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Poincaré duality in equivariant intersection theory

1. Introduction

Let T be a complex algebraic torus of dimension d. Let X be a compact

complex algebraic variety where T acts with isolated fixed points. If X

has no rational cohomology in odd degrees (i.e., if X is equivariantly

formal [16]), then the equivariant cohomology ring H∗T (X) with rational

coefficients is a commutative positively graded algebra; it is a free mod-

ule of finite rank over the equivariant cohomology ring of a point (the

latter is a polynomial ring in d variables). Examples include Schubert

varieties and rationally smooth projective varieties where a complex re-

ductive group acts with finitely many orbits (a complex variety of pure

dimension n is rationally smooth if the local cohomology at any point is

the same as the local cohomology of Cn). In [6], Brion has shown that

several topological invariants of a T -variety X can be read off H∗T (X).

For instance, if X is equivariantly formal and n = dimX, then equivari-

ant Kronecker duality holds, i.e., the dualizing module of H∗T (X) is the

equivariant homology HT
∗ (X). Furthermore, the following conditions are

equivalent: (i) Poincaré duality, (ii) the algebra H∗T (X) is Gorenstein,

(iii) the Betti numbers of X satisfy bq(X) = b2n−q(X), for 0 ≤ q ≤ n,

and all equivariant multiplicities are nonzero (these are certain func-

tionals on HT
∗ (X)). See [6, Theorem 4.1]. Finally, Brion obtains some

Morse inequalities for the Betti numbers of X, assuming all equivariant

multiplicities are nonzero [6, Theorem 4.2].

The purpose of this article is to generalize Brion’s results to the

purely algebraic and more delicate setting of equivariant Chow groups

and equivariant operational Chow groups (or Chow cohomology); we re-

fer to Sections 2 and 3 for appropriate definitions and notation. In order

to achieve our goal, first we find a suitable class of varieties that resemble

equivariantly formal varieties from the viewpoint of equivariant intersec-

tion theory. This is done by combining two classes of varieties considered

in previous work, namely T -linear varieties [13] and Q-filtrable varieties

[14]. Let us quickly mention some of their relevant features. In [13]

we show that projective T -linear varieties satisfy equivariant Kronecker
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duality. This property is rather strong, and does not hold for arbi-

trary T -varieties. On the other hand, in [14] we introduced the class of

Q-filtrable varieties (Definition 2.12). A remarkable property of these

schemes is that their equivariant Chow groups are free modules of finite

rank over the equivariant Chow ring of a point. Hence, it is quite natural

to consider the class of Q-filtrable T -linear schemes as a suitable replace-

ment for the notion of equivariant formality in equivariant intersection

theory (cf. Theorem 3.5, Theorem 3.7). This expectation is confirmed

in Section 4, where we obtain criteria for Poincaré duality on projective

Q-filtrable T -linear varieties. Our main results (Theorems 4.1, 4.3, and

4.5, and Corollary 4.7) yield the sought-after generalizations of Brion’s

results, and open the way for further work in this direction.

2. Definitions and basic properties

2.1 Conventions and notation

Throughout this paper, we fix an algebraically closed field k of charac-

teristic zero. All schemes and algebraic groups are assumed to be defined

over k. By a scheme we mean a separated scheme of finite type. A vari-

ety is a reduced scheme. Observe that varieties need not be irreducible.

A subvariety is a closed subscheme which is a variety. A point on a

scheme will always be a closed point.

We denote by T an algebraic torus. A scheme X provided with

an algebraic action of T is called a T -scheme. For a T -scheme X, we

denote by XT the fixed point subscheme and by iT : XT → X the

natural inclusion. If H is a closed subgroup of T , we similarly denote

by iH : XH → X the inclusion of the fixed point subscheme. When

comparing XT and XH we write iT,H : XT → XH for the natural (T -

equivariant) inclusion. We denote by ∆ the character group of T , and by

S the symmetric algebra over Q of the abelian group ∆. The quotient

field of S is denoted by Q.

In this paper, torus actions are assumed to be locally linear, i.e.,
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the schemes we consider are covered by invariant affine open subsets.

This assumption is fulfilled for instance by T -stable subschemes of nor-

mal T -schemes [30]. A T -scheme is called T -quasiprojective if it has an

ample T -linearized invertible sheaf. This assumption is fulfilled, among

others, by T -stable subschemes of normal quasiprojective T -schemes [30].

Let G be a connected reductive group. Recall that a normal G-

variety X is called spherical if a Borel subgroup B of G has a dense

orbit in X. Then it is known that G and B have finitely many orbits

in X. It follows that X contains only finitely many fixed points of a

maximal torus T ⊂ B, see for example [31].

Equivariant Chow groups and equivariant operational Chow groups

are considered with rational coefficients.

2.2 The Bialynicki-Birula decomposition

The material in this subsection is due to Bialynicki-Birula [2], [3] (in the

smooth case) and Konarski [20] (in the general case).

Let X be a T -scheme with isolated fixed points. Then XT is finite.

We write XT = {x1, . . . , xm}. A one-parameter subgroup λ : Gm → T

is called generic if XGm = XT , where Gm acts on X via λ. Generic

one-parameter subgroups always exist due to the local linearity of the

action. Fix a generic λ : Gm → T . For each i, define the subset

X+(xi, λ) = {x ∈ X | lim
t→0

λ(t) · x = xi}.

