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1. Introduction

Orbifolds are geometric objects that can be realized as quotients of Rie-

mannian manifolds by isometries. However, in doing so some finite

proper subgroup of the isometries may fix some points. Sometimes they

come about as space forms, others in more subtle situations, for instance,

as compactifications of moduli spaces. Usually one would like to con-

struct fiber bundles over orbifolds in such a manner that the total space

desingularizes geometric data arising from the orbifold. Obviously, addi-

tional conditions on both the singularities and the geometric structure on

the orbifold should bring additional benefits. In recent years, an specific

type of fibration, namely Riemannian orbifold submersions, has been

intensively studied to establish the existence of Einstein or η-Einstein

metrics on manifolds that do not admit special holonomy groups. More

precisely, in [4, 6, 7, 8], attention is given to S1-principal orbibundles

over orbifold Kähler surfaces. These bundles can be viewed as a type of

real resolution of the singularities of the corresponding orbifold. Under

certain conditions, this sort of resolution ends up being the link of the

associated Milnor fiber. On the other hand, there is an algebraic ge-

ometric procedure to resolve the singularities, namely, minimal models

associated to an algebraic variety. The affinity between the resolution

and the Milnor fiber, through the link, is well understood in complex

dimension 1, where the complex algebraic curve is studied via its 2-

dimensional affine cone. This interplay has produced one of the most

important relations in singularity theory for surfaces. The extension of

this picture to complex dimension 2 brought some remarkable results

from Orlik and Wagreich [26]. However, there is no precise description

of the relationship of these two types of resolutions at this level.

In this article, we describe a correspondence between two different

links associated to the same K3 orbifold. This duality is produced when

two elements, one in the interior and the other on the boundary of the

Kähler cone, are identified. We call this correspondence ∂-duality. We

also discuss the consequences of ∂-duality at the level of metrics. It will
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be interesting to determine whether this duality can be interpreted in

terms of the Milnor fiber and the minimal model of a K3 surface. This

possible connection is encrypted in a variation of the Dynkin diagram of

the resolution and its associated equivariant plumbing manifold. This

questions –and others– are part of joint work in progress with R. Gon-

zales.

Here is a concise outline of the paper. In Section 2 some prelimi-

naries on Riemannian orbifolds are presented, avoiding singularities of

codimension 1 (due to a significant result of Kollar [18]). We also ex-

plain the Hopf map in the context of orbifold Riemannian submersions

(a snapshot that will be recurrent on this article). In Section 3, we give

a brief introduction to projective Kähler orbifolds, we also exhibit some

canonical examples and review some important recent results of Boyer

and Galicki relating Kähler geometry and Sasakian geometry. In Sec-

tion 4, we introduce K3 surfaces and some of their properties, and discuss

S1-orbibundles over K3 surfaces. We conclude the paper in Section 5 ex-

plaining ∂-duality and discussing some consequences for the Riemannian

metrics associated to the dual pairs.

2. Orbifolds and orbifold Riemannian sub-

mersions.

The notion of an orbifold was introduced by Satake in [29] under the

name V -manifold. The symbol ‘V ’ in that context indicated the cone-

like singularity he was dealing with. In the late seventies Thurston re-

discovered the concept of V -manifolds under the name orbifold in his

study of the geometry of 3-manifolds [34].

In the sequel K denotes either C or R. Let O(m) = O(m,K) be the

orthogonal group, and let Br be the open ball of radius r in Km centered

at the origin. If G is a subgroup of O(m), then G acts by isometries on

Br; let Br/G be the associated quotient space.
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A compact metric space M is said to be an orbifold if every point

p ∈M has an open neighborhood Up which is homeomorphic to Br(p)/Gp
for some r(p) > 0 and some finite subgroup Gp ⊂ O(m); the groups Gp
are called local uniformizing groups. Set Ũp = Br(p) and let

ρp : Ũp → Ũp/Gp = Up

be the natural projection. A point q of Ũp whose isotropy subgroup

Γq ⊂ Gp is non-trivial is called a singular point of Ũp. The set of all

singular points of Ũp is denoted by Σp. Then the map

ρp : Ũp\Σp → Up\ρp(Σp)
is a covering projection. The singular set or orbifold singular locus

of M is defined to be

Σ(M) =
⋃

p∈M
{ρp(Σp)}.

Note that Σp is the union of a finite number of linear subspaces of Ũp.

In this paper the on going assumption is that these subspaces all have

codimension at least 2.

We will say that M is a smooth (or complex) orbifold if

M\Σ(M) has the structure of a smooth (or complex) manifold and the

maps ρp from Ũp\Σp to Up\ρp(Σp) are local diffeomorphisms (or local

biholomorphisms). The orbifold is a smooth (or complex) manifold

if Σ(M) is empty or, equivalently, if Gp = {e} for every p ∈M.

A Riemannian metric g on an orbifold M is a Riemannian metric

gp on every Ũp that is invariant under the action of Gp and such that

each ρp is a local isometry from Ũp\Σp to Up\ρp(Σp). Similarly, one

defines a Hermitian metric h for complex orbifolds, but this time one

requires the maps ρp to be local Hermitian isometries.

Remark 2.1. In general one talks about tensors on orbifolds, defining

them on the complement of the singular set of the orbifold X (assumed

to be of codimension at least 2): a tensor θ on an orbifold X is a
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tensor θns on X\Σ(X) such that for every chart ρp : Ũp → Ũp/Gp = Up
the pullback ρp

∗(θns) extends to a tensor on Ũp. Therefore the notions

of curvature, Kähler metrics, and Kähler-Einstein metrics on orbifolds

make sense (see [7] for details).

The following proposition is a slight variation of the partition of

unity argument (see [24] for details).

Proposition 2.2. Every orbifold admits a Riemannian metric, and ev-

ery complex orbifold admits a Hermitian metric. �

Remark 2.3. The definition of smooth (or complex) orbifold given here

avoids several technical subtleties that will not affect the subsequent

arguments; the skeptical reader is encouraged to seek out other sources

(e.g. [25]).

Recall that a submersion in the smooth setting is a (smooth) map

π : M → B of closed Riemannian manifolds (M, g) and (B, gB) with

maximal rank. It follows that for z ∈ M the tangent space TzM splits

as Vz
⊕
Hz, where

Vz = ker(π∗z) and Hz = V ⊥z

are the vertical and horizontal spaces, respectively. If, additionally,

π∗ is an isometry from Hz to Tπ(z)B, one says that π is a Riemannian

submersion.

Now we briefly explain how to extend this notion to the singular

setting. First, consider the extension of charts given previously and

consider the (usual) action of Gp on Ũ × F, where F is a closed smooth

Gp-manifold, given by

γ.(ũ, x) = (γũ, γ(ũ)x) for γ ∈ Gp. (2.1)

This action is referred to as Ũ ×
Gp
F. We use this notation in the next

definition.
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Definition 2.4. Let X and Y orbifolds and let F be a smooth manifold.

One says that π : Y → X is a fiber orbibundle with fiber F if one can

choose charts Ũx/Gx in X and charts Ũx ×Hx
F over Y such that the

following diagram

Ũx × F
ρYx−−−−→ Ũx ×Hx

F
yπ̃

yπ

Ũx
ρx−−−−→ Ux = Ũx/Gx

(2.2)

commutes. Here Hx is a subgroup of Gx, π̃ and π are projections onto

the first factor, and the projections ρYx and ρx are the associated quo-

tient maps. We say that π is a Riemannian orbifold submersion if

additionally π̃ is a Riemannian submersion.

In general the Riemannian metric on Ũx×F is not a product metric,

and the decomposition under discussion works only locally.

Remark 2.5. It must be understood that the orbifold fibration is not

a fibration in the usual sense. However one can think of this object as

a fibration rationally, that is, such that certain tensor power of the fiber

is indeed a conventional fiber.

If the fiber F is a vector space of dimension r and all the uniformiz-

ing groups act on F as linear transformations, then the orbibundle is

called a vector orbibundle of rank r. If the rank of the vector orbi-

bundle equals 1, we talk about line orbibundles. Similarly, if F is a

Lie group G, then the orbibundle is called a principal orbibundle. Of

particular interest is the case when all the uniformizing groups Gx are

subgroups of the Lie group G that act freely on the fiber, in which case

the total space ends up being a smooth manifold.

