∞, we recover the skew-normal distribution as the limiting
case; see Gupta (2003) [17] for further details. In this case, from Propo-
sition 3.9, the mean and covariance matrix of Y ∼ STp(µ,Σ,λ, ν) are
given by

E[Y] = µ+
√

ν/π
Γ( ν−1

2 )

Γ( ν2 )
Σ1/2δ, ν > 1

and

V ar[Y] =
ν

ν − 2
Σ− (ν/π) (

Γ( ν−1
2 )

Γ( ν2 )
)2Σ1/2δδ⊤Σ1/2, ν > 2.

In what follows we give an important result which will be used in
the implementation of the EM algorithm.

Proposition 3.13. If Y ∼ STp(µ,Σ,λ, ν), then we have

E[Ur|y] = 2r+1νν/2Γ( p+ν+2r
2

)(d+ ν)−
p+ν+2r

2

f(y)Γ(ν/2)
√
πp|Σ|1/2 T1(

√
p+ν+2r

d+ν
A|0, 1, p+ ν + 2r)

and

E[UrWΦ1(U
1/2A)] =

2r+1/2νν/2Γ( p+ν+2r
2

)(d+ ν +A2)−
p+ν+2r

2

f(y)Γ(ν/2)
√
π
p+1|Σ|1/2

.

where A = λ⊤Σ−1/2(y − µ) and WΦ1
(x) = φ1(x)/Φ1(x), for x ∈ R.

Proof. The proof follows from Lemma 1 in Azzalini and Capitanio (2003)
[6, Lemma 1] as we have f(u|y) = f(y, u)/f(y) plus

E[Ur|y] = 2

f(y)

∫ ∞

0

urφp(y|µ, u−1Σ)Φ1(u
1/2A)Gu(ν/2, ν/2)du

and

E[UrWΦ1(U
1/2A)] =

2

f(y)

∫ ∞

0

urφp(y|µ, u−1Σ)φ1(u
1/2A)Gu(ν/2, ν/2)du,

here the probability density function of the Gamma( ν2 ,
ν
2 ) distribution

is given by Gu(ν/2, ν/2).
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For a skew-t random vector Y, partitioned as Y⊤ = (Y⊤
1 ,Y

⊤
2 )

⊤, we

have from Corollary 1 that Y1 ∼ STp1
(µ1,Σ11,Σ

1/2
11 υ̃, ν) holds. Thus,

from Proposition 3.7 we have the following result.

Corollary 3.14. For Y ∼ STp(µ,Σ,λ, ν) we have

E[Y2|y1] = µ2.1 +
Σ22.1υ2√

1 + υ⊤
2 Σ22.1υ2

νν/2Γ( ν+p1−1
2 )

Γ(ν/2)
√
π
(p1+1)|Σ11|1/2

×

1

f(y1)
(ν + dy1

+ (υ̃⊤(y1 − µ1))
2)−

ν+p1−1
2 ,

where dy1
= (y1 − µ1)

⊤Σ−1
11 (y1 − µ1). �

• The skew-slash distribution SSLp(µ,Σ,λ, ν) with the shape parameter
ν > 0. With h(u; ν) as in (2.6), from Proposition 3.2 can easily be
derived

f(y) = 2ν

∫ 1

0

uν−1φp(y|µ,
Σ

u
)Φ1(u

1/2λ⊤Σ−1/2(y − µ)), y ∈ Rp,

(3.9)
The skew-slash distribution becomes the skew-normal distribution when
ν ↑ ∞. See Wang and Genton (2006) [31] for further details. In this
particular case, from Proposition 3.9 we get

E[Y] = µ+

√
2

π

2ν

2ν − 1
Σ1/2δ, ν > 1/2

and

V ar[Y] =
ν

ν − 1
Σ− 2

π
(

2ν

2ν − 1
)2Σ1/2δδ⊤Σ1/2, ν > 1.

As in the skew-t case we have the following results.

Proposition 3.15. For Y ∼ SSLp(µ,Σ,λ, ν) we get

E[Ur|y] =
2ν+r+1νΓ( p+2ν+2r

2
)P1(

p+ 2ν + 2r

2
,
d

2
)d−

p+2ν+2r
2

f(y)
√
πp|Σ|1/2 E[Φ(S1/2A)],
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where Si ∼ Gamma(
p+ 2ν + 2r

2
,
d

2
)I(0,1), and

E[UrWΦ1(U
1/2A)] =

=
2ν+r+1/2νΓ( 2ν+p+2r

2
)

f(y)
√
π
p+1|Σ|1/2

(d+A2)−
2ν+p+2r

2 P1(
2ν + p+ 2r

2
,
d+A2

2
)

here Px(a, b) is the cumulative distribution function of the Gamma(a, b)
distribution evaluated at x. �

Corollary 3.16. If Y ∼ SSLp(µ,Σ,λ, ν) then we have

E[Y2|y1] = µ2.1 +
Σ22.1υ2√

1 + υ⊤
2 Σ22.1υ2

×

2νν

f(y1)

Γ (p1+2ν−1)
2

(dy1 + (υ̃⊤(y1 − µ1))
2)−

p1+2ν−1
2

√
π
(p1+1)|Σ11|1/2

×

P1(
p1 + 2ν − 1

2
,
dy1 + (υ̃⊤(y1 − µ1))

2

2
),

where dy1
= (y1 − µ1)

⊤Σ−1
11 (y1 − µ1). �

• The contaminated skew-normal distribution SCNp(µ,Σ,λ, ν, γ) with
0 ≤ ν ≤ 1, 0 < γ < 1. Taking h(u;ν) as in (2.8), we get in a straight-
forward manner

f(y) = 2{νφp(y|µ, Σ
γ
)Φ1(γ

1/2λ⊤Σ−1/2(y − µ))

+(1− ν)φp(y|µ,Σ)Φ1(λ
⊤Σ−1/2(y − µ))}. (3.10)

In this case the contaminated skew-normal distribution reduces to
the skew-normal distribution when γ = 1. Hence, the mean vector and
the covariance matrix are given, respectively, by

E[Y] = µ+

√
2

π
(

ν

γ1/2
+ 1− ν)Σ1/2δ
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and

V ar[Y] = (
ν

γ
+ 1− ν)Σ− 2

π
(

ν

γ1/2
+ 1− ν)2Σ1/2δδ⊤Σ1/2.