Then X+(xi, λ) is a locally closed T -invariant subscheme of X. The

(disjoint) union of the X+(xi, λ)’s might not cover all of X, but when

it does (e.g., when X is complete), the decomposition {X+(xi, λ)}mi=1 is

called the Bialynicki-Birula decomposition, or BB-decomposition, of

X associated to λ. Each X+(xi, λ) is called a cell of the decomposition.

Definition 2.1. Let X be a T -scheme with finitely many fixed points.

Let {X+(xi, λ)}mi=1 be the BB-decomposition associated to some generic

λ : Gm → T . The decomposition {X+(xi, λ)} is said to be filtrable if
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there is a finite increasing sequence Σ0 ⊂ Σ1 ⊂ . . . ⊂ Σm of T -invariant

closed subschemes of X such that:

a) Σ0 = ∅, Σm = X,

b) Σj \ Σj−1 is a cell of the decomposition {X+(xi, λ)}, for each j =

1, . . . ,m.

In this context, it is common to say that X is filtrable, and refer

to Σj as the j-th filtered piece of X. If, moreover, the cells X+(xi, λ)

are isomorphic to affine spaces Ani , then X is called T -cellular.

Theorem 2.2 ([2], [3]). Let X be a complete T -scheme with isolated

fixed points, and let λ be a generic one-parameter subgroup. If X ad-

mits an ample T -linearized invertible sheaf, then the associated BB-

decomposition {X+(xi, λ)} is filtrable. Furthermore, if X is smooth,

then X is T -cellular.

2.3 Equivariant Chow groups for torus actions

Let X be a T -scheme of dimension n (not necessarily equidimensional).

Let V be a finite dimensional T -module, and let U ⊂ V be an invariant

open subset so that a principal bundle quotient U → U/T exists. Then

T acts freely on X×U and the quotient scheme XT = (X×U)/T exists.

Following Edidin and Graham [8], we define the i-th equivariant Chow

group ATi (X) by ATi (X) = Ai+dimU−dimT (X) if V \U has codimension

more than n − i. The definition is independent of the choice of (V,U),

see [8] for details. Set AT∗ (X) = ⊕iATi (X). If X is a T -scheme and

Y ⊂ X is a T -stable closed subscheme, then Y defines a class [Y ] in

AT∗ (X). If X is smooth, then so is XT , and AT∗ (X) admits an intersection

pairing; in this case, denote by A∗T (X) the corresponding ring graded by

codimension. The equivariant Chow ring A∗T (pt) is isomorphic to S, and

AT∗ (X) is a S-module, where ∆ acts on AT∗ (X) by homogeneous maps

of degree −1. This module structure is induced by pullback through

the flat map pX,T : XT → U/G. Restriction to a fiber of pX,T gives

i∗ : AT∗ (X) → A∗(X). If X is complete, we denote by
∫
X

(α) ∈ S the

proper pushforward to a point of a class α ∈ AT∗ (X).
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Next we state Brion’s description [4] of the equivariant Chow groups

in terms of invariant cycles. It also shows how to recover the usual Chow

groups from equivariant ones.

Theorem 2.3. Let X be a T -scheme. Then the S-module AT∗ (X) is

defined by generators [Y ], where Y is an invariant irreducible subvariety

of X, and relations [divY (f)] − χ[Y ], where f is a rational function

on Y which is an eigenvector of T of weight χ. Furthermore, the map

AT∗ (X)→ A∗(X) vanishes on ∆AT∗ (X), and it induces an isomorphism

AT∗ (X)/∆AT∗ (X)→ A∗(X).

The following is a slightly more general version of the localization

theorem for equivariant Chow groups [4, Corollary 2.3.2]. For a proof,

see [13, Proposition 2.15].

Theorem 2.4. Let X be a T -scheme, let H ⊂ T be a closed subgroup,

and let iH : XH → X be the inclusion of the fixed point subscheme.

Then the induced morphism of equivariant Chow groups

iH∗ : AT∗ (XH)→ AT∗ (X)

becomes an isomorphism after inverting finitely many characters of T

that restrict non-trivially to H.

2.4 T -linear schemes

We introduce our main class of testing spaces.

Definition 2.5. Let T be an algebraic torus and let X be a T -scheme.

1. We say that X is T -equivariantly 0-linear if it is either empty

or isomorphic to Spec (Sym(V ∗)), where V is a finite-dimensional

rational representation of T .

2. For a positive integer n, we say that X is T -equivariantly n-

linear if either one of the following conditions hold.
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(i) There is a T -scheme Y , which contains X as a T -invariant

open subscheme, so that Y and Z = Y \X are T -equivariantly

(n− 1)-linear.

(ii) There exists a T -invariant closed subscheme Z ⊆ X, with

complement U , so that Z and U are T -equivariantly (n− 1)-

linear.

3. We say that X is T -equivariantly linear (or simply, T -linear)

if it is T -equivariantly n-linear for some n ≥ 0. T -linear varieties

are varieties that are T -linear schemes.

Clearly, if T → T ′ is a morphism of algebraic tori, then every T ′-
linear scheme is also T -linear. On the other hand, if X is T -equivariantly

n-linear, then the fixed point subscheme XH of any subtorus H ⊂ T is T -

equivariantly n-linear. Observe that T -linear schemes are linear schemes

in the sense of [17], [32], and [18].