Now, let us briefly recall the Hopf fibration in order to generate

some examples of orbifold Riemannian submersions. Consider the sphere

S2n+1 in Cn+1 centered at the origin, and let z be the unit outward nor-

mal. Let J be the natural almost complex structure. Then Jz defines an
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integral distribution on S2n+1 with totally geodesic leaves. Identifying

the leaves as points, one obtains the complex projective space CPn. The

horizontal distribution can be taken to be the orthogonal complement

to Jz in the tangent bundle TS2n+1, and one can turn this into a Rie-

mannian submersion, known as the Hopf fibration h : S2n+1 → CPn

with fibers given by great circles.

We explain this fibration with some detail for n = 1. The unit sphere

Sk is given the standard metric gk of constant sectional curvature +1.

We regard S3 ⊂ C2 and S2⊂C⊕ R. The Hopf fibration H : S3 → S2 is

defined via the rule

H(z1, z2) = (2z1z̄2, |z1|2 − |z2|2).

It is not difficult to show that if two points (z1, z2) and (z3, z4) in the

sphere project to the same point, then there is an r ∈ S1 such that

(z1, z2) = r(z3, z4). Then the fibers are Hopf circles, that is, are orbits

of points of S3 under the S1 action (z, w) 7→ (eiθz, eiθw). The O’Neill

formulae [20] show that S2 is a half-radius sphere of constant sectional

curvature equal to 4. Hence H : (S3, g3)→ (S2,
1

4
g2) is a Riemannian

submersion.

Example 2.6. Let Z/nZ be the group of n roots of unity. Consider the

actions
ρ2 : Z/nZ× S2 −→ S2

(γ,w, t) 7−→ (γw, t)

and

ρ3 : Z/nZ× S3 −→ S3

(γ, z1, z2) 7−→ (γz1, z2).

These two actions (performing as isometries) turn S2/ρ2(Z/nZ) and

S3/ρ3(Z/nZ) into Riemannian orbifolds. Moreover, as the group ac-

tions are compatible with the Hopf fibration H, one obtains the following

commutative diagram:
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S3 π3−−−−→ S3/ρ3(Z/nZ)
yH

yH̃
S2 π2−−−−→ S2/ρ2(Z/nZ).

(2.3)

Here the induced Hopf map H̃ is the Riemannian orbifold submersion.

Example 2.7. In a similar fashion, one can define different actions with

different orbifold structures. For instance, consider p, q ∈ Z such that

gcd(p, q) = 1, and let n = pq. Let a, b be integers subject to ap− bq = 1.

Here we do not modify the action ρ2 of Z/nZ on S2 given in the previous

example. However, this time the action ρ3 of Z/nZ on S3 is taken to be

(γ, z1, z2) 7→ (γapz1, γ
bqz2).

It is clear that these actions are compatible with the Hopf map, and we

obtain a commutative diagram similar to Diagram (2.3). Please do not

overlook the following interesting fact: the isotropy groups are different

over different components of the singular set. For instance, if one consid-

ers the north pole (0, 1) and the south pole (0,−1) of S2, it follows that

the action of Z/nZ on H−1((0, 1)) = (z1, 0) and H−1((0,−1)) = (0, z2) is

not faithful. The isotropy groups are Z/qZ and Z/pZ. This construction

is going to be revisited from another point of view in Section 3.

To conclude this section, we state a theorem due to Molino [23]

for foliations with compact leaves. The setup of this theorem is the

prototype of Riemannian orbifold submersion that will be used in the

sequel.

Theorem 2.8. Let M be a manifold with a p-dimensional Riemannian

foliation F with compact leaves. Then the space of leaves M/F admits

the structure of an orbifold of codimension p. Moreover, the canonical

projection π : M →M/F is an orbifold Riemannian submersion. �
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3. Projective Kähler orbifolds

It is well known that a complex manifold (M,J) always admits a Her-

mitian metric h that can be written as

h = g − iω,

where g is a Riemannian metric and ω is a 2-form called the Kähler

form which is of type (1, 1) for the almost complex structure J (as follows

from the invariance of h under J). If, in addition, we have dω = 0, then

we say that the manifold is Kähler and that g is a Kähler metric.

Sometimes, by abuse of language, one even says that ω is a Kähler

metric. There are several characterizations of Kähler metrics: see [35]

for a thorough treatment on the matter. From Remark 2.1 (see also [7]),

these notions carry over easily to the level of orbifolds.

Formally, a positive line orbibundle over a compact orbifold

X is a holomorphic orbibundle that carries a Hermitian metric whose

associated curvature form Ω with respect to the Hermitian connection

is positive, or in other words, i
2πΩ is a closed Kähler form. One can

reinterpret this stiffness of style by saying that certain power L⊗ν of this

line orbibundle is a positive line bundle on X in the usual sense (ν is

just the least common multiple of the orders of the isotropy groups). Of

course, this is equivalent to saying that L⊗ν admits enough holomorphic

sections to provide an embedding of X into some complex projective

space. This colloquialism is adopted –or tolerated– due to the following

version of Kodaira’s embedding theorem as proven by Baily [1].

Theorem 3.1. Let X be a compact complex orbifold that admits a pos-

itive orbibundle. Then X is a projective algebraic variety. �

Remark 3.2. At the level of cohomology, line orbibundles on X can

be considered as rational elements and, as such, line orbibundles lie in

H2(X,Q).
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An interesting family of examples of projective Kähler orbifolds is

given by weighted projective spaces and weighted complete intersections.

Let us consider an affine variety V ' Cn. As a vector space, the

grading of V =
⊕

k V
k is equivalent to saying that V is endowed with a

C∗-action acting on the eigen-spaces (or weight-spaces) V k with weight

k. This is equivalent to a Z-grading of the coordinate ring C[V ] (in this

case a Z-grading of the ring of polynomials C[x1, . . . xn]).

The weights are taken to be strictly positive. Afterwards, one con-

siders the quotient

P(V ) = (V \{0})/C∗.
This space, usually denoted CP(w0, . . . , wn), is called the weighted pro-

jective space. Here we have n = dimC V, and the wk are the weights.

It is always assumed gcd(w0, . . . , wn) = 1.

Let xj , for j = 1, . . . , n, be coordinates on V such that xj has weight

wj . Then CP(w0, . . . , wn) is covered by charts

ρ : {xj = 1} ' Cn−1 −→ CP(w0, . . . , wn).

The wj-th roots of unity in C∗ act trivially on the xj coordinate and

hence preserve the slice Cn−1 displayed above. The map ρ is the quotient

by Z/wjZ ⊂ C∗, explicitly given by (xl) 7→ (exp(2πiwl/wj)xl).

The orbifold points of CP(w0, . . . , wn) are determined on each stra-

tum. For instance, each vertex Pi = [0, . . . , 1, . . . , 0] is of type

1

wi
(w1, . . . , ŵi, . . . , wn).

The general points along the line PiPj are orbifold points of type

1

gcd(wi, wj)
(w1, . . . , ŵi, . . . , ŵj , . . . , wn),

with similar orbifold types for higher dimensional strata. We will always

assume that di = gcd(w0, . . . , wi−1, wi+1, . . . , wn) equals 1 for all i =

0, . . . , n. This assumption will exclude the case where the singularities

have codimension 1.
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As in the smooth case, the tautological line orbibundleOP(V )
(−1)

over the weighted projective space is the orbibundle over CP(w0, . . . , wn)

whose fiber over [v] is the union of the orbit C∗.v and 0 ∈ V . The struc-

ture of vector space is given as follows: any two elements on the fiber

O
[v]

(−1) can be written ui = ti.v for ti ∈ C, i = 1, 2, so the linear struc-

ture is defined via au1+bu2 = (at1+bt2).v. However, this linear structure

is not necessarily the one arising from the vector space structure of V,

and hence in general O
[v]

(−1) ⊂ V is not a linear subspace.