From (3.10) we derive the following results.

Proposition 3.17. For Y ∼ SCNp(µ,Σ,λ, ν, γ) we get

E[Ur|y] = 2

f(y)
[νγrφp(y|µ, γ−1Σ)Φ1(γ

1/2A) + (1− ν)φp(y|µ,Σ)Φ1(A)]

and

E[UrWΦ1(U
1/2A)] =

2

f(y)
[νγrφp(y|µ, γ−1Σ)φ1(γ

1/2A) + (1− ν)φp(y|µ,Σ)φ1(A)].

�

Corollary 3.18. For Y ∼ SCNp(µ,Σ,λ, ν, γ) we get

E[Y2|y1] = µ2.1 +
2Σ22.1υ2

f(y1)
√

1 + υ⊤
2 Σ22.1υ2

×
[
νγ−1/2φp1(y1|µ1, γ

−1Σ11)φ1(γ
1/2υ̃⊤(y1 − µ1))+

(1− ν)φp1(y1|µ1,Σ11)φ1(υ̃
⊤(y1 − µ1))

]
,

where dy1
= (y1 − µ1)

⊤Σ−1
11 (y1 − µ1). �

Remark 3.19. The stochastic representation given by Equation (2.2)
can be used to obtain the slash Student. Let U1 (with probability density
function as in (2.6)), U2 ∼ Gamma(ν/2, ν/2) (with ν > 0), and X ∼
Np(0,Σ) be all independently distributed. Then

Y
d
= µ+ U

−1/2
1 U

−1/2
2 X (3.11)

has a slash student distribution (Tang and Peng (2006) [29]). The proof
follows from the formula

T = U
−1/2
2 X ∼ tp(µ,Σ, ν).
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Remark 3.20. If X ∼ SNp(0,Σ,λ), then Y in (3.11) has a skew-slash
student distribution as shown by Tang and Peng (2006) [29]. Obviously,
many other distributions can be constructed by choosing appropriate
probability density functions (i.e, h(.;ν)) for U1 and U2.

−2 0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

SN
ST
SNC
SSL

Figure 1: Density curves of the univariate skew-normal, skew-t, skew-slash
and contaminated skew-normal distributions.

In Figure 1 we drew the density of the standard distribution SN1(3)
together with the standard densities of the distributions ST1(3, 2), SSL1

(3, 1) and SNC1(3, 0.5, 0.5). They are rescaled to take the same value at
the origin. The four densities are positively skewed. The skew-slash and
skew-t distributions have much heavier tails than the skew-normal dis-
tribution. Actually, the skew-slash and the skew-t distributions do not
have finite means nor variances. Figure 2 depicts some contours of the
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densities associated with the standard bivariate skew-normal distribution
SN2(λ), the standard bivariate skew-t distribution ST2(λ, 2), the stan-
dard bivariate skew-slash distribution SSL2(λ, 1), and the standard bi-
variate contaminated skew-normal distribution SCN2(λ, 0.5, 0.5), with
λ = (2, 1)⊤ for all the distributions. Note that these contours are not
elliptical and they can be strongly asymmetric depending on the choice
of the parameters.
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Figure 2: Contour plot of some elements of the standard bivariate SNI family.
(a) SN2(λ), (b) ST2(λ, 2), (c) SCN2(λ, 0.5, 0.5), and (d) SSL2(λ, 1), where
λ = (2, 1)⊤.
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Figure 3: Box-plots of the sample mean (left panel) and sample median (right
panel) on 500 samples of size n=100 from the four standardized distributions:
SN1(3), ST1(3, 2), SSL1(3, 1), and SNC1(3, 0.9, 0.1). The respective means
are adjusted to zero.

3.2 A Simulation study

To illustrate the usefulness of the SNI distribution, we perform a small
simulation in order to study the behavior of two location estimators,
the sample mean and the sample median under four different standard
univariate settings. In particular, we consider a standard skew-normal
SN1(3), a skew-t ST1(3, 2), a skew-slash SSL1(3, 1), and a contaminated
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skew-normal SCN1(3, 0.9, 0.1). The mean of all the asymmetric distri-
butions is adjusted to zero, so that all four distributions are comparable.
Thus, this setting represents four distributions with the same mean, but
with different tail behaviors and skewness. Note that the skew-slash and
skew-t will have infinite variance when ν = 1, ν = 2, respectively. We
simulate 500 samples of size n = 100 for them. For each sample, we
compute the sample mean and the sample median and report the box-
plot for each distribution in Figure 3. In the left panel all box-plots of
the estimated means are centered around zero but have larger variability
for the heavy-tailed distributions (skew-t and skew-slash). In the right
panel the box-plots of the estimated medians have a slightly larger vari-
ability for the skew-normal and skew-contaminated normal, and have a
much smaller variability for skew-t and skew-slash distributions. This
indicates that the median is a robust estimator of location at asymmet-
ric light-tailed distributions. On the other hand, the median estimator
becomes biased as soon as unexpected skewness and heavy-tailed arise
in the underlying distribution.