It is known that if X is a T -linear scheme, then AT∗ (X) is a finitely

generated S-module and A∗(X) is a finitely generated abelian group

(see e.g. [13, Lemma 2.7]). The next theorem provides some concrete

examples. For a proof of items (i)-(ii) see [19, Proposition 3.6], for item

(iii) see [13, Theorem 2.5].

Theorem 2.6. Let T be an algebraic torus. Then the following holds.

(i) A T -cellular scheme is T -linear.

(ii) Every T -scheme with finitely many T -orbits is T -linear. In partic-

ular, a toric variety with dense torus T is T -linear.

(iii) Let B be a connected solvable linear algebraic group with maximal

torus T . Let X be a B-scheme. If B acts on X with finitely many

orbits, then X is T -linear. In particular, spherical varieties are

T -linear.
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2.5 Equivariant multiplicities at nondegenerate fixed

points

Let X be a T -scheme. A fixed point x ∈ X is called nondegenerate if

all weights of T in the tangent space TxX are non-zero. A fixed point

in a nonsingular T -variety is nondegenerate if and only if it is isolated.

To study singular schemes, Brion [4] developed a notion of equivariant

multiplicity at nondegenerate fixed points. The main features of this

concept are outlined below, for details see [4, Section 4].

Theorem 2.7. Let X be a T -scheme with an action of T , let x ∈ X

be a nondegenerate fixed point and let χ1, . . . , χn be the weights of TxX

(counted with multiplicity).

(i) There exists a unique S-linear map

ex,X : AT∗ (X) −→ 1

χ1 · · ·χn
S

such that ex,X [x] = 1 and that ex,X [Y ] = 0 for any T -invariant

irreducible subvariety Y ⊂ X which does not contain x.

(ii) For any T -invariant irreducible subvariety Y ⊂ X, the rational

function ex,X [Y ] is homogeneous of degree −dim(Y ) and coincides

with ex,Y [Y ].

(iii) The point x is nonsingular in X when ex[X] =
1

χ1 · · ·χn
.

For a T -stable irreducible subvariety Y ⊂ X, set ex,X [Y ] = ex[Y ],

and call ex[Y ] the equivariant multiplicity of Y at x.

Proposition 2.8. Let X be a T -scheme such that all fixed points in X

are nondegenerate, and let α ∈ AT∗ (X). Then, in AT∗ (X)⊗S Q, we have

α =
∑
x∈XT ex(α)[x].

Next we describe a special class of nondegenerate fixed points. Let

X be a T -variety. Call a fixed point x ∈ X attractive if all weights in the

tangent space TxX are contained in an open half-space of ∆R = ∆⊗ZR.
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Theorem 2.9. Let X be a T -variety with a fixed point x. The following

conditions are equivalent.

(i) The point x is attractive.

(ii) There exists a one-parameter subgroup λ : Gm → T such that, for

all y in a neighborhood of x, we have lim
t→0

λ(t)y = x.

If (i) or (ii) holds, then x admits a unique open affine T -stable neighbor-

hood in X, denoted Xx, and Xx admits a closed equivariant embedding

into TxX. Moreover, ex[X] is non-zero.

2.6 Q-filtrable varieties and equivariant Chow groups

Here we recall some of the main results from [14].

Definition 2.10. Let X be an affine T -variety with an attractive fixed

point x, and let n = dimX. We say that (X,x), or simply X, is an

algebraic rational cell when it satisfies

Ak(X) =

{
Q if k = n

0 if k 6= n.

In particular, if (X,x) is an algebraic rational cell, then it is irreducible.

Let X be an affine T -variety with an attractive fixed point x. Then

there exists a generic one-parameter subgroup λ : Gm → T for which

X = X+(x, λ) and X admits a closed T -equivariant embedding into TxX

(Theorem 2.9). Since all the weights of the Gm-action on TxX (via λ)

are positive, the geometric quotient Pλ(X) = (X \ {x})/Gm exists and

is a projective variety. In fact, it is a closed subvariety of the weighted

projective space Pλ(TxX). Remarkably, X is an algebraic rational cell

if and only if

Ak(Pλ(X)) =

{
Q if 0 ≤ k ≤ n− 1,

0 otherwise

holds. See [14] for details.
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Example 2.11. Let k = C. Algebraic rational cells are naturally found

on rationally smooth spherical varieties. Indeed, let X be a G-spherical

variety with an attractive fixed point x ∈ X. Let Xx be the unique open

affine T -stable neighborhood of x. If X is rationally smooth at x, then

(Xx, x) is an algebraic rational cell [14, Theorem 7.2].

Using algebraic rational cells as building blocks, one can study the

global geometry of T -varieties equipped with a paving by algebraic ra-

tional cells.

Definition 2.12. Let X be a T -variety. We say that X is Q-filtrable

if the following hold:

1. the fixed point set XT is finite, and

2. there exists a generic one-parameter subgroup λ : Gm → T for

which the associated BB-decomposition of X is filtrable (Defini-

tion 2.1) and consists of T -invariant algebraic rational cells.

In particular, we have X =
⊔
j X+(xj , λ). Also, observe that the

fixed points xj ∈ XT need not be attractive in X, but they are so in

their corresponding algebraic rational cells X+(xj , λ). The key result is

stated below.