By definition, weighted projective spaces are projective and hence

admit (orbifold) Kähler metrics. One can argue in a similar way as it

is done for the smooth case: since the dual OP(V )
(1) of the tautologi-

cal line orbibundle ends up being ample, the Kähler metric, associated

to it, is the curvature associated to the hermitian metric on OP(V )
(1).

The interested reader can find many details on this type of metric in

[28] for instance (where the authors even allowed the orbifolds to have

singularities of codimension 1).

A polynomial f ∈ C[z0, . . . zn] is a weighted homogeneous poly-

nomial of degree d and weight w = (w0, . . . wn) ∈ Zn+1 if for any

λ ∈ C∗ we have

f(λz) = f(λw0z0, . . . , λ
wnzn) = λdf(z0, z1, . . . , zn) = λdf(z).

The space of weighted homogeneous polynomials of degree d is a λd-

eigenspace of the induced C∗(w)-action on C[z0, . . . zn]. A weighted

hypersurface Xf is the zero locus in CP(w) of a single weighted homo-

geneous polynomial f . A weighted variety is called a weighted com-

plete intersection if the number of polynomials in the collection equals

the codimension of X. We denote by Xd ⊂ CP(w) the weighted hyper-

surface of degree d and by Xd1,...,dc ⊂ CP(w) the weighted complete

intersection of multidegree di (here c denotes the codimension of the va-

riety). We say that the weighted variety is quasi-smooth if its affine

cone is smooth outside the origin 0. Under the quasi-smoothness hy-

pothesis, it is not difficult to see that the orbifold structure on CP(w)
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induces a locally cyclic orbifold structure on Xd1,...,dc . Clearly, the re-

sulting orbifolds are of Kähler type.

For example, let x, y, z, u and w be the homogeneous coordinates

on CP(1, 1, 1, 2, 2) of weights 1, 1, 1, 2 and 2 respectively. Let f = x3 +

y3 + z3 + ux + wy and g = x4 + y4 + z4 + u2 + w2 be polynomials of

homogeneous degree 3 and 4 respectively. Then the intersection locus of

f and g defines an orbifold X
3,4
⊂ CP(1, 1, 1, 2, 2) with only two 2 cyclic

singularities, both modeled on C2/(Z/2Z).

Now we discuss one of many incarnations of the Hopf map: locally

free actions on odd spheres. First, let us consider the lowest possible

dimension, say S3 = {(z0, z1) ∈ C2 : |z0|2 + |z1|2 = 1}. This time we

reinterpret the Hopf map in terms of the vector field ξ on C2 given by

ξ = i

(
w0z0

∂

∂z0
+ w1z1

∂

∂z1

)
,

where w0, w1 are non-zero real numbers such that quotient w1/w0 is

rational. Restricted to S3 this vector field is everywhere tangent to S3

and defines a nowhere vanishing vector field on S3. Hence ξ generates a

1-dimensional foliation Fξ on the sphere, and this time the associated

action is given by the rule

(z0, z1) 7→ (e2πiw0tz0, e
2πiw1tz1).

We will assume that w0, w1 are coprime positive integers (were it not

the case, we reparametrize and use complex conjugation if necessary to

achieve this assumption). Hence, the leaves of this foliation are all circles.

According to Theorem 2.8, the space of leaves S3/Fξ is an orbifold:

the weighted projective space CP(w0, w1). We also obtain an orbifold

Riemannian submersion

π : (S3, ḡw)→ (CP(w0, w1), gw).

Here the metric ḡw on the sphere is of Sasaki type (see [9]), thus, the

metric determines a contact distribution D ⊂ TS3 that admits an inte-
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grable CR-structure (this structure is inherited from the standard com-

plex structure on C2). Furthermore, ḡw defines a Kähler orbifold metric

gw on the weighed projective space.

Of course, one can generalize this procedure to higher dimensions

in exactly the same way, and one obtains an orbifold Riemannian sub-

mersion from the sphere to the weighted projective space

π : (S2n+1, ḡw)→ (CP(w), gw), (3.1)

for w = (w0, . . . wn) positive integers satisfying the expected condition:

gcd(w0, . . . wn) = 1. In recent years, fibrations of this type have been

used to establish, due to the intimate relationship between Kähler struc-

tures on weighted projective spaces and Sasakian structures on the cor-

responding total space, existence of Einstein metrics on exotic spheres

(see [7] and the references therein). Let us see how to extend this corre-

spondence to weighted complete intersections.

The notion of links of hypersurface singularities was introduced by

Milnor in [22]. In [12], Hamm generalized this idea to complete inter-

sections: they are defined as a p-tuple of linearly independent weighted

homogeneous polynomials f = (f1, . . . , fp) ∈ (C[z0, . . . , zn])p of degrees

d1, . . . , dp respectively, and weight vector w. Consider the weighted

affine cone Cf = {(z0, . . . , zn) ∈ Cn+1| f(z0, . . . , zn) = 0}, which has

dimension n+ 1− p. Let us assume that the origin in Cn+1 is the only

singularity, and it is isolated. Then we define the link

Lf = Cf ∩ S2n+1,

which is smooth, of real dimension 2(n−p)+1, and (n−p−1)-connected

(cf. [12, 19]).

It is clear that the link admits a locally free S1-action inherited from

the weighted circle action on the sphere S2n+1. Furthermore, the Rie-

mannian submersion given in Equation (3.1) endows Lf with a Sasakian
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structure. Thus, one obtains the commutative diagram

Lf −−−−−−−→ S2n+1

yπ
y

Zf −−−−−−−→ CP(w),

(3.2)

where the horizontal arrows are Sasakian and Kählerian embeddings,

respectively, while π : Lf → Zf is an orbifold Riemannian submersion,

and the algebraic variety Zf is a weighted complete intersection in CP(w)

(see [5] for a proof of this result).

Of course, the S1-actions with the qualities described above are

the associated actions coming from the proper analytic actions of C∗

on the associated weighted affine cone Cf to Zf . It is well known that

these actions are determined by the Picard group of the variety Zf . In

this case, the action is induced by the natural action of the transition

functions of the line orbibundle on the trivializations (see [26] and [18]

for generalizations of this procedure in an algebro-geometric setting). In

that direction, Boyer and Galicki showed an interesting result (cf. [9]),

of which we present a simplified version good enough for our purposes.

Theorem 3.3. Let (Z, ω) be a polarized Kähler orbifold with rational

Kähler form ω, that is, such that [ω] ∈ H2(Z,Q). Then the associ-

ated principal S1-orbibundle π : M
[ω]
−→ Z defined by [ω] determines

a Sasakian structure on the total space M[ω]. The curvature two-form

on M[ω] is given by the pullback π∗ω of the Kähler form defining this

fibration. Moreover, if the orbifold is locally cyclic (that is, if it has an

orbifold atlas all of whose local uniformizing groups are cyclic groups)

then M is a manifold. �

4. K3 orbifolds and S1-orbibundles

In this section we briefly describe certain results in [10] on circle or-

bibundles over K3 surfaces. In particular, we discuss the associated
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Sasakian metrics on the total space of this bundles coming from pull-

backs of orbifold Ricci-flat metrics on the K3 surface. We also give an

explicit description of the Kähler cone for a K3 surface of low rank. This

calculation will come handy for the last section.

First, we present some facts about K3 surfaces (see [3] or [30] for

proofs of the results stated here). A K3 surface X is a compact Kähler

surface with only du Val singularities such that H1(X,Ox) = 0 and

whose dualizing sheaf ωX is trivial in the sense that it satisfies ωX = OX .
If X is a K3 surface and ρ : X̃ → X is a minimal resolution, then

ρ induces an isomorphism between H1(X,O) and H1(X̃,OX̃), and also

satisfies ωX̃ = ρ∗ωX = OX̃ . So X̃ turns out to be a smooth K3 surface.

Non-singular rational curves on a K3 surface X can be blown down

to yield rational double points. On the other hand, under resolution of

singularities, a rational singularity determines an exceptional locus con-

sisting of smooth rational curves that intersect transversally. In terms

of intersection theory, the arrangement of the curves can be viewed

as a configuration of a Dynkin diagram of one of the following types:

An, Dn, E6, E7, E8.