4. Maximum likelihood estimation

This section presents an EM-algorithm to perform maximum likelihood
estimation for two multivariate SNI models of considerable practical in-
terest.

4.1 Multivariate SNI responses

Suppose that we have observations on n independent individuals, ∧1, . . . ,
∧n, where ∧i ∼ SNIp(µ,Σ,λ;H), i = 1, . . . , n. . The parameter vector

is θ = (µ⊤,γ⊤,λ⊤)⊤, where γ denotes a minimal set of parameters such
that Σ(γ) is well defined (e.g., the upper triangular elements of Σ in the
unstructured case).

In what follows, we illustrate the implementation of likelihood infer-
ence for the multivariate SNI via the EM-algorithm. The EM-algorithm
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is a popular iterative algorithm for maximum likelihood estimation for
models with incomplete data. More specifically, let y denote the ob-
served data and s the missing one. The complete data yc = (y, s) is y
augmented with s. We denote by ℓc(θ|yc) (with θ ∈ Θ) the complete-

data log-likelihood function and by Q(θ|θ̂) = E[ℓc(θ|yc)|y, θ̂] the ex-
pected complete-data log-likelihood function. Each iteration of the EM-
algorithm involves two steps, an E-step and a M-step, defined as follows.

• E-step: Compute Q(θ|θ(r)) as a function of θ.

• M-step: Find θ(r+1) such that Q(θ(r+1)|θ(r)) = maxθ∈ΘQ(θ|θ(r)).

By using (3.3), the setup defined above can be written as

Yi|Ti = ti, Ui = ui,
ind∼ Np(µ+ tiΣ

1/2δ, u−1
i Σ1/2(Ip − δδ⊤)Σ1/2)(4.1)

Ti|Ui = ui
iid∼ HN1(0,

1

ui
) (4.2)

Ui
ind∼ h(ui;ν), (4.3)

all independent, where HN1(0, 1) denotes the univariate standard half-
normal distribution (see |X0| = |T0| in Equation (1.2) or Johnson et
al. (1994) [18]). We assume that the parameter vector ν is known.
In practice, the optimum value of ν can be determined using the profile
likelihood and the Schwarz information criterion (see Lange et al. (1989)
[23]).

Let y = (y⊤
1 , . . . ,y

⊤
n )

⊤, u = (u1, . . . , un)
⊤, and t = (t1, . . . , tn)

⊤.
Then, under the hierarchical representation (4.1)–(4.2), with ∆ = Σ1/2δ
and Γ = Σ−∆∆⊤, it follows that the complete log-likelihood function
associated with yc = (y⊤,u⊤, t⊤)⊤ is given by

ℓc(θ|yc) = c− n

2
log |Γ| − 1

2

n∑

i=1

ui(yi − µ−∆ti)
⊤Γ−1(yi − µ−∆ti),

where c is a constant independent of the parameter vector θ. By letting

ûi = E[Ui|θ = θ̂,yi], ûti = E[UiTi|θ = θ̂,yi] , ût2i = E[UiT
2
i |θ = θ̂,yi],

and using known properties of conditional expectation we obtain

ûti = ûiµ̂Ti + M̂Ti
τ̂i (4.4)

ût2i = ûiµ̂
2
Ti

+ M̂2
Ti

+ M̂Ti
µ̂Ti

τ̂i, (4.5)
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with τ̂i = E[U
1/2
i WΦ1

(
U

1/2
i µ̂Ti

M̂Ti

)|θ̂,yi], WΦ1
(x) = φ1(x)/Φ1(x), M̂

2
T =

1/(1 + ∆̂
⊤
Γ̂
−1

∆̂) and µ̂Ti
= M̂2

Ti
∆̂

⊤
Γ̂
−1

(yi − µ), i = 1, . . . , n.

As we have
µTi

MTi
= λ⊤Σ−1/2(yi − µ), the conditional expectations

given in (4.4)–(4.5), specifically ûi and τ̂i, can be easily derived from
the results of Section 3.1. Thus, at least for the skew-t and skew-
contaminated normal distributions of the SNI class we have closed-form
expressions for the quantities ûi and τ̂i. For the skew-slash case, Monte
Carlo integration may be employed, which yield the so-called MC-EM
algorithm.

It follows, after some simple algebra involving (4.4)–(4.5), that the
conditional expectation of the complete log-likelihood function has the
form

Q(θ|θ̂) = E[ℓc(θ|yc)|y, θ̂]

= c− n

2
log |Γ| − 1

2

n∑

i=1

ûi(yi − µ)⊤Γ−1(yi − µ)

+
n∑

i=1

ûti(yi − µ)⊤Γ−1∆− 1

2

n∑

i=1

ût2i∆
⊤Γ−1∆.

We then have the following EM-type algorithm.

E-step: Given θ = θ̂, compute ût2i , ûti and ûi using (4.4)–(4.5).

M-step: Update θ̂ by maximizing Q(θ|θ̂) over θ, which leads us to the
following closed-form expressions

µ̂ =

n∑

i=1

(ûiyi − ûti∆)/(

n∑

i=1

ûi), (4.6)

Γ̂ =
1

n

n∑

i=1

[
ûi(yi − µ)(yi − µ)⊤ − 2ûti∆(yi − µ)⊤ + ût2i∆∆⊤

]
,

∆̂ =

∑n
i=1 ûti(yi − µ)
∑n

i=1 ût
2
i

.