Theorem 2.13 ([14, Theorem 4.4]). Let X be a Q-filtrable T -variety.

Then the T -equivariant Chow group of X is a free S-module of rank

|XT |. In fact, it is freely generated by the classes of the closures of

the cells X+(xi, λ). Consequently, A∗(X) is also freely generated by the

classes of the cell closures X+(xi, λ).

Next we compute equivariant multiplicities of algebraic rational cells

and Q-filtrable varieties. Recall that a primitive character χ of T is called

singular if it satisfies Xker (χ) 6= XT .

Theorem 2.14 ([14, Corollary 3.8]). Let X be an irreducible T -variety

with attractive fixed point x. Let Xx be the unique open affine T -stable

neighborhood of x. If (Xx, x) is an algebraic rational cell, then the fol-

lowing hold.
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(i) ex[X] is the inverse of a polynomial. In fact, we have

ex[X] =
d

χ1 · · ·χr
,

here the χi’s are singular characters, r = dimX, and d is a positive

rational number.

(ii) Moreover, if the number of closed irreducible T -stable curves through

x is finite, say `(x), then dimX = `(x). Furthermore, we may take

for χ1, . . . , χr the characters associated to these curves.

In general, if X is an affine T -variety with an attractive fixed point

x, and `(x) as above is finite, then dimX ≤ `(x) [5, Corollary 1.4.2].

Example 2.15. Let k = C. Let X be a G-spherical variety. Recall that

XT is finite. If there is a generic λ : Gm → T so that {X+(xi, λ)} is a

filtrable BB-decomposition and each cell is rationally smooth, then X is

Q-filtrable and both the equivariant and non-equivariant cycle maps are

isomorphisms [14, Theorem 7.3]. In particular, this holds for rationally

smooth projective group embeddings [14, Corollary 5.10]; see below for

a definition of this important class of spherical varieties.

2.7 Applications to group embeddings

We recall some results and notation on group embeddings that will be

used freely throughout the paper. Here G denotes a connected reductive

group with Borel subgroup B and maximal torus T ⊂ B.

An irreducible algebraic variety is called an embedding of G, or a

group embedding, if it is a normal G×G-variety containing an open

orbit isomorphic to G itself, where G×G acts on G by left and right mul-

tiplication. When G is a torus, we recover the notion of toric varieties.

Group embeddings are spherical G×G-varieties (by the Bruhat decom-

position). Affine embeddings of G are nothing but reductive monoids

having G as group of units [29]. Recall that an algebraic monoid is

an algebraic variety equipped with an associative product map, which
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is a morphism of varieties and admits an identity element. An affine

algebraic monoid is called reductive if it is irreducible, normal, and its

unit group is a reductive algebraic group.

Let M be a reductive monoid with zero and unit group G. Then

there exists a central one-parameter subgroup ε : Gm → T that satisfies

limt→0 ε(t) = 0, see [7, Lemma 1.1.1]. Moreover, the quotient space

Pε(M) = (M \ {0})/ε(Gm) is a projective embedding of the quotient

group G/ε(Gm). In fact, projective embeddings of connected reductive

groups are exactly the projectivizations of reductive monoids [24].

Let M be a reductive monoid with zero and unit group G. It is

worth noting that 0 is the unique attractive T ×T -fixed point of M (see

e.g., [7, Lemma 1.1.1]). Let T ⊂ M be the Zariski closure of T in M .

Then T is a normal affine toric variety [25, Theorem 5.4]. We denote

by E(M) the idempotent set of M , that is, E(M) = {e ∈ M | e2 = e}.
Likewise, E(T ) denotes the idempotent set of T . One defines a partial

order on E(M) (and thus on E(T )) by declaring f ≤ e if and only if

fe = f = ef . Write W for the Weyl group of (G,T ), and denote by

S its set of simple reflections. Then W acts on E(T ) by conjugation,

and the corresponding set of W -conjugacy classes can be identified with

Λ = {e ∈ E(T ) |Be = eBe}. See [25] for details. The lattice Λ is called

the cross-section lattice of M . Notably, Λ can also be identified with

the (finite) set G×G-orbits of M [25, Theorem 4.5]. For e ∈ E(M), set

Me = {g ∈ G | ge = eg = e}. Then Me is a reductive monoid with e as

its zero element [7]. Finally, let Λk = {x ∈ Λ | dimTx = k } be the set

of elements of rank k in Λ.

Definition 2.16. A reductive monoid M with zero element is called

quasismooth if, for any minimal non-zero idempotent e ∈ E(M), the

submonoid Me is an algebraic rational cell.

This definition agrees with that of [26]. For details, we refer to [14,

Definition 5.8]. Over the complex numbers, M is quasismooth if and only

if Pε(M) is rationally smooth [28, Theorem 2.5]. For a combinatorial

classification of quasismooth monoids, see [28]. The main result in this
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context is stated next. See [14, Theorem 5.9] for a proof.

Theorem 2.17. If M is a quasismooth monoid, then the projective

group embedding Pε(M) is Q-filtrable.

3. Equivariant Chow cohomology: localiza-

tion and equivariant Kronecker duality

Let X be a T -scheme. The i-th T -equivariant operational Chow

group of X, denoted opAiT (X), is defined as follows: an element c ∈
opAiT (X) is a collection of homomorphisms c

(m)
f : ATm(Y ) → ATm−i(Y ),

written z 7→ f∗c ∩ z, for every T -map f : Y → X and all integers m.