An important feature of smooth K3 surfaces is that any smooth

curve C is rational if and only if it satisfies C.C = −2 (this follows

from a direct application of the adjunction formula). Moreover, any

irreducible curve on a smooth K3 surface has self-intersection 0 (mod 2).

If X is non-singular, the dualizing sheaf becomes the line bundle

associated to the canonical divisor KX . In that case H2(X,Z) is torsion

free of rank b2(X) = 22. By means of the intersection form, H2(X,Z)

is endowed with the structure of a lattice LΛ which is isomorphic to

−E8 ⊕ −E8 ⊕ H ⊕ H ⊕ H. Here and for future reference H is the

indefinite rank 2 lattice with intersection

(
0 1

1 0

)
and −E8 is the

root-lattice associated to the Dynkin diagram E8, which is even, uni-

modular and negative definite. It follows from Poincaré duality that

in H2(X,Z) the cup-product is even, unimodular, and indefinite with

signature (b2+, b
2
−) = (3, 19).
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Consider the exact sequence

H1(X,OX) −→ H1(X,OX∗) = Pic(X)
c1−→ H2(X,Z) (4.1)

induced by the exponential sequence

0 −→ Z −→ OX −→ OX∗ −→ 0.

From Lefschetz (1, 1)-theorem and H1(X,OX) = 0, the map c1 sends

isomorphically Pic(X) onto the Picard lattice H1,1(X) ∩H2(X,Z). We

will denote by ρ the rank of the Picard lattice. From the Hodge index

theorem, the signature of Pic(X) equals (1, ρ− 1).

Example 4.1. A Kummer surface is defined as the minimal resolution

S of the 16 singularities of type A1 of Z/ι, the quotient of a complex

torus Z of dimension 2 by an involution ι on Z which is induced by

multiplication by −1 on C2. The quotient Z/ι is simply-connected and

Hk(Z/ι,C) is the ι-invariant part of Hk(Z,C). Thus, the second Betti

number b2(Z/ι) equals 3. The blow-up replaces each singular point with

a copy of CP1 with self-intersection −2. This leaves π1 and b2+ invari-

ant but adds 1 to b2− for each of the 16 singular points. Hence S is

simply-connected with signature (3, 19). Thus S is a smooth K3 surface.

Notice that Kummer surfaces are not necessarily projective, however,

they admit Kähler metrics: Siu (cf. [32]) showed that every K3 surface

is Kähler.

Example 4.2. Consider the Fermat quartic

X4 = {[z0, . . . , z3] ∈ CP3 : z4
0 + z4

1 + z4
2 + z4

3 = 0}.

From the adjuntion formula, it follows that X4 has trivial canonical bun-

dle. From Lefschetz hyperplane theorem, X4 is connected and simply-

connected, hence H1(X4,O) = 0. Thus X4 is a smooth K3 surface.

Next, we consider a principal circle bundle Lf over X4. One can always

choose a line bundle on Pic(X4) such that Lf is simply-connected and

spin. From work of Smale on the classification of simply-connected 5-

dimensional spin manifolds (cf. [31]), one concludes Lf = 21#(S2×S3).
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It follows from Theorem 3.3 that Lf admits a Sasakian metric coming

from the corresponding Riemannian submersion. Here the correspond-

ing metric on X4 is of Calabi-Yau type, that is, a Ricci-flat Kähler

metric. Sasakian metrics satisfying this property are called null Sasaki-

η-Einstein metrics, and all of them have scalar curvature equal to −4

(see [8]).

Example 4.3. Weighted K3 surfaces of codimension one and

two. A classification of quasi-smooth weighted surface complete inter-

sections of codimension 1 and 2 was given by Reid [27] and Iano-Fletcher

[13]. All these surfaces are defined in terms of weighted affine cones

that are smooth outside the origin, fact that translates into the quasi-

smoothness of the corresponding weighted surface. Thanks to the ex-

tension of the adjunction formula to weighted surfaces given in [13], it is

straightforward to detect the members of these two families that end up

being K3 surfaces with at worst rational doble points (compare Tables

1 and 2). In [10] the results of the previous example are generalized to

these two lists where we established the existence of Sasakian metrics of

constant scalar curvatures on manifolds diffeomorphic to #k(S2 × S3),

where k is the second Betti number of the link, and k ranges from 3 to 21

inclusive. The projections of these metrics, via the Riemannian submer-

sions, on the corresponding weighted K3 surfaces are orbifold metrics of

Calabi-Yau type. Actually, in [10] is given a complete classification of

null Sasaki η-Einstein metrics in 5-manifolds. Here we present a simpli-

fied version of this theorem.

Theorem 4.4. Let π : L −→ X be a S1-orbibudle with L a smooth

simply-connected 5-manifold and let X be a Calabi-Yau orbifold. Then

L admits a null Sasaki η-Einstein structure if L is diffeomorphic to

#k(S2 × S3) for 3 6 k 6 21. �

Next, we will calculate the space of Kähler classes of a particular

non-singular K3 surface. It will be useful to review the description of

the Kähler cone for a smooth K3 surface.

Recall that in a compact complex manifold (X, J) admitting a Kähler
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metric g, the Kähler form ω of g defines a de Rham cohomology class

[ω] ∈ H2(X,R), called the Kähler class of g. Since ω is also a (1, 1)-

form, [ω] lies in the intersection of H1,1(X,C) with H2(X,R). The

Kähler cone of X is the set of Kähler classes of X.

On a smooth K3 surface X, the description of the Kähler cone can

be made more precise. Let us consider the set

C = {x ∈ Pic(X)⊗ R with x.x > 0}.

Due to the signature (1, ρ−1) of the Picard lattice, the condition x.x > 0

determines two disjoint connected cones C+ and C−, and since the Kähler

classes form a convex subcone of C+∪C−, they all belong to one of them,

say C+. The Kähler cone of a K3 (cf. [3] or [30]) is the convex subcone

of C+ given by

K(X) = {y ∈ C+ : y.d > 0 for all d ∈ ∆},

where ∆ = {d ∈ Pic(X) : d.d = −2 and d effective}.
As an example consider number 2 in Table 1: X5 ⊂ CP(1, 1, 1, 2).

This weighted K3 surface has only one cyclic singularity, of type A1.

The surface X5 can be given by different polynomials, f1(x, y, z, w) =

x4+y4+z4+w2, f2(x, y, z, w) = x2y2+y2w+z4, f3(x, y, z, w) = xyx+z4,

etcetera. Nevertheless, in [2] it is shown that one can find a polynomial

f such that the orbifold Picard group Pic(X)⊗Q of any weighted K3

surface of Table 1 has rank one. We will assume this type of polynomial

as the one defining X5. (Notice that the second Betti number of the link,

and therefore the number of connected sums of S2 × S3, is only deter-

mined by the type of singularities and not by how many elements in the

orbifold Picard group one started with.) After resolving the singularity

one obtains a smooth K3 surface with quadratic form determined by

the hyperplane bundle and the exceptional divisor arising from A1. This

quadratic form is represented by the matrix D =

(
2 1

1 −2

)
.

Let us determine the set of effective classes of (−2)-curves, that is,
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the set ∆. It is given by integral solutions of the equation

2x2 + 2xy − 2y2 = −2,

which is equivalent to

(x− ρy)(x− ρ̄y) = −1,

with ρ =
−1 +

√
5

2
. Hence, one obtains

∆ = {v ∈ Z[ρ] |vv̄ = −1}.

It is not difficult to see that the solutions are generated by odd powers of

α =
(

1+
√

5
2

)
and ᾱ =

(
1−
√

5
2

)
. These two numbers satisfy the relation

α3 = 3α + ᾱ. One obtains, by induction, α2k+1 = aα + bᾱ with a, b

positive integers. Since the point (0, 1) satisfies the relation given above,

owing to ᾱ = 1 − α, the point (1,−1) is also a solution of this last

equation. It is clear then that the Kähler cone of X̃5 is given by

K(X̃5) = {(x, y) : x− 2y > 0 and x+ 3y > 0}.