The skewness parameter vector and the unstructured scale matrix
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can be estimated by the equalities Σ̂ = Γ̂+∆̂∆̂
T
and λ̂ = Σ̂

−1/2
∆̂/(1−

∆̂
⊤
Σ̂

−1
∆̂)1/2. It is clear that when λ = 0 (or when ∆ = 0), the M-step

equations reduce to the equations obtained assuming normal/indepen-
dent distribution. This algorithm clearly generalizes results found in
Lachos et al. (2007) [20, Section 2] by taking Ui = 1, i = 1, . . . , n.
Useful starting values required to implement this algorithm are those
obtained under the normality assumption, with the starting values for
the skewness parameter vector set equal to 0. However, in order to
ensure that the true ML estimate is identified, we recommend running
the EM algorithm using a range of different starting values. The log-
likelihood function for θ = (µ⊤,γ⊤,λ⊤)⊤, given the observed sample
y = (y⊤

1 , . . . ,y
⊤
n )

⊤, is of the form

ℓ(θ) =
n∑

i=1

ℓi(θ), (4.7)

where ℓi(θ) = log 2− p

2
log2π − 1

2
log |Σ|+ logKi, with

Ki = Ki(θ) =

∫ ∞

0

u
p/2
i exp{−1

2
uidi}Φ1(u

1/2
i Ai)dH(ui),

where di = (yi − µ)⊤Σ−1(yi − µ) and Ai = λ⊤Σ−1(yi − µ). Explicit
expressions for the observed information matrix can be derived from the
results presented in Section 5.

4.2 Multivariate measurement error model

In this section we further apply the SNI distribution to a multivariate
measurement error model. Let n be the sample size, Xi the observed
value in unit i of the covariate, yij the j-th observed response in unit
i, and xi the unobserved (true) covariate value for unit i; here i ranges
from 1 to n, and j from 1 to r. Relating these variables we postulate as
working model (see also Barnett (1969) [8] and Shyr and Gleser (1986)
[28]) the equations

Xi = xi + ui, (4.8)
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and

Zi = α+ βxi + ei, (4.9)

where Zi = (zi1, . . . , zir)
⊤ is the vector of responses for the i-th exper-

imental unit, ei = (ei1, . . . , eir)
⊤ is a random vector of measurement

errors of dimension r, and α = (α1, ..., αr)
⊤,β = (β1, ..., βr)

⊤ are pa-
rameter vectors of dimension r.

Set ǫi = (ui, e
⊤
i )

⊤ and Yi = (Xi,Z
⊤
i )

⊤. Then the model defined
by Equations (4.8)–(4.9) can be rewritten as

Yi = a+ bxi + ǫi, (4.10)

where a = (0,α⊤)⊤ and b = (1,β⊤)⊤ are p× 1 vectors, with p = r+ 1.
We assume

(
xi

ǫi

)
iid∼ SNIp+1

((
µx

0

)
, D(φx,φ),

(
λx

0

)
;H

)
, (4.11)

where D(φx,φ) = diag(φx, φ1, . . . , φp)
⊤, with φ = (φ1, . . . , φp), called

structural SNI-MMEM. From (2.2), this formulation implies

(
xi

ǫi

)
|Ui = ui ∼SNp+1

((
µx

0

)
, u−1

i D(φx,φ),

(
λx

0

))
, (4.12)

Ui ∼h(ui;ν). (4.13)

From Corollary 3.5, marginally we get

ǫi
ind∼NIm+1(0,D(φ);H) and xi

ind∼ SNI1(µx, φx, λx;H). (4.14)

The asymmetric parameter λx incorporates asymmetry in the latent
variable xi and consequently in the observed quantities Yi, which will be
shown to have marginally multivariate SNI distributions. If λx = 0, then
the asymmetric model reduces to the symmetric MMEM considering NI
distributions. Under (4.11), it follows from (1.2) that the regression
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setup defined in (4.8)–(4.11) can be written hierarchically as

Yi | xi, Ui = ui
ind∼ Np(a+ bxi, u

−1
i D(φ)), (4.15)

xi | Ti = ti, Ui = ui
ind∼ N1(µx + φ1/2

x δxti, u
−1
i φx(1− δ2x)), (4.16)

Ti
iid∼ HN1(0,

1

ui
), (4.17)

Ui
iid∼ h(ui;ν), (4.18)

all independent, where δx = λx/(1 + λ2
x)

1/2. As in Lange et al. (1989)
[23], we assumed ν to be known. Classical inference on the parameter
vector θ = (α⊤,β⊤,φ⊤, µx, φx, λx)

⊤ in this type of model is based on
the marginal distribution for Yi given in the following proposition (see
Bolfarine and Galea-Rojas (1995) [10]).

Proposition 4.1. For the structural SNI-MMEM model (4.8)–(4.11),
the marginal distribution of Yi is given by

fYi
(yi|θ) = 2

∫ ∞

0

φp(yi|µ, u−1
i Σ)Φ1(u

1/2
i λ̄

⊤
x Σ

−1/2(yi − µ))dH(ui)

(4.19)

(i.e., by Yi
iid∼ SNIp(µ,Σ, λ̄x;H), with µ = a + bµx, Σ = φxbb

⊤ +

D(φ), and λ̄x = λxφxΣ
−1/2

b√
φx+λ2

xΛx

; here Λx = (φx
−1 + b⊤D−1(φ)b)−1).

Proof. The proof is a direct consequence of Proposition 3.8 after some
algebraic manipulations.

It follows that the log-likelihood function for θ, given the observed
sample y = (y⊤

1 , . . . ,y
⊤
n )

⊤, is

ℓ(θ) =

n∑

i=1

ℓi(θ), (4.20)

where ℓi(θ) = log 2− p

2
log2π − 1

2
log |Σ|+ logKi, with

Ki = Ki(θ) =

∫ ∞

0

u
p/2
i exp{−1

2
uidi}Φ1(u

1/2
i Ai) dH(ui),
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and µ, Σ, λ̄x as in Proposition 4.1. Here di = (yi − µ)⊤Σ−1(yi − µ)

and Ai = λ̄
⊤
x Σ

−1/2(yi − µ) = Axai hold with Ax = λxΛx√
φx+λ2

xΛx

and

ai = (yi − µ)⊤D−1(φ)b.