(The underlying category is the category of T -schemes.) These homo-

morphisms must satisfy certain compatibility conditions, see [9, Chapter

17] and [8] for details. For any X, the ring structure on opA∗T (X) =

⊕iopAiT (X) is given by composition of such homomorphisms. The ring

opA∗T (X) is graded, and opAiT (X) can be non-zero for any i ≥ 0. The

basic properties we need are summarized below.

(i) The cup product opApT (X)⊗opAqT (X)→ opAp+qT (X), a⊗b 7→ a∪b,
is well defined and makes opA∗T (X) into a graded associative ring.

Note that this ring is commutative since char(k) = 0, and so all

T -schemes admit equivariant resolution of singularities.

(ii) There are contravariant graded maps f∗ : opAiT (X) → opAiT (Y ),

for arbitrary equivariant morphisms f : Y → X.

(iii) The cap product opAiT (X)⊗ATm(X)→ ATm−i(X), c⊗ z 7→ c∩ z, is

well defined and makes AT∗ (X) into an opA∗T (X)-module satisfying

the projection formula.

(iv) For any T -scheme X of pure dimension n, there is an equivariant

Poincaré duality map:

PT : opAkT (X)→ ATn−k(X), z 7→ z ∩ [X].
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Poincaré duality in equivariant intersection theory

If X is nonsingular, then PT is an isomorphism, and the ring struc-

ture on opA∗T (X) is that determined by intersection products of cycles

on the mixed spaces XT . In particular, by (iii) and (iv), opA∗T (X) is

a graded S-algebra. We say that X satisfies equivariant Poincaré

duality if PT is an isomorphism. Similar remarks apply to the non-

equivariant Poincaré duality map (denoted P).

Now we state the localization theorem for equivariant Chow coho-

mology. It is applicable to possibly singular complete T -schemes, regard-

less of whether opA∗T (X) is a free S-module or not.

Theorem 3.1 ([13, Theorem A.6]). Let X be a complete T -scheme and

let iT : XT → X be the inclusion of the fixed point subscheme. Then the

pull-back map

i∗T : opA∗T (X)→ opA∗T (XT )

is injective, and its image is exactly the intersection of the images of

i∗T,H : opA∗T (XH)→ opA∗T (XT ),

where H runs over all subtori of codimension one in T . �

Theorem 3.1 makes equivariant Chow cohomology more computable.

For instance, a version of GKM theory also holds [13, Theorem A.9],

and there is a description of the equivariant operational Chow groups of

spherical varieties [13, Section 4], which generalizes [4, Theorem 7.3].

Let X be a T -scheme, and let (V,U) be as in Subsection 2.2. By

[8, Corollary 2], there is an isomorphism opAjT (X) ' opAj(X × U/T ),

provided V \U has codimension more than j. Thus there is a canonical

map i∗ : opA∗T (X) → opA∗(X) induced by restriction to a fiber of

pX,T : XT → U/T . But, unlike the case of equivariant Chow groups,

this map is not surjective in general, and its kernel is not necessarily

generated in degree one, not even for toric varieties [22]. This becomes an

issue when trying to translate results from equivariant to non-equivariant

Chow cohomology. Nevertheless, for certain Q-filtrable varieties the map

i∗ is surjective. Before studying them, let us recall a definition from [13].
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Definition 3.2. Let X be a complete T -scheme. We say that X sat-

isfies T -equivariant Kronecker duality if the following conditions

hold.

(i) The S-module AT∗ (X) is finitely generated.

(ii) The equivariant Kronecker duality map

KT : opA∗T (X) −→ HomS(AT∗ (X), S), α 7→ (β 7→
∫

X

(β ∩ α)).

is an isomorphism of S-modules.

If, in addition, the ordinary Kronecker duality map K is also an

isomorphism, then we say that X satisfies the strong T -equivariant

Kronecker duality.

Example 3.3. By [13, Lemma 3.3], a nonsingular projective T -variety

satisfies the T -equivariant Kronecker duality if and only if it satisfies

ordinary Kronecker duality. In particular, a projective smooth curve of

positive genus (with any T -action) does not satisfy T -equivariant Kro-

necker duality, for the kernel of K in degree one is the Jacobian of the

curve [10].

The main result on equivariant Kronecker duality needed here is a

consequence of [10], [32], and [13, Theorem 3.6].

Theorem 3.4. Let X be a complete T -linear scheme. If X has an

ample T -linearized invertible sheaf (e.g., if X is a nonsingular projective

T -variety with isolated fixed points or X is a possibly singular projective

spherical variety), then X satisfies the strong T -equivariant Kronecker

duality.

The next result makes Q-filtrations relevant to the study of the

equivariant Chow cohomology of T -schemes. The proof is an easy adap-

tation of [13, Corollary 3.9].
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Theorem 3.5. Let X be a complete T -scheme. If X satisfies the strong

T -equivariant Kronecker duality and AT∗ (X) is S-free, then the S-module

opA∗T (X) is free, and the map

opA∗T (X)/∆opA∗T (X)→ opA∗(X)

is an isomorphism.