5. Duality in connected sums of S2 × S3

In this section we explain certain duality between k connected sums of

S2 × S3 for k an integer ranging from 3 to 21. This correspondence

comes into sight if one prescribes the Riemannian structure on these 5-

manifolds. They will be given in terms of a map which can be thought

of as a transversely birational mapping. The aforementioned duality is a

consequence of considering the transverse space, in general a K3 orbifold,

as a smooth K3 surface with fixed exceptional lattice.

First, let us recall some notions from algebraic geometry. (See e.g.,

[17], for details).

Let X be a complex surface with a holomorphic line bundle L. What

follows can be presented in more generality, the interested reader should

consult [17].
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Let us denote by H0(X,L) the vector space of holomorphic sections

of L over X, which is known to be finite dimensional over C, of dimension

` + 1, say. Let us denote by |L| the complete linear system of L. The

base locus Bs(|L|) ⊂ X of |L| is the set of points at which all sections

of H0(X,L) vanish. One says that |L| is free or base point-free (or

simply that L is globally generated) if its base locus is empty. This is

equivalent to obtaining, for each x ∈ X, a section s ∈ H0(X,L) subject

to s(x) 6= 0.

Let us choose a basis s0, . . . , s` for H0(X,L). Then one has a natural

map

ϕ|L| : X −Bs(|L|) −→ PH0(X,L)

with rule ϕ|L|(x) = [s0(x), . . . , s`(x)]. It is costumary to ignore the base

locus and construe ϕ|L| as a rational mapping ϕ|L| : X 99K PH0(X,L).

When L is globally generated one obtains a globally defined morphism

ϕ|L| : X −→ PH0(X,L).

This map is finite, or equivalently satisfies L.C > 0 for any irreducible

curve C in X, if and only if L is ample. A line bundle is big if the map

ϕ|mL| : X 99K PH0(X,L⊗m)

is birational onto its image for some m. In this situation L is not, in

general, globally generated. A divisor D is numerically effective (or

nef for short) if it satisfies D.C > 0 for any irreducible curve C ∈ X.

The notion of amplitud (or ampleness) can also be given numerically:

a line bundle L on a smooth surface is ample if and only if satisfies

c1(L)2 > 0 and L.D > 0 for every effective divisor on the surface. This

characterization is known as Nakai’s criterion (cf. [3, Corollary 5.4]).

Now, we explain the duality or correspondence between two suppos-

edly different S1-Seifert bundles. We will always consider elements Xw

of one of the two familes of quasi-smooth K3 surfaces depicted in Tables

1 and 2.
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Let X̃ be the minimal resolution f : X̃ → Xw. By Theorem 4.5,

one has for (Xw, [ω]), as a (polarized) projective orbifold, an associated

S1-orbibundle

π1 : (b2(Xw)− 1)#(S2 × S3)→ Xw

defined by [ω]. On the other hand, recall (Section 4) that the res-

olution X̃ is a smooth projective K3 surface, and then, as a conse-

quence of Kodaira’s embedding theorem, admits an integral Kähler class

[ωX̃ ] ∈ H2(X̃,Z) associated to certain ample line bundle A on X̃ sub-

ject to c1(A) = [ωX̃ ]. Again, we appeal to Theorem 4.5 to conclude

the existence of a 5-manifold diffeomorphic, this time, to 21#(S2 × S3).

As we mentioned previously, it is important to bear in mind that both

(b2(Xw)− 1)#(S2 × S3) and 21#(S2 × S3) have scalar curvature −4.

Now let us denote by L1 the pullback, via f , of L, where c1(L) = [ω]

with L a positive orbibundle (or ample in the orbifold sense). Notice

that L1 is a big and nef line bundle (almost by definition) that cannot

be ample, otherwise the null locus Null(L1) of L1, that is, the set of

divisors D such that L1.D = 0, ends up consisting of the exceptional

divisors, contradicting Nakai’s criterion for ampleness.

We would rather reinterpret the previous paragraph at the level of

Kähler classes. Notice that the pullback f∗[ω] of [ω] lies on the boundary

∂K(X̃) of the Kähler cone of X̃. From the discussion given above, it

follows that the orbifold Riemannian submersion

π1 : (b2(Xw)− 1)#(S2 × S3)→ (Xw, [ω])

induces a natural map

π̃1 : (b2(Xw)− 1)#(S2 × S3)→ (X̃\∆, f∗[ω]),

where ∆ denotes de exceptional divisor coming from the resolution of

the orbifold. Of course, at the level of the total spaces one obtains the

map

f̂ : 21#(S2 × S3) −→ (b2(Xw)− 1)#(S2 × S3).

Pro Mathematica, 28, 56 (2014), 81-117 101



Jaime Cuadros Valle

As an example, consider number 2 in Table 1: X5 ⊂ P(1, 1, 1, 2)

with singularity A1 and Picard number 1. In [10], it is proven that the

corresponding S1-Seifert bundle is diffeomorphic to 20#(S2 × S3).

In the previous section we computed the Kähler cone of the resolu-

tion X̃5 of X5, which is given by the set

K(X̃5) = {(x, y) : x− 2y > 0 and x+ 3y > 0}.

Observe that a big and nef class that is not ample lies on the boundary of

the Kähler cone, that is, in one of the lines x−2y = 0 or x+3y = 0. From

the previous analysis, it is known that at least there is one element that

corresponds to an ample class that is integral, in the orbifold sense, inX5,

and the duality between 21#(S2×S3) and 20#(S2×S3) shows up when

an integral class insideK(X̃5) is related to a class in the boundary, that is,

a class lying on either the line x−2y = 0 or the line x+3y = 0. Actually,

it is always possible to find an element that provides this duality. We

explain this in the next paragraph.

Even though it may no be true that a big and nef line bundle

L comes from the pullback of a Hodge orbifold class, in [33], Tosatti

showed that this is always the case for projective smooth K3 surfaces:

it is enough to apply the basepoint free theorem (see [14, Theorem 6.1])

together with the fact that one is dealing with a Calabi-Yau manifold to

conclude that mL is globally generated for m sufficiently large. Thus,

any irreducible D ∈Null(L) has negative self-intersection (this follows

from the Hodge index theorem, since we obtain (mL)2 > 0). As we men-

tioned before, in a smooth K3 surface, self-intersections are even, and

since D2 > −2 (see [3, Chapter VIII, Proposition 3.6]) then D2 = −2.

By the adjuntion formula one concludes that D is a smooth rational

curve. Then the map ϕ|mL| contracts D to a rational double point while

X contracts to a projective K3 orbifold with ample line bundle L1 (in

the orbifold sense) and one can assume that its pullback is mL. So,

in general, pulling-back an ample class is not enough, as also “sliding”

along the boundary may be necessary. The m under discussion is noth-

ing more than the least common denominator of the orders of the cyclic
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K(X̃5)��
��
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∂K(X̃5)
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rω
X̃

6
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X̃

rmf∗ω
X̃

Figure 1: The Kähler cone of X̃5: even if f∗ω does not provide the ∂-duality,

a multiple mf∗ω
X̃

will achieve this goal.

singularities one encounters in the orbifold, so there is a globally defined

line bundle on the orbifold. In the example given above m = 2 will suf-

fice. For X24,30 ⊂ CP(8, 9, 10, 12, 15), number 84 in Table 2, it is enough

to take m = 180.

Since a link is the boundary of a Milnor fiber, we will refer to this

duality as ∂-duality. Let us put the discussion given above in theorem

form.

Theorem 5.1. There is ∂-duality, in the sense explained above, between

k connected sums of S2 × S3 for any k ∈ {3, . . . 20} and 21#(S2 × S3).

The following diagram summarizes the relations among these maps

(b2(Xw)− 1)#(S2 × S3)

π̃1

��

π1

uu

21#(S2 × S3)

π0

��

f̂
oo

(Xw, [ω]) (X̃\∆, f∗[ω])oo (X̃, [ωX̃ ]).oo

f

kk
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Thus, the duality occurs when one considers simultaneously the integral

class [ωX̃ ] in the Kähler cone K(X̃) and a class lying on the closure of

the Kähler cone that is big but not ample, i.e., a class [ω∂ ] ∈ K(X̃)\K(X̃)

that we must take equal to f∗[ω]. �

A natural question will be whether one can extend this ∂-duality

among k connected sums of S2 × S3 with 3 6 k 6 20. We con-

sider a projective smooth K3 surface X with enough smooth rational

curves that intersect each other transversally (this type of K3 surface

always can be found, e.g., the Fermat quartic). Let us choose a subset

C = {C1, . . . , Cs, . . . , Cl} of rational curves with this sort of intersection.