The ML estimators of the parameters in the model (4.10)–(4.11) can
be found by direct maximization of the log-likelihood (4.20) which can be
computed numerically using the optim routine in platform R or fmincon
in Matlab. An oft-voiced complaint about these methods is that they
may not converge unless good starting values are provided. The EM
algorithm —which takes advantage of being insensitive to the stating
values— is a tool that requires the construction of unobserved data, and
has been well developed and has become a broadly applicable approach
to the iterative computation of ML estimates. Thus, if we let y =
(y⊤

1 , . . . ,y
⊤
n )

⊤, x = (x1, . . . , xn)
⊤, u = (u1, . . . , un)

⊤, t = (t1, . . . , tn)
⊤,

ν2x = φx(1 − δ2x) and τx = φ
1/2
x δx, it follows that the complete log-

likelihood function associated with (y,x, t,u) is given by

ℓc(θ|y,x, t,u) ∝ −n

2
log(|D(φ)|) (4.21)

−1

2

n∑

i=1

ui(yi − a− bxi)
⊤D−1(φ)(yi − a− bxi) (4.22)

−n

2
log(ν2

x)−
1

2ν2
x

n∑

i=1

ui(xi − µx − τxti)
2. (4.23)

Letting ûi = E[Ui|θ̂,yi], ûti = E[Uiti|θ̂,yi], t̂2i = E[t2i |θ̂,yi], ûxi =

E[Uixi|θ̂,yi], ûx2
i = E[Uix

2
i |θ̂,yi], and ûtxi = E[Uitixi|θ̂,yi] we obtain

ûti = ûiµ̂Ti + M̂TE[U
1/2
i WΦ1

(
U

1/2
i µ̂Ti

M̂T

)|θ̂,yi], (4.24)

t̂2i = ûiµ̂
2
Ti

+ M̂2
T + M̂T µ̂Ti

E[U
1/2
i WΦ1

(
U

1/2
i µ̂Ti

M̂T

)|θ̂,yi],

ûxi = r̂i ûi + ŝ ûti, ûx2
i = T̂x

2
+ r̂2i ûi + 2r̂iŝ ûti + ŝ2 t̂2i ,

ûtxi = r̂i ûti + ŝ t̂2i ,

where M̂T

2
= [1 + τ̂x

2b̂⊤(D(φ̂) + ν̂x
2b̂b̂⊤)−1b̂]−1, µ̂Ti

= τ̂xM̂
2
T b̂

⊤

(D(φ̂) + ν̂x
2b̂b̂⊤)−1(yi − â − b̂µ̂x), T̂x

2
= ν̂x

2[1 + ν̂x
2b̂⊤D−1(φ̂)b̂]−1,
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r̂i = µ̂x+ T̂x

2
b̂⊤D−1(φ̂)(yi− â− b̂µ̂x), and ŝ = τ̂x(1− T̂x

2
b̂⊤D−1(φ̂)b̂).

A closed-form expression for E[U
1/2
i WΦ1

(
U

1/2
i µ̂Ti

M̂T
)|θ̂,yi] can be found

from the results given in Section 3.1.
In this way we have the following EM type algorithm.

E-step: Given θ = θ̂, compute ûi, t̂2i , ûti, ûxi, ûx2
i , and ûtxi using

(4.24).

M-step: Update θ̂ by maximizing E[ℓc(θ|y,x, t,u)|y, θ̂] over θ; which
leads to

α̂ = zu − xuβ̂,

β̂ =

∑n
i=1 ûxi(zi − zu)

∑n
i=1 ûx

2
i − nûx2

u

,

φ̂1 =
1

n

n∑

i=1

(ûiX
2
i − 2ûxiXi + ûx2

i ),

φ̂j+1 =
1

n

n∑

i=1

(ûiz
2
ij + ûiα

2
j + β2

j ûx
2
i − 2ûiαjzij −

2yijβj ûxi + 2αjβj ûxi), j = 1, . . . , r,

µ̂x = xu − τ̂xtu, ν̂2x =
1

n

n∑

i=1

(ûx2
i − µ̂xûxi)− τ̂x

1

n

n∑

i=1

ûtxi,

τ̂x =

∑n
i=1(ûtxi − xuûti)∑n
i=1(t̂

2
i − tuûti)

,

where zu =
∑n

i=1 ûizi∑n
i=1 ûi

, xu =
∑n

i=1 ûxi∑n
i=1 ûi

, tu =
∑n

i=1 ûti∑n
i=1 ûi

, and û = 1
n

∑n
i=1 ûi.

When Ui = 1, the M-step equations reduce to the equations ob-
tained by Lachos et al. (2005) [21] under the skew-normal distribution.
When λx = 0 (or when τx = 0), the M-step equations become the
equations by Bolfarine and Galea-Rojas (1995) [10]. Moreover, when
U ∼ Gamma(ν/2, ν/2) and λx = 0, the M-step reduces to equations
obtained by Bolfarine and Galea-Rojas (1996) [11]. The shape and scale
parameters of the latent variable x can be estimated by noting the equal-
ities τx/νx = λx and φx = τ2x + ν2x.
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We now consider an empirical Bayes inference for the latent variable
that is useful for estimating the xi quantities. Models (4.10) and (4.14)
imply Yi|xi ∼ NIp(a + bxi, D(φ);H) and xi ∼ SNI1(µx, σ

2
x, λx;H).