Corollary 3.6. Let X be a complete T -linear variety having an am-

ple T -linearized invertible sheaf. If X is Q-filtrable, then the S-module

opA∗T (X) is free, and we have opA∗T (X)/∆opA∗T (X) ' opA∗(X).

To conclude this section, we present two results which motivate our

quest for conditions guaranteeing (equivariant) Poincaré duality.

Theorem 3.7. Let G be a complex connected reductive group with max-

imal torus T . Let X be a projective complex G-spherical variety. If X

is equivariantly formal, then there is a natural isomorphism opA∗T (X) '
H∗T (X) of S-algebras, and we get opA∗T (X)/∆opA∗T (X) ' H∗(X). In

particular, the S-module opA∗T (X) is free. If, moreover, X is Q-filtrable,

then we get opA∗(X) ' H∗(X).

Proof. By Theorem 3.1, the pullback i∗T : opA∗T (X) → opA∗T (XT ) is

injective, and its image im(i∗T ) is described explicitly in [13, Theorem

4.8]. On the other hand, because XT is finite, we get a canonical iden-

tification opA∗T (XT ) ' H∗T (XT ). Since X is equivariantly formal, the

pullback ĩT
∗

: H∗T (X) → H∗T (XT ) is also injective. Moreover, XH is

equivariantly formal for any codimension-one subtorus H ⊂ T . Hence,

using [13, Subsection 4.2] and the localization theorem for equivariant

cohomology [16], one easily checks the equality im(i∗T ) = im(ĩT
∗
). Conse-

quently, we obtain opA∗T (X) ' H∗T (X). This, together with equivariant

formality, yields opA∗T (X)/∆opA∗T (X) ' H∗T (X)/∆H∗T (X) ' H∗(X).

Finally, the last assertion follows from Theorem 3.5.

Proposition 3.8. Let M be a reductive monoid with zero. If M is qua-

sismooth (Definition 2.16), then opA∗T×T (Pε(M)) is a free S-module,
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and it is isomorphic, as an S-algebra, to the ring of piecewise polyno-

mial functions PPT×T (Pε(M)) associated to the GKM graph of Pε(M).

Furthermore, if k = C, then we have opA∗T×T (Pε(M)) ' H∗T×T (Pε(M))

and thus also opA∗(X) ' H∗(X).

Proof. The first part follows from Theorem 2.17, Corollary 3.6 and [13,

Theorem A.9]. For the second one, use Theorem 3.7.

For a description of the GKM graph of Pε(M) see [12].

4. Equivariant Poincaré duality and Chow

homology Betti numbers

The goal of this section is to show that Q-filtrable T -linear varieties are

analogues of the equivariantly formal spaces of Goresky, Kottwitz, and

MacPherson [16] from the viewpoint of equivariant operational Chow

groups.

Let X be a projective T -variety of pure dimension n. Suppose that

X is Q-filtrable. Then, by Theorem 2.13, AT∗ (X) is a free S-module

of finite rank and A∗(X) is a free Q-vector space of finite dimension.

Now set bk = dimQAk(X), and call it the k-th Chow homology Betti

number ofX. It follows from Theorem 2.13 that bk equals the number of

k-dimensional algebraic rational cells. When X is smooth, these cells are

actually affine spaces, and we get bk = bn−k [2, Corollary 1]. Moreover,

Poincaré duality holds, and all equivariant multiplicities are non-zero

(Theorem 2.7). In the singular case this is not necessarily true, and our

motivation for this section is to determine in which cases the identity

bk = bn−k holds. Is this equivalent to Poincaré duality for the Chow

cohomology of X? Could it be studied via equivariant multiplicities?

Notice that these multiplicities played a fundamental role in Section 2.

In equivariant cohomology and for equivariantly formal varieties these

questions have been answered in [6]. Below we provide some analogues

of the results of [6] in equivariant Chow cohomology. Our methods rely

70 Pro Mathematica, 28, 56 (2014), 54-80



Poincaré duality in equivariant intersection theory

on Theorem 3.1, Theorem 3.5, and the notion of algebraic rational cells.

No comparison via the cycle map is needed.

A first approximation to Poincaré duality via equivariant multi-

plicities is given next. For the corresponding statement in equivariant

cohomology, see [6, Theorem 4.1].

Theorem 4.1. Let X be a complete equidimensional T -scheme with only

finitely many fixed points. If all equivariant multiplicities are non-zero,

then the equivariant Poincaré duality map is injective.

Proof. In view of Theorem 3.1, the argument is the same as that of [6,

Theorem 4.1]. We include it for convenience. Let α ∈ opA∗T (X) and

suppose that α ∩ [X] = 0. Then we have

∫

X

(α ∪ β) ∩ [X] = 0

for all β ∈ A∗T (X). Thus, in Q, we obtain

∑

x∈XT

αxβxeT (x,X) = 0.

By the localization theorem, the identity holds for all sequences (βx)x∈XT

in Q. Since, by assumption, no ex[X] vanishes, we must have αx = 0 for

all x ∈ XT . Thus we get α = 0 (for the map i∗T : opA∗T (X)→ opA∗T (XT )

is injective).

