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Abstract

We characterize invariant measures for quadratic polynomial Julia sets
with no interior. We prove that besides the harmonic measure —the only
one that is even and invariant—, all others are generated by a suitable
odd measure.
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Measures in quadratic Julia sets

1. Introduction

For a given a degree d > 2 polynomial, the filled Julia set is the set of
points that have bounded orbit under iteration. We denote this set by
K. Tt is well known that this set is a compact invariant subset of C. For
this and several other facts related to iteration of rational functions we
refer the reader to [3].

In this paper we are concerned with the algebra of continuous func-
tions defined on K. For them, our starting point is the following classical
setting.

Let C(K) be the algebra of continuous functions defined on a com-
pact set K C C with values in C. We denote by Pol(K) the linear space
of polynomial restrictions to K.

Theorem 1.1 (Lavrientiev, Mergelyan [1],[4]). Let K be a compact set of
the plane whose interior is empty. If the complement of K is connected,
then Pol(K) is dense in C(K) in the uniform topology. O

Along this work, P(z) = 22 + c is a degree two polynomial whose
filled Julia set K has no interior. Therefore K is compact with empty
interior and connected complement, and Lavrientiev’s theorem applies.

2. The harmonic decomposition

Let P(z) = 22 + ¢ be a degree two polynomial whose filled Julia set K
has no interior. As this set is symmetric by the involution z — —z, it is
safe to define even and odd objects using a standard procedure.

Given f € C(K), continuous, its even and odd parts are defined
by the averages

[+ f(=2)

E()) = TR
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respectively.

Lemma 2.1. The odd and even parts of f are continuous functions with
norm not bigger than ||f||. If f is a (restriction of a) polynomial, so are

E(f) and O(f).

Proof. Both claims are elementary. O

A continuous function f is even if £(f) = f, and odd if O(f) = f.
Alternatively, as f = O(f) + £(f) holds, we have that f to be even is
equivalent to O(f) = 0 (that is to f(z) = f(—=z)), while f to be odd is
equivalent to E(f) =0 (or to f(z) = —f(—2)).

Also note that £,0 : C(K) — C(K), which recover in turn the
symmetric and antisymmetric part, are norm 1 operators. Both £ and
O are projections.

Lemma 2.2 (Reduction lemma). A continuous function f € C(K) is
even if and only if there exists g € C(K) such that f(z) = g(P(z)). In
particular, we have E(f o P) = fo P for all f € C(K). On the other
side, if g(P(z)) is continuous, then g(z) is continuous. We always have
If]l = llgll. Anyway, f is a polynomial if and only if g is a polynomial.

Proof. If f is even, as K is closed and P : K — K is surjective and
proper, we have that f factors through P. Conversely, g(P(z)) is always
even and continuous.

It is clear that f peaks at z if and only if g peaks at P(zp) and
that f is continuous at zg if and only if g is continuous at P(z).

That g is a polynomial (when f is) was already indicated in Lemma
2.1. O

This lemma gives rise to a unique even—odd decomposition
f(z) = fo(2) + 9o(P(2)),
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where fy is odd and gg continuous. If we again split g¢ into its odd and
even parts as go(z) = f1(2) + g1(P(2)), we get

f(z) = fol2) + f1(P(2)) + g1 (P(2)).

We can continue this process indefinitely.

Proposition 2.3. Fizn > 0. For every f € C(K) there are unique odd
continuous functions fo, f1,... fn and g, € C(K) subject to

F(2) = fo(2) + fr(P(2)) + - + fu(P"(2)) + gn (P F(2)).
Here we have || fil| < [f]| and [|gal|| < [[f]]
Proof. Apply induction to the odd—even decomposition of f. O
Corollary 2.4. In the decomposition above we have
[fo(2) + [1(P(2)) + -+ fu(P7"(2))] < 2][ ]l
Proof. Indeed, the partial sum is bounded by | f(2)|+|gn.(P°"*1(2))|. O

The decomposition displayed in Proposition 2.3 is much simpler for
polynomials as the process eventually reaches a deadlock.

Proposition 2.5. Given a polynomial F' € Pol(K), there exist a con-
stant H(F) subject to |H(F)| < [|F|[, and a finite number of odd poly-
nomials, say Fy, F1, ... F,, such that

F(z) = H(F) + Fo(z) + F1(P(2)) + -+ + Fu(P™"(2))-
Those elements are uniquely determined.
Proof. A trivial induction in the degree of F'. O
The assignment H : Pol(K) — C clearly is linear and annihilates all

odd polynomials, hence the symmetry formula H(E(f)) = H(f). Also,
for F € Pol(K) we have H(F o P) = H(F) and |H(F)| < ||F||.
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Theorem 2.6. Suppose the filled Julia set K = K(P) has no interior.
Then there exists a unique norm 1 even invariant measure supported on
the Julia set that agrees with H on polynomials. In other words, for all
f € C(K) the measure H satisfies

/f YdH (z /f H(z) (invariance),
= [ 1@dHE = [ dHE) = HEW)  (ymmetry)

Proof. In fact, when K has no interior, polynomial restrictions to K
are dense in C'(K). As H : Pol(K) — C is continuous, it can be ex-
tended uniquely to all of C(K). Since all other properties are satisfied
for polynomials, they are satisfied for continuous functions as well. [

As Lyubich proved (cf. [2]), the harmonic measure already satisfies
the properties stated in the theorem, so H is actually the harmonic
measure of K. This corollary is actually true for all polynomial Julia
sets. Functions for which the harmonic integral vanish (i.e, f such that
H(f) =0) are harmonic free functions. For simplicity, we will write
H; for H(f).