The conditional density of xi, given yi, ui, is

f(xi|yi, ui) = φq(xi|µx + Λxai, u
−1
i Λx)

Φ1(u
1/2
i

λx(xi−µx)
σx

)

Φ1(u
1/2
i Ai)

,

where Λx and ai, Ai are as in Proposition 4.1 and Equation (4.20),
respectively. It follows from Lemma 8.1 in the appendix that we have

E[xi|yi, ui] = µx + Λxai + u
−1/2
i

Λxλx√
1 + λ2

xΛx

WΦ1
(u

1/2
i Ai),

and as E[x|y] = EU [E[x|y, U ]|y] holds, we conclude that the minimum
mean-square error (MSE) estimator of xi obtained by the conditional
mean of xi, given yi, is

x̂i = E[xi|yi] = µx + Λxai +
Λxλx√
1 + λ2

xΛx

E[U
−1/2
i

φ1(U
1/2
i Ai)

Φ1(U
1/2
i Ai)

|yi], (4.25)

If Yi has distribution STp(µ, Σ, λ̄x, ν) or SCNp(µ,Σ, λ̄x, ν, γ), then
we obtain closed-form expressions for the expected values given in (4.25)
from the results exhibited in Section 3.1. In practice the Bayes estimator
of xi, namely x̂i, can be obtained by substituting the ML estimate θ into
(4.25).

5. The observed information matrix

In this section we develop the observed information matrix in a general
form. Suppose that we have observations on n independent individuals
∧1, . . . ,∧n, where ∧i ∼ SNIni

(µi(β),Σi(γ),λi(λ);H). Then the log-
likelihood function for θ = (β⊤,γ⊤,λ⊤)⊤ ∈ Rq, given the observed
sample y = (y⊤

1 , . . . ,y
⊤
n )

⊤, is of the form

ℓ(θ) =

n∑

i=1

ℓi(θ), (5.1)
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where ℓi(θ) = log 2− ni

2
log2π − 1

2
log |Σi|+ logKi, with

Ki = Ki(θ) =

∫ ∞

0

u
ni/2
i exp{−1

2
uidi}Φ1(u

1/2
i Ai)dH(ui),

and di = (yi − µi)
⊤Σ−1

i (yi − µi), Ai = λ⊤
i Σ

−1
i (yi − µi). Using the

notation

IΦi (w) =

∫ ∞

0

uw
i exp{−1

2
uidi}Φ1(u

1/2
i Ai)dH(ui),

Iφi (w) =

∫ ∞

0

uw
i exp{−1

2
uidi}φ1(u

1/2
i Ai|0, 1)dH(ui),

(so that Ki(θ) can be expressed as Ki(θ) = IΦi (
ni

2 )), it follows that the
matrix of second derivatives with respect to θ is just

L =
n∑

i=1

∂2ℓi(θ)

∂θ∂θ⊤ (5.2)

= −1

2

n∑

i=1

∂2 log |Σi|
∂θ∂θ⊤ −

n∑

i=1

1

K2
i

∂Ki

∂θ

∂Ki

∂θ⊤ +
n∑

i=1

1

Ki

∂2Ki

∂θ∂θ⊤ , (5.3)

where here we have ∂Ki

∂θ = Iφi (
ni+1

2 )∂Ai

∂θ − 1
2I

Φ
i (

ni+2
2 )∂di

∂θ and ∂2Ki

∂θ∂θ⊤ =
1
4I

Φ
i (

ni+4
2 )∂di

∂θ
∂di

∂θ⊤ − 1
2I

Φ
i (

ni+2
2 ) ∂2di

∂θ∂θ⊤ − 1
2I

φ
i (

ni+3
2 )(∂Ai

∂θ
∂di

∂θ⊤ + ∂di

∂θ
∂Ai

∂θ⊤ )−
Iφi (

ni+3
2 )Ai

∂Ai

∂θ
∂Ai

∂θ⊤ + IΦi (
ni+1

2 ) ∂2Ai

∂θ∂θ⊤ .

From Propositions 3.13, 3.15, and 3.17 we have that for each distri-
bution considered in this work, the integrates can be written as follows.

• Skew-t:

IΦi (w) =
2wνν/2Γ(w + ν/2)

Γ(ν/2)(ν + di)ν/2+w
T1

(
Ai

(di + ν)1/2
√
2w + ν|0, 1, 2w + ν

)
,

Iφi (w) =
2wνν/2

√
2πΓ(ν/2)

(
1

di +A2
i + ν

) ν+2w
2

Γ(
ν + 2w

2
).
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• Skew-slash:

IΦi (w) =
2w+νΓ(w + ν)

dw+ν
i

P1(w + ν,
di
2
)E[Φ(S

1/2
i Ai)],

Iφi (w) =
ν2w+νΓ(w + ν)√
2π(di +A2

i )
w+ν

P1(w + ν,
di +A2

i

2
),

where Si ∼ Gamma(w + ν, di

2 )I(0,1).

• Contaminated skew–normal:

IΦi (w) =
√
2π{νγw−1/2φ1(di|0, 1

γ
)Φ(γ1/2Ai) + (1− ν)φ1(di|0, 1)Φ(Ai)}

Iφi (w) = νγw−1/2φ1(di +A2
i |0,

1

γ
) + (1− ν)φ1(di +A2

i ).

In many situations the derivatives of logΣi, di, and Ai involve com-
plicated algebraic manipulation. For SNI-MEM, the derivatives of logΣ,
di, and Ai can be found in Lachos et al. (2007) [20]. Asymptotic con-
fidence intervals and test on the maximun likelihood estimators can be
obtained using this matrix. Thus, if J = −L denotes the observed in-
formation matrix for the marginal log-likelihood ℓ(θ), then asymptotic
confidence intervals and hypotheses tests for the parameter θ ∈ Rq are
obtained once we assume the MLE θ̂ has approximately a Nq(θ,J

−1)
distribution. In practice, J is usually unknown and has to be replaced
by its maximun likelihood estimation Ĵ, that is, the matrix Ĵ evaluated
at θ̂. More generally speaking, for models as those in Proposition 3.7,
the observed information matrix can be derived from the results given
here.