Remark 4.2. Theorem 4.1 applies to: (i) projective nonsingular T -

varieties with isolated fixed points, for then the equivariant multiplicities

are all inverses of polynomials (Theorem 2.7); (ii) Schubert varieties and

toric varieties, as they have only attractive fixed points, so Theorem 2.9

implies that the corresponding equivariant multiplicities are non-zero;

(iii) simple projective embeddings of a connected reductive group G, as

they have only one closed G×G-orbit, and W ×W acts transitively on

the T × T -fixed points (at least one of these is attractive, hence so are

all of them).
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We now combine our previous results to produce a criterion for

Poincaré duality. For equivariantly formal varieties and equivariant co-

homology this was done in [6, Theorem 4.1].

Theorem 4.3. Let X be a complete equidimensional T -variety with iso-

lated fixed points. Suppose

(a) X is Q-filtrable and

(b) X satisfies the strong T -equivariant Kronecker duality.

Then the following conditions are equivalent.

(i) X satisfies Poincaré duality.

(ii) X satisfies T -equivariant Poincaré duality.

(iii) The Chow homology Betti numbers of X satisfy bq(X) = bn−q(X),

for 0 ≤ q ≤ n, and all equivariant multiplicities are nonzero.

If any of these conditions holds, then all equivariant multiplicities are

inverses of polynomial functions.

Proof. Assumptions (a) and (b) imply that the S-modules AT∗ (X) and

opA∗T (X) are free. So the equivalence of (i) and (ii) follows readily from

Theorem 3.5 and the graded Nakayama lemma.

We prove that (ii) implies (iii). It only remains to show that all the

equivariant multiplicities are nonzero. For this, let {[W1], . . . , [Wm]} be

the basis of AT∗ (X) consisting of the closures of the algebraic rational

cells. Fix j ∈ {1, . . . ,m}, and let xj be the unique attractive fixed point

of Wj . By (ii) there is a unique α ∈ opA∗T (X) for which we have

α ∩ [X]− [Wj ] = 0.

But then, arguing as in the proof of Theorem 4.1, the identity

∑

xi∈XT

βxi(αxiexi [X]− exi [Wj ]) = 0
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holds for all sequences (βxi)xi∈XT in Q. In particular, we have

αxj
exj

[X]− exj
[Wj ] = 0.

Since xj is an attractive fixed point of Wj , we get exj
[Wj ] 6= 0. This

yields αxj
6= 0 and exj

[X] 6= 0, so that exj
[X] is the inverse of a polyno-

mial. Indeed, we have exj [Wj ] = d∏`
s=1 χs

(Theorem 2.14) and αxj ∈ S.

Now is the turn for (iii) implies (i). In view of Theorem 4.1, it

remains to show that

PT : opAqT (X)→ ATn−q(X)

is surjective for all q ∈ Z. For this, it suffices to show that the dimen-

sion of opAqT (X) matches that of ATn−q(X). But this follows from the

assumption on the Chow homology Betti numbers combined with the

isomorphisms

opA∗T (X) ' opA∗(X)⊗Q S and AT∗ (X) ' A∗(X)⊗Q S,

where the first one is granted by Theorem 3.5.

Remark 4.4. It is worth noting that Kronecker duality does not imply

Poincaré duality. For instance, consider the following example from [10,

page 184]. Let X be the closure of a generic torus orbit in the Grass-

mannian G(2, 4). Then X is a toric variety with Chow homology groups

Q, Q, Q5, and Q in dimensions 0, 1, 2, and 3. By Kronecker duality,

the Chow cohomology groups are Q, Q, Q5, and Q in codimensions 0,

1, 2, and 3. Clearly, the Poincaré duality maps Ak → A3−k are not

isomorphisms.

It stems from Theorem 4.3 that the class of Q-filtrable varieties sat-

isfying the strong T -equivariant Kronecker duality indeed resembles that

of equivariantly formal spaces [16]. To push the analogy even further,

here is a version of the Morse inequalities for these varieties. For the

analogous result in equivariant cohomology, see [6, Theorem 4.2].
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Theorem 4.5. Let X be a T -quasiprojective T -linear variety of pure

dimension n with isolated fixed points. If X is complete, Q-filtrable, and

all equivariant multiplicities are nonzero, then the following inequalities

hold for the Chow homology Betti numbers:

bq + bq−1 + . . .+ b0 ≤ bn−q + bn−q+1 + . . .+ bn,

for 0 ≤ q ≤ n, and

2b1 + 4b2 + . . .+ 2nbn ≥ nχ(X),

where χ(X) = b0 + b1 + . . . + bn is the Euler characteristic, i.e., the

number of algebraic rational cells of X. In fact, we get χ(X) = |XT |.
Furthermore, X satisfies Poincaré duality if and only if

2b1 + 4b2 + . . .+ 2nbn = nχ(X).

Proof. The proof is an easy adaptation of [6, Theorem 4.2], with a few

changes. First note that, as X is T -linear, it is also Gm-linear, where Gm
acts on X via the generic one-parameter subgroup λ : Gm → T chosen

to obtain the Q-filtration. Secondly, since X has an ample T -linearized

invertible sheaf, and this sheaf is clearly Gm-linearized, then Theorem

3.4 implies that X satisfies the strong Gm-equivariant Kronecker dual-

ity. Thus, by Theorem 3.5, we have opA∗Gm
(X) ' opA∗(X)⊗Q Q[t] and

AGm∗ (X) ' A∗(X) ⊗Q Q[t], as graded vector spaces, where t is an inde-

terminate of degree 1. On the other hand, since the ex[X] are nonzero,

the same holds for e′x[X], the Gm-equivariant multiplicity at x, by [4,

Lemma 4.5]. It follows that the map

PGm
: opAqGm

(X)→ AGm
n−q(X), z 7→ z ∩ [X],

is injective for all q ∈ Z. In view of these results, Brion’s argument from

[6, Proof of Theorem 4.2] applies verbatim, yielding the result.