We will perform two blow-downs, the first one contracting all the curves

of C, and the other one contracting only l− s curves from C. These con-

tractions manufacture two different K3 orbifolds Xw1 and Xw2 , which

are projective and hence admit ample line orbibundles L1 and L2, re-

spectively. With abuse of notation, we will denote also by L1 and L2 the

corresponding pullbacks of these two line orbibundles. These two line

bundles end up being big and nef on X, so both are globally generated

with corresponding maps

ϕ|L1|
: X → PH0(X,L1) and ϕ|L2|

: X → PH0(X,L2).

If one pursues ∂-duality on the corresponding links, the null spaces of

these line bundles must satisfy Null(L1) = ∆ = ∪li=1Di and Null(L2) =

∆\∪si=1 Di. Here each Di denotes disjoint components of the base locus

∆.

This is not necessarily the case in general. Take for instance X7 ⊂
P(1, 1, 2, 3), number 5 in Table 1, with singularities A1, A2. Here the

minimal resolution X has null space Null(L1) = D1∪D2, where D1 is just

the rational curve created when the singularity of type A1 is resolved and

D2 consists of the union of two smooth rational curves E1 and E2 with

E1.E2 = 1, created when the singularity of type A2 is resolved. Then the

existence of duality between the link 18#(S2×S3) associated to L1 and

some other connected sum of S2 × S3 (with k 6= 0) forces the existence
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of another big and nef line bundle L2 satisfying Null(L2) = D1 (in this

case our choice for the ∂-dual is 20#(S2 × S3), the other possibility

is taking Null(L2) = D2 with ∂-dual 19#(S2 × S3), but the argument

works identically). Thus, condition L2.D2 > 0 is necessary, otherwise

the map ϕ|L2|
: X → PH0(X,L2) will contract D2 to a point and hence

D2 would belong to the null locus of L2.

In general, in order to have duality one needs to verify the condition

L2. ∪si=1 Di > 0. (5.1)

With the notation from the last two paragraphs, we have the fol-

lowing result.

Theorem 5.2. Let Xw1 and Xw2 two K3 orbifolds from either Table 1

or 2. Let K1 = (21 − l)#(S2 × S3) and K2 = (21 − l + s)#(S2 × S3)

be the corresponding links determined by the line orbibundles L1 and L2

as explained in the previous paragraphs. Then K1 is ∂-dual to K2 if and

only if the condition stated on (5.1) is satisfied. �

Let us interpret this result at the level of metrics. When one con-

siders two classes, first an integral class inside the Kähler cone and then

another big and nef class, both in the same smooth K3 surface, the first

one has a corresponding Ricci-flat metric on the K3 surface (the cele-

brated Yau’s theorem), while the second one gives rise to a Ricci-flat

orbifold metric on the orbifold, obtained from contracting the rational

curves belonging to the null space of this big and nef class (see [15]).

Moreover, in [16] (see also [33] for a more general statement) it is shown

that this metric is smooth Ricci-flat on X\E, with E the correspond-

ing set of exceptional divisors, object that can be extended to a closed

positive current on the whole K3 surface. The translation of this fact

to the corresponding five dimensional Seifert bundle is the existence of

one smooth null Sasaki η-Einstein metric on 21#(S2 × S3) (with scalar

curvature equal to −4) and a pseudometric on 21#(S2 × S3) that de-

generates into l copies of S2 × S3 (of course, here l corresponds in a

natural way to the number of linearly independent rational curves that
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determine the null space of the big and nef class). The last metric turns

into a smooth null Sasaki η-Einstein metric on (21− l)#(S2 × S3) also

with constant scalar curvature equal −4.

Remark 5.3. From the previous paragraph, it would be tempting to

conclude that all manifolds diffeomorphic to 21#(S2×S3) admit a met-

ric with scalar curvature −4 collapsing on l connected sums of S2 × S3

for every 0 6 l 6 18; however this is not the case. As indicated before,

the ∂-duality is determined by the map f̂ which exists only in the trans-

versely birational sense, that is, only on the space of leaves determined

by the action of S1. Indeed, one cannot use this correspondence to state

that the two null Sasakian metrics in display (both with constant scalar

curvature −4) can be considered to exist in the same ambient space,

that is, in the same differential structure. Actually, the open neighbor-

hood Vf−1(x) of f−1(x) is not necessarily diffeomorphic to the open set

Ũx ⊂ C2 coming from the local orbifold chart Ũx/Γx (with uniformizing

group Γx). In fact, Vf−1(x) is diffeomorphic to the corresponding Milnor

fiber (see [11, page 148] ). Whether there exists a natural differential

geometric minimal model that contains these two seemingly unrelated

Riemannian structures and, therefore, a common place where one can

consider both metrics as defining a unique metric on this model amounts

to establish a more precise partnership between the minimal resolution

of a K3 surface and the link of its affine cone. The existence of a mini-

mal model for S1-Seifert bundles and its possible applications is part of

a joint work in progress with R. Gonzales.
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Xw singularities b2(Xw)

No.1 X4 ⊂ P(1, 1, 1, 1) 22

No.2 X5 ⊂ P(1, 1, 1, 2) A1 21

No.3 X6 ⊂ P(1, 1, 1, 3) 22

No.4 X6 ⊂ P(1, 1, 2, 2) 3×A1 19

No.5 X7 ⊂ P(1, 1, 2, 3) A1, A2 19

No.6 X8 ⊂ P(1, 1, 2, 4) 2×A1 20

No.7 X8 ⊂ P(1, 2, 2, 3) 4×A1, A2 16

No.8 X9 ⊂ P(1, 1, 3, 4) A3 19

No.9 X9 ⊂ P(1, 2, 3, 3) A1, 3×A2 15

No.10 X10 ⊂ P(1, 1, 3, 5) A2 20

No.11 X10 ⊂ P(1, 2, 2, 5) 5×A1 17

No.12 X10 ⊂ P(1, 2, 3, 4) 2×A1, A2, A3 15

No.13 X11 ⊂ P(1, 2, 3, 5) A1, A2, A5 15

No.14 X12 ⊂ P(1, 1, 4, 6) A1 21

No.15 X12 ⊂ P(1, 2, 3, 6) 2×A1, 2×A2 14

No.16 X12 ⊂ P(1, 2, 4, 5) 3×A1, A4 15

No.17 X12 ⊂ P(1, 3, 4, 4) 3×A3 13

No.18 X12 ⊂ P(2, 2, 3, 5) 6×A1, A4 12

No.19 X12 ⊂ P(2, 3, 3, 4) 3×A1, 4×A2 11

No.20 X13 ⊂ P(1, 3, 4, 5) A2, A3, A4 13

No.21 X14 ⊂ P(1, 2, 4, 7) 3×A1, A3 16

No.22 X14 ⊂ P(2, 2, 3, 7) 7×A1, A2 13

No.23 X14 ⊂ P(2, 3, 4, 5) 3×A1, A2, A3, A4 10

No.24 X15 ⊂ P(1, 2, 5, 7) A1, A6 15

No.25 X15 ⊂ P(1, 3, 4, 7) A3, A6 13

No.26 X15 ⊂ P(1, 3, 5, 6) 2×A2, A5 13

No.27 X15 ⊂ P(2, 3, 5, 5) A1, 3×A4 9

No.28 X15 ⊂ P(3, 3, 4, 5) 5×A2, A3 9

No.29 X16 ⊂ P(1, 2, 5, 8) 2×A1, A4 16

Table 1. Reid’s List of 95 Codimension 1 Weighted K3 Surfaces.
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Xw singularities b2(Xw)