6. Some examples

We illustrate the usefulness of the proposed class of distributions by
applying them to two real data sets. The first example is an application
of the methodology for univariate SNI responses, while the second is an
application of SNI-MEM with p = 5.
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6.1 Fiber-glass data set

In this section we apply four specific distributions of the skew nor-
mal/independent class, specifically, the univariate skew-normal, skew-
t, skew-slash, and skew-contaminated normal, to fit the data on the
breaking strength of 1.5cm long glass fiber, consisting of 63 observa-
tions. Jones and Faddy (2003) [19] and Wang and Genton (2006) [31]
had previously analyzed this data with a skew-t and a skew-slash distri-
bution, respectively. They both reported a strong presence of skewness
on the left as well as a heavy-tailed behavior of the data, as depicted in
Figure 4. We compare in the sequel the skew-normal (SN), skew-t (ST),
contaminated skew-normal (SCN), and skew-slash (SSL) fitting for this
data set. The resulting parameter estimates for the four models is given
in Table 1. As suggested by Lange et al. (1989) [23], for each model the
Schwarz information criterion was used for choosing the value of ν. This
strategy is illustrated in Figure 5. Figure 4 shows the histogram of the
fiber data superimposed with the fitted curves of the densities from the
four considered models. We observe that the contaminated skew-normal
fits the fiber data better than the other three distributions, especially
at the peak part of the histogram. This conclusion is also supported by
the log-likelihoods given in Table 1. Replacing the ML estimates of θ in
the Mahalanobis distance di = (yi − µ)2/σ2, we present Q-Q plots and
envelopes in Figure 6 (lines represent the 5th percentile, the mean, and
the 95th percentile of 100 simulated points for each observation). Plots
in Figure 6 again provide strong evidence that the SNI distributions
provides a better fit than the skew-normal distribution.

6.2 Chipkevitch et al. (1996) [12] data set

In this application, the multivariate skew-normal, skew-t, skew-slash,
and skew-contaminated normal distributions are applied to fit the data
studied by Chipkevitch et al. (1996) [12], where measurements of the tes-
ticular volume of 42 adolescents were converted to certain sequences by
five different techniques: ultrasound (US), a graphical method proposed
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Fiber grass strength
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Figure 4: The histogram of the fiber grass strength superimposed with the
fitted densities curves of the four distributions.

distribution µ̂ σ̂ λ̂ ν γ Log-likelihood
SN 1.8503 0.4705 -2.6789 - -

(0.0468) (0.0464) (0.7513) -13.9571
ST 1.7549 0.2725 -1.6196 3 -

(0.045) ( 0.0353) (0.6523) -11.7546
SCN 1.7241 0.1615 -1.2940 0.5 0.10

(0.0393) (0.0187) (0.5080) -9.1928
SSL 1.805591 0.2989667 -1.870298 1.7 -

(0.0461) (0.0366) (0.6320) -12.9367

Table 1: MLE of the four fitted models on the fiber grass strength data set.
Standard errors are based on the observed information matrix of Section 5.
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Figure 5: Plot of the profile log-likelihood for fitting (a) a skew-t model for
fiber grass strength, (b) a contaminated skew-normal model for Chipkevitch
data.

by the authors (I), dimensional measurement (II), Prader orchidometer
(III), and ring orchidometer (IV). The ultrasound approach is assumed
to be the reference measurement device. A histogram of the measure-
ments (see Figure 7c) shows a certain asymmetry in the data set so that
Galea-Rojas et al. (2002) [14] recommended a cubic root transformation
to achieve better normality. Resulting parameter estimates for the four
models are given in Table 2. The AIC criterion was used for choosing
among some values of ν. For the ST model we found ν = 6, for the
SSL ν = 3, and for the SCN ν = 0.3, γ = 0.3. Therefore, for the three
models a heavy-tailed distribution will be assumed. We can note from
Table 2 that the intercept and slope estimates are similar among the four
fitted models. However, the standard errors of the SNI distributions are
smaller than the ones for the skew-normal model, indicating that the
three models with longer than skew-normal tails seem to produce more
accurate maximum likelihood estimates. The estimates for the variance
components are not comparable since they are in a different scale. Note
also that the log-likelihood values, shown at the bottom of Table 2, favor
the SNI models. Particularly, we can see that the skew-t distribution fits
the data better than the other three. The plots in Figure 7 provide even
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Figure 6: Fiber grass strength data set. Q-Q plots and simulated envelopes:
(a) skew-normal model, (b) contaminated skew-normal model, (c) skew-t
model, and (d) skew-slash model.

stronger evidence that the ST distribution allows a better fit to the data
than the SN distribution.
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Figure 7: The Chipkevitch data set: (a) Q-Q plots and simulated envelopes for
skew-normal model, (b) skew-t model, (c) histogram of the observed measure-
ment, (d) histogram of the reference device measurement with superimposed
fitted SNI densities.
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SN ST SCN SSL
Parameter Estimate SE Estimate SE Estimate SE Estimate SE