Example 4.6. Let M be a quasismooth monoid, and consider the asso-

ciated projective embedding X = Pε(M). Suppose that X has a unique
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closed G×G-orbit (i.e., X is simple). By the calculations of [26] we get

bk = bn−k. Since all the T × T -fixed points in X are attractive, then by

Theorem 4.3, X satisfies Poincaré duality for Chow cohomology. Over

the complex numbers this reflects the fact that X is rationally smooth.

Once more, we point out that the cycle map was not needed in our

arguments.

Corollary 4.7. Let X be a projective G-spherical variety. Let Pic(X)

(respectively Cl(X)) denote the Picard group (respectively Class group)

of X with rational coefficients. If X is Q-filtrable and satisfies Poincaré

duality, then Pic(X) ' Cl(X).

Proof. Because X is normal, the natural map Pic(X)→ Cl(X) is injec-

tive. But both, source and target, are finite dimensional vector spaces, so

in order to obtain the result it suffices to show that they have the same

dimension. By [10], we have Pic(X) ' opA1(X) ' Hom(A1(X),Q).

The dimension of the latter vector space is b1, which equals bn−1, by

Poincaré duality. Since An−1(X) ' Cl(X), the proof is complete.

Remark 4.8. If X is a complex variety with rational singularities, then

we have Pic(X) ' opA1(X), by [21, Prop. 12.1.4]. So, the conditions of

Corollary 4.7 could be slightly relaxed in that case.

Corollary 4.7 admits a combinatorial interpretation in the case of

simple group embeddings. Let X = Pε(M) be a projective group embed-

ding. Recall that Λ \ {0} indexes the G×G-orbits of X (see Subsection

2.7 for notation). If X is simple, then the unique closed orbit of X is

a projective homogeneous variety G/PJ × G/P−J , where J ⊂ S, PJ is

a standard parabolic subgroup, and P−J is its opposite (see e.g. [24]).

Remarkably, Λ is completely determined by J and the Dynkin diagram

of G [25, Section 7.3]. For instance, we have Λ2 ' S \ J . On the other

hand, notice that the number of G × G-stable divisors of X is |Λd−1|,
where d = dimT .

Next we give a qualitative relation between Λd−1 and J .
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Corollary 4.9. Let M be a quasismooth monoid. If X = Pε(M) is

simple, then |Λd−1| = |S \ J |.

Proof. By Theorem 2.17 and Corollary 4.7 we have Pic(X) ' Cl(X).

Since Cl(X) is freely generated by the G×G-stable divisors of X (since

Cl(G)Q = 0), we get dimQ Cl(X) = |Λd−1|. Finally, by a result of Brion

(see e.g. [23]) the Picard group of X is freely generated by those B×B-

stable irreducible divisors which do not contain G/PJ × G/P−J . But

these correspond to S \ J , by [25, Theorem 5.1].

For a complete list of all J ’s that yield quasismooth monoids M , see

[27]. Corollary 4.9 states that Poincaré duality is reflected on the poset

structure of the G×G-orbits.

Final remarks

LetX be a complete equidimensional T -variety with isolated fixed points.

If all equivariant multiplicities are nonzero (e.g., all fixed points are at-

tractive), then due to Theorem 4.1 the equivariant Poincaré duality map

is injective. Thus we get opA∗T (X) ⊆ AT∗ (X). An interesting open prob-

lem is to describe opA∗T (X) as a subgroup of AT∗ (X) in terms of T -

invariant cycles. Notice that opA∗T (X) carries an additional ring struc-

ture. A related task is to assess the effect of this “abstract” product on

the associated (geometric) cycles. Solutions to these problems will yield

a geometric interpretation of operational Chow groups, at least in the

cases of Example 4.2 and those where Poincaré duality holds (Theorem

4.3). Applications to equivariant operational K-theory ([1], [15]) are also

envisioned. Notice that all the analysis can be carried out intrinsically

using the tools developed in Section 4 and the rich structure of equiv-

ariant Chow groups (there is no need for comparing with equivariant

cohomology). This will be pursued elsewhere.
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Resumen

En este art́ıculo estudiamos el homomorfismo de dualidad de Poincaré,

el cual relaciona cohomoloǵıa de Chow equivariante y grupos de Chow

equivariante en aquellos casos donde un toro algebraico actúa sobre una

variedad singular compacta y con puntos fijos aislados. Nuestros resulta-

dos proporcionan criterios bajo los cuales el homomorfismo de dualidad
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de Poincaré es un isomorfismo. Para ello, usamos el teorema de locali-

zación en cohomoloǵıa de Chow equivariante y la noción de célula alge-

braica racional. Aplicamos nuestros resultados a las variedades esféricas

compactas y sus generalizaciones.

Palabras clave: Grupos de Chow, acciones tóricas, descomposiciones celu-

lares, dualidad de Poincaré, variedades esféricas.
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