No.30 X16 ⊂ P(1, 3, 4, 8) A2, 2×A3 14

No.31 X16 ⊂ P(1, 4, 5, 6) A1, A4, A5 12

No.32 X16 ⊂ P(2, 3, 4, 7) 4×A1, A2, A6 10

No.33 X17 ⊂ P(2, 3, 5, 7) A1, A2, A4, A6 9

No.34 X18 ⊂ P(1, 2, 6, 9) 3×A1, A2 15

No.35 X18 ⊂ P(1, 3, 5, 9) 2×A2, A4 14

No.36 X18 ⊂ P(1, 4, 6, 7) A3, A1, A6 12

No.37 X18 ⊂ P(2, 3, 4, 9) 4×A1, 2×A2, A3 11

No.38 X18 ⊂ P(2, 3, 5, 8) 2×A1, A4, A7 9

No.39 X18 ⊂ P(3, 4, 5, 6) 3×A2, A3, A1, A4 8

No.40 X19 ⊂ P(3, 4, 5, 7) A2, A3, A4, A6 7

No.41 X20 ⊂ P(1, 4, 5, 10) A1, 2×A4 13

No.42 X20 ⊂ P(2, 3, 5, 10) 2×A1, A2, 2×A4 10

No.43 X20 ⊂ P(2, 4, 5, 9) 5×A1, A8 9

No.44 X20 ⊂ P(2, 5, 6, 7) 3×A1, A5, A6 8

No.45 X20 ⊂ P(3, 4, 5, 8) A2, 2×A3, A7 7

No.46 X21 ⊂ P(1, 3, 7, 10) A9 13

No.47 X21 ⊂ P(1, 5, 7, 8) A4, A7 11

No.48 X21 ⊂ P(2, 3, 7, 9) A1, 2×A2, A8 9

No.49 X21 ⊂ P(3, 5, 6, 7) 3×A2, A4, A5 7

No.50 X22 ⊂ P(1, 3, 7, 11) A2, A6 14

No.51 X22 ⊂ P(1, 4, 6, 11) A3, A1, A5 13

No.52 X22 ⊂ P(2, 4, 5, 11) 5×A1, A3, A4 10

No.53 X24 ⊂ P(1, 3, 8, 12) 2×A2, A3 16

No.54 X24 ⊂ P(1, 6, 8, 9) A1, A2, A8 11

No.55 X24 ⊂ P(2, 3, 7, 12) 2×A1, 2×A2, A6 10

No.56 X24 ⊂ P(2, 3, 8, 11) 3×A1, A10 9

No.57 X24 ⊂ P(3, 4, 5, 12) 2×A2, 2×A3, A4 8

No.58 X24 ⊂ P(3, 4, 7, 10) A1, A6, A9 6

Table 1. Reid’s List of 95 Codimension 1 Weighted K3 Surfaces.
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Xw singularities b2(Xw)

No.59 X24 ⊂ P(3, 6, 7, 8) 4×A2, A1, A6 7

No.60 X24 ⊂ P(4, 5, 6, 9) 2×A1, A4, A2, A8 6

No.61 X25 ⊂ P(4, 5, 7, 9) A3, A6, A8 5

No.62 X26 ⊂ P(1, 5, 7, 13) A4, A6 12

No.63 X26 ⊂ P(2, 3, 8, 13) 3×A1, A2, A7 10

No.64 X26 ⊂ P(2, 5, 6, 13) 4×A1, A4, A5 9

No.65 X27 ⊂ P(2, 5, 9, 11) A1, A4, A10 7

No.66 X27 ⊂ P(5, 6, 7, 8) A4, A5, A2, A6 5

No.67 X28 ⊂ P(1, 4, 9, 14) A1, A8 13

No.68 X28 ⊂ P(3, 4, 7, 14) A2, A1, 2×A6 7

No.69 X28 ⊂ P(4, 6, 7, 11) 2×A1, A5, A10 5

No.70 X30 ⊂ P(1, 4, 10, 15) A3, A4, A1 14

No.71 X30 ⊂ P(1, 6, 8, 15) A1, A2, A7 12

No.72 X30 ⊂ P(2, 3, 10, 15) 3×A1, 2×A2, A4 6

No.73 X30 ⊂ P(2, 6, 7, 15) 5×A1, A2, A6 9

No.74 X30 ⊂ P(3, 4, 10, 13) A3, A1, A12 5

No.75 X30 ⊂ P(4, 5, 6, 15) A3, 2×A1, 2×A4, A2 7

No.76 X30 ⊂ P(5, 6, 8, 11) A1, A7, A10 4

No.77 X32 ⊂ P(2, 5, 9, 16) 2×A1, A4, A8 8

No.78 X32 ⊂ P(4, 5, 7, 16) 2×A3, A4, A6 6

No.79 X33 ⊂ P(3, 5, 11, 14) A4, A13 5

No.80 X34 ⊂ P(3, 4, 10, 17) A2, A3, A1, A9 7

No.81 X34 ⊂ P(4, 6, 7, 17) A3, 2×A1, A5, A6 6

No.82 X36 ⊂ P(1, 5, 12, 18) A4, A5 13

No.83 X36 ⊂ P(3, 4, 11, 18) 2×A2, A1, A10 7

No.84 X36 ⊂ P(7, 8, 9, 12) A6, A7, A3, A2 4

No.85 X38 ⊂ P(3, 5, 11, 19) A2, A4, A10 6

No.86 X38 ⊂ P(5, 6, 8, 19) A4, A5, A1, A7 5

No.87 X40 ⊂ P(5, 7, 8, 20) 2×A4, A6, A3 5

Table 1. Reid’s List of 95 Codimension 1 Weighted K3 Surfaces.
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Xw singularities b2(Xw)

No.86 X38 ⊂ P(5, 6, 8, 19) A4, A5, A1, A7 5

No.87 X40 ⊂ P(5, 7, 8, 20) 2×A4, A6, A3 5

No.88 X42 ⊂ P(1, 6, 14, 21) A1, A2, A6 13

No.89 X42 ⊂ P(2, 5, 14, 21) 3×A1, A4, A6 9

No.90 X42 ⊂ P(3, 4, 14, 21) 2×A2, A3, A1, A6 8

No.91 X44 ⊂ P(4, 5, 13, 22) A1, A4, A12 5

No.92 X48 ⊂ P(3, 5, 16, 24) 2×A2, A4, A7 7

No.93 X50 ⊂ P(7, 8, 10, 25) A6, A7, A1, A4 4

No.94 X54 ⊂ P(4, 5, 18, 27) A3, A1, A4, A8 6

No.95 X66 ⊂ P(5, 6, 22, 33) A4, A1, A2, A10 5

Table 1. Reid’s List of 95 Codimension 1 Weighted K3 Surfaces.

Xw singularities b2(Xw)

No.1 X2,3 ⊂ P(1, 1, 1, 1, 1) 22

No.2 X3,3 ⊂ P(1, 1, 1, 1, 2) A1 21

No.3 X3,4 ⊂ P(1, 1, 1, 2, 2) 2×A1 20

No.4 X4,4 ⊂ P(1, 1, 1, 2, 3) A2 20

No.5 X4,4 ⊂ P(1, 1, 2, 2, 2) 4×A1 18

No.6 X4,5 ⊂ P(1, 1, 2, 2, 3) 2×A1, A2 18

No.7 X4,6 ⊂ P(1, 1, 2, 3, 3) 2×A2 18

No.8 X4,6 ⊂ P(1, 2, 2, 2, 3) 6×A1 16

No.9 X5,6 ⊂ P(1, 1, 2, 3, 4) A1, A3 18

No.10 X5,6 ⊂ P(1, 2, 2, 3, 3) 3×A1, 2×A2 15

No.11 X6,6 ⊂ P(1, 1, 2, 3, 5) A4 18

No.12 X6,6 ⊂ P(1, 2, 2, 3, 4) 4×A1, A3 15

No.13 X6,6 ⊂ P(1, 2, 3, 3, 3) 4×A2 14

No.14 X6,6 ⊂ P(2, 2, 2, 3, 3) 9×A1 13

Table 2. Fletcher’s List of 84 Codimension 2 Weighted K3

surfaces.
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Xw singularities b2(Xw)