α1 0.1022 0.5655 0.0426 0.4940 0.1559 0.5017 0.1226 0.5317
α2 -0.0096 0.6216 -0.2472 0.5261 -0.1527 0.5227 -0.1716 0.5777
α3 0.0483 0.6277 0.1110 0.5674 0.1464 0.5643 0.1027 0.5999
α4 1.5391 0.6337 1.5444 0.5605 1.6404 0.5729 1.5784 0.5978
β1 0.8838 0.0509 0.8990 0.0513 0.8911 0.0511 0.8887 0.0517
β2 0.9495 0.0559 0.9866 0.0565 0.9782 0.0547 0.9754 0.0577
β3 1.1419 0.0565 1.1537 0.0586 1.1540 0.0574 1.1466 0.0583
β4 1.0826 0.0570 1.0957 0.0579 1.0885 0.0584 1.0864 0.0578
φ1 1.3384 0.3714 0.9291 0.2893 0.7467 0.2240 0.8345 0.2508
φ2 1.3284 0.3480 0.9538 0.2841 0.7972 0.2225 0.8405 0.2369
φ3 1.6736 0.4322 0.9028 0.2960 0.7294 0.2105 0.8938 0.2849
φ4 1.1578 0.3710 0.9481 0.3160 0.7845 0.2537 0.7998 0.2581
φ5 1.4105 0.3994 1.0196 0.3385 0.9119 0.2761 0.9080 0.2783
µx 3.9952 1.3958 4.1688 1.0890 4.2784 1.3844 4.1830 1.3096
σ2
x 59.2857 21.5487 38.1512 14.3057 30.9914 13.6063 35.0036 13.3506

λx 4.7842 4.7925 3.4300 2.4361 3.2404 2.8759 3.7562 3.2021
ν - - 6 - 0.3 - 3 -
γ - - - - 0.3 - - -

log-likelihood -422.1628 -416.7776 -415.9791 -419.3461

Table 2: Results of fitting skew-normal and SNI-MEM to the Chipkevitch data. Standard errors are
based on the observed information matrix of Section 5.
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7. Conclusion

In this work we have defined a new family of asymmetric models by ex-
tending the symmetric normal/independent family. Our proposal gen-
eralizes results by Azzalini and Capitanio (2003) [6], Gupta (2003) [17],
and Wang and Genton (2006) [31]. In addition, we have developed a gen-
eral method based on the EM algorithm for estimating the parameters
of the skew-normal/independent distributions. Closed-form expressions
were derived for the iterative estimation processes based on the fact that
the proposed distributions possess a stochastic representation that can
be used to represent them hierarchically. This stochastic representation
also allows us to study many of its properties easily. We believe that the
approaches proposed here can be applied to other asymmetric multivari-
ate models like those proposed by Branco and Dey (2001) [9, Section 3].
The assessment of influence of data and model assumption on the result
of the statistical analysis is a key aspect of any new class of distribution.
We are currently exploring the local influence and residual analysis to
address this issue.

8. Appendix: some lemmas

Now we take care of some technical lemmas needed in Section 3.

Lemma 8.1. Let Y ∼ SNp(λ). Then for any fixed p-dimensional vector
b and a p× p matrix A we have

E[Y⊤AYb⊤Y] = −
√

2

π
[(δ⊤Aδ + tr(A))b⊤δ + 2δ⊤Ab],

where δ is as in (3.3).

Proof. The proof follows by the stochastic representation of Y given in
(1.2) and the calculation of the moments E[|X0|] and E[|X0|3], when
X0 ∼ N(0, 1).
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Lemma 8.2. Let Y ∈ Rp be a random vector with

f(y|u) = k−1(u)φp(y|µ, u−1Σ)Φ1(u
1/2A+ u1/2B⊤y)

as probability density function, with u a positive constant, A ∈ R, B a

p-dimensional vector, and k(u) = Φ1(u
1/2 A+B⊤µ√

1 +B⊤ΣB
) a standardized

constant. Then we have

E[Y|u] = µ+ u−1/2 ΣB√
1 +B⊤ΣB

WΦ1
(u1/2 A+B⊤µ√

1 +B⊤ΣB
).

Proof. If we notice, by using Lemma 2 from Arellano-Valle et al. (2005)
[2], that

E[Y|u] = k−1(u)

∫

R

∫ ∞

0

yφ1(t|u1/2A+ u1/2B⊤y, 1)φ(y|µ, u−1Σ)dtdy

= k−1(u)

∫ ∞

0

φ1(t|u1/2A+ u1/2B⊤µ, 1 +B⊤ΣB)EY|t[Y]dt

holds, where Y|t ∼ Np(µ − ΛB(A + B⊤µ) + u−1/2ΛBt, u−1Λ), with
Λ = (Σ−1+BB⊤)−1, then the proof follows from well known properties
of the truncated normal distribution (compare Johnson et al. (1994) [18,
Section 10.1]).

Lemma 8.3. Let Y ∼ Gamma(α, β). Then for any a ∈ R we have

E[Φ1(a
√
(Y ))] = T1(a

√
α

β
|0, 1, 2α).

Proof. See Azallini and Capitanio (2003) [6, Lemma 1].
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Resumen

Liu (1996) discute una clase de distribuciones robustas a las que apela
como normal/independiente, y que contiene un grupo de distribuciones
de colas pesadas. En este art́ıculo desarrollamos una versión asimétrica
de tales distribuciones en un escenario multivariado, a las que llamaremos
distruciones normales asimétricas independientes multivariadas. Para
tales distribuciones derivamos algunas propiedades. La principal vir-
tud de los miembros de esta familia es que son fáciles de simular y se
prestan a un algoritmo de tipo EM para realizar estimaciones de máxima
verosimilitud de sus parámetros. Para dos modelos multivariados de in-
terés práctico se discute el algoritmo EM con énfasis en las distribuciones
t-asimétrica, slash asimétrica y normal asimétrica contaminada. Los re-
sultados obtenidos a partir de simulaciones y de dos conjuntos de datos
reales son reportados.

Palabras clave: Algoritmo EM, normal/independiente.
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