No.15 X6,7 ⊂ P(1, 2, 2, 3, 5) 3×A1, A4 15

No.16 X6,7 ⊂ P(1, 2, 3, 3, 4) A1, 2×A2, A3 14

No.17 X6,8 ⊂ P(1, 1, 3, 4, 5) A4 18

No.18 X6,8 ⊂ P(1, 2, 2, 3, 5) 2×A2, A4 14

No.19 X6,8 ⊂ P(1, 2, 3, 4, 4) 2×A1, 2×A3 14

No.20 X6,8 ⊂ P(2, 2, 3, 3, 4) 6×A1, 2×A2 12

No.21 X6,9 ⊂ P(1, 2, 3, 4, 5) A1, A3, A4 14

No.22 X7,8 ⊂ P(1, 2, 3, 4, 5) 2×A1, A2, A4 14

No.23 X6,10 ⊂ P(1, 2, 3, 5, 5) 2×A4 14

No.24 X6,10 ⊂ P(2, 2, 3, 4, 5) 7×A1, A3 12

No.25 X8,9 ⊂ P(1, 2, 3, 4, 7) 2×A1, A6 14

No.26 X8,9 ⊂ P(1, 3, 4, 4, 5) 2×A3, A4 13

No.27 X8,9 ⊂ P(2, 3, 3, 4, 5) 2×A1, 3×A2, A4 10

No.28 X8,10 ⊂ P(1, 2, 3, 5, 7) A2, A6 14

No.29 X8,10 ⊂ P(1, 2, 4, 5, 6) 3×A1, A5 14

No.30 X8,10 ⊂ P(1, 3, 4, 5, 5) A2, 2×A4 12

No.31 X8,10 ⊂ P(2, 3, 4, 4, 5) 4×A1, A2, 2×A3 10

No.32 X9,10 ⊂ P(1, 2, 3, 5, 8) A1, A7 14

No.33 X9,10 ⊂ P(1, 3, 4, 5, 6) A2, A3, A5 12

No.34 X9,10 ⊂ P(2, 2, 3, 5, 7) 5×A1, A6 11

No.35 X9,10 ⊂ P(2, 3, 4, 5, 5) 2×A1, A3, 2×A4 9

No.36 X8,12 ⊂ P(1, 3, 4, 5, 7) A4, A6 12

No.37 X8,12 ⊂ P(2, 3, 4, 5, 6) 4×A1, 2×A2, A4 10

No.38 X9,12 ⊂ P(2, 3, 4, 5, 7) 3×A1, A4, A6 9

No.39 X10,11 ⊂ P(2, 3, 4, 5, 7) 2×A1, A2, A3, A6 9

No.40 X10,12 ⊂ P(1, 3, 4, 5, 9) A2, A8 12

No.41 X10,12 ⊂ P(1, 3, 5, 6, 7) 2×A2, A6 12

Table 2. Fletcher’s List of 84 Codimension 2 Weighted K3

surfaces.
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Xw singularities b2(Xw)

No.42 X10,12 ⊂ P(1, 2, 5, 6, 6) A1, 2×A5 11

No.43 X10,12 ⊂ P(2, 3, 4, 5, 8) 3×A1, A3, A7 9

No.44 X10,12 ⊂ P(2, 3, 5, 5, 7) 2×A4, A6 8

No.45 X10,12 ⊂ P(2, 4, 5, 5, 6) 5×A1, 2×A4 9

No.46 X10,12 ⊂ P(3, 3, 4, 5, 7) 4×A2, A6 8

No.47 X10,12 ⊂ P(3, 4, 4, 5, 6) 2×A2, 3×A3, A1 8

No.48 X11,12 ⊂ P(1, 4, 5, 6, 7) A1, A4, A6 11

No.49 X10,14 ⊂ P(1, 2, 5, 7, 9) A8 14

No.50 X10,14 ⊂ P(2, 3, 5, 7, 7) A2, 2×A6 8

No.51 X10,14 ⊂ P(2, 4, 5, 6, 7) 5×A1, A3, A5 9

No.52 X10,15 ⊂ P(2, 3, 5, 7, 8) A1, A6, A7 8

No.53 X12,13 ⊂ P(3, 4, 5, 6, 7) 2×A2, A1, A4, A6 7

No.54 X12,14 ⊂ P(1, 3, 4, 7, 11) A10 12

No.55 X12,14 ⊂ P(1, 4, 6, 7, 8) A1, A3, A7 11

No.56 X12,14 ⊂ P(2, 3, 4, 7, 10) 4×A1, A9 9

No.57 X12,14 ⊂ P(2, 3, 5, 7, 9) A2, A4, A8 8

No.58 X12,14 ⊂ P(3, 4, 5, 7, 7) A4, 2×A6 6

No.59 X12,14 ⊂ P(4, 4, 5, 6, 7) 3×A3, 2×A1, A4 7

No.60 X12,15 ⊂ P(1, 4, 5, 6, 11) A1, A10 11

No.61 X12,15 ⊂ P(3, 4, 5, 6, 9) 3×A2, A1, A8 7

No.62 X12,15 ⊂ P(3, 4, 5, 7, 8) A3, A6, A7 6

No.63 X12,16 ⊂ P(2, 5, 6, 7, 8) 4×A1, A4, A6 8

No.64 X14,15 ⊂ P(2, 3, 5, 7, 12) A1, A2, A11 8

No.65 X14,15 ⊂ P(2, 5, 6, 7, 9) 2×A1, A5, A8 7

No.66 X14,15 ⊂ P(3, 4, 5, 7, 10) A3, A4, A9 6

No.67 X14,15 ⊂ P(3, 5, 6, 7, 8) 2×A2, A5, A7 6

No.68 X14,16 ⊂ P(1, 5, 7, 8, 9) A4, A8 10

Table 2. Fletcher’s List of 84 Codimension 2 Weighted K3

surfaces.
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Xw singularities b2(Xw)

No.69 X14,16 ⊂ P(3, 4, 5, 7, 11) A2, A4, A10 6

No.70 X14,16 ⊂ P(4, 5, 6, 7, 8) A1, 2×A3, A4, A5 6

No.71 X15,16 ⊂ P(2, 3, 5, 8, 13) 2×A1, A12 8

No.72 X15,16 ⊂ P(3, 4, 5, 8, 11) 2×A3, A10 6

No.73 X14,18 ⊂ P(2, 3, 7, 9, 11) 2×A2, A10 8

No.74 X14,18 ⊂ P(2, 6, 7, 8, 9) 5×A1, A2, A7 8

No.75 X12,20 ⊂ P(4, 5, 6, 7, 10) 2×A1, 2×A4, A6 6

No.76 X16,18 ⊂ P(1, 6, 8, 9, 10) A1, A2, A9 10

No.77 X16,18 ⊂ P(4, 6, 7, 8, 9) 2×A1, 2×A3, A2, A6 6

No.78 X18,20 ⊂ P(4, 5, 6, 9, 14) 2×A1, A2, A13 5

No.79 X18,20 ⊂ P(4, 5, 7, 9, 13) A6, A12 4

No.80 X18,20 ⊂ P(5, 6, 7, 9, 11) A2, A6, A10 4

No.81 X18,22 ⊂ P(2, 5, 9, 11, 13) A4, A12 6

No.82 X20,21 ⊂ P(3, 4, 7, 10, 17) A1, A16 5

No.83 X18,30 ⊂ P(6, 8, 9, 10, 15) 2×A1, 2×A2, A7, A4 5

No.84 X24,30 ⊂ P(8, 9, 10, 12, 15) A1, A3, A8, A2, A4 6

Table 2. Fletcher’s List of 84 Codimension 2 Weighted K3

surfaces.
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Resumen

Describimos una correspondencia entre dos enlaces asociados a un mismo

espacio K3 que soporta a lo más, singularidades ćıclicas de tipo orbifold.

Esta dualidad se hace evidente cuando dos elementos, uno en el inte-

rior y el otro en la frontera del cono de Kähler, son identificados. De-

nominamos a esta correspondencia ∂-dualidad. También discutimos las

consecuencias de ∂-dualidad al nivel de estructuras riemaniannas.

Palabras Clave: Geometŕıa diferencial, geometŕıa algebraica, espacio de

órbitas, superficies K3, submersiones riemannianas.
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jcuadros@pucp.edu.pe

Pro Mathematica, 28, 56 (2014), 81-117 117