Next we retrace our steps with these results in mind. First we apply
the odd—even decomposition to the function f(z)—H in order to obtain

f(2) = Hyp = fo(2) + [1(P(2)) + ... + fu(P7(2)) 4+ en (P (2)).

where fy, ..., fn are odd.

Notice that here we have 0 = H(fo) = H(f1) = ... = H(f,) because
H is even and invariant. We also get H(e,) = 0 by linearity (together
with invariance). From our previous work we get further estimates.

Lemma 2.7. We have ||e,|| < ||f — Hy|| < 2||f]]- O

Corollary 2.8. Forn < m we get

a1 (P (2)) 4 [ (P ()] < 2[enll.
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Proof. From Proposition 2.3 with
en(P"H(2)) = funr(P"TH(2)) + o+ fin(Po™(2)) + em(PFH(2))

in the role of f we get |le;|| < |len||. Then we apply several times
Lemma 2.2 and reduce to

en(2) = fag1(2) + -+ (P77 7(2)) + em(PT T (2)).
From here we conclude

fna1(2) + oo 4 fn (P (DI < lenl] + [lem]] < 2llenl]-

Lemma 2.9. If K have no interior, then |le,|| — 0.

Proof. Given € > 0, choose a polynomial @ so that | f(z)—Hy—Q(z)| < €
on K. Expand Q as Q(z) = Hg + Y.~ , Qi(P°(2)). Then, by unique-
ness, for n > N we get

N
f(z)=Hf = Q(z) = Hq+) [i(P"(2) ~ Qi(P*(2)

=0

Y filPPR) Fea(PTH(z)).

i=N+1

Finally, Lemma 2.7 yields [le,|| < 2[|f — Hy — Q|| < 2¢ when applied to
f—Hp-Q. O

The expansion in the next theorem is the harmonic decomposi-
tion of f.

Theorem 2.10. Let K have no interior. Then for f € C(K) there are
odd continuous functions fo, f1,... such that

f(2) = Hy + fo(z) + f1(P(2)) + f2(P°*(2)) + .. .;

the convergence here is uniform.
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Proof. In fact, for m > n > N we have
| farr (PO (2)) + -+ fn (PO (2))]] < 2llenl| — 0.

So, the partial sums form a Cauchy sequence since the discrepancy e,
tends to 0. O

The next result is trivial after inspecting grand orbits. Anyhow, we
present an alternative proof.

Lemma 2.11 (Lyubich [2]). If K has no interior, the only invariant
continuous functions are the constants.

Proof. In fact, if f = f o P, then by matching their harmonic decom-
positions we get Hy = Hyop together with fo =0, f1 = fo, fo = f1,....
Hence f(z) = Hy is a constant. O

3. The dual decomposition

For the study of measures supported in K we will take the functional
analysis approach. Thus, a “measure” on K “is” a linear functional
(with values in C) defined on C(K). We denote by M(K) the space of
(complex valued) measures.

Given a measure v, the odd and even parts are given by

Evidently, we get ||OW)]], ||E(W)|| < ||v|| (because at the level of func-
tions we have ||O||, ||€|| < 1). Also, note the equality v = O(v) + E(v).
The measure O(v) is odd in the sense that it kills all even functions,
while £(v) is even as it kills the odd functions.
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Example 3.1. For the delta mass J., based at a point 2y € K, the even

- 1 Oz +0_2
part £(d,,) is given by 5 Z 5y = 20 _—%
P(2)=P(z0)

. In fact, we get

0NN =ENE) =5 X =5 X &)

P(2)=P(z0) P(2)=P(z0)
As a by-product we obtain

A
0(620) == #

It is important to set some notation straight. Instead of the custom-
ary dv(z) we will use v(z) most of the time. In this way, given f € C(K),

we write
wh=[ fv=[ 10

when needed. We will even use v(z), meaning v, when the context calls
for it.

The measure v o P (or v(P(z)) in brief) is by convention the even
measure that satisfies

[oP@wee) = [ o)

Example 3.2. The harmonic measure is even as the relation H(f) =
H(E(f)) is equivalent to H(f) = E(H)(f).

Also, for f € C(K) we set hy(z) = f(z) H(z), where H(z) is the
standard harmonic measure as defined in Section 2. Then we have
hy(P(z)) = f(P(z)) H(z). In fact, as both of the above measures are
even, it is enough to check the equality

/ a(P(2)) hy(P(2)) = / o(P(2))f(P(2)) H(2).
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For them, however, we readily get

[op@mPe) = [o@ )

T
—_——
Q Q
— —
RS
o=
=z &
=
= =
oS
=
=
O

where the fist equality is given by convention, the second by definition
of hy, and the third by the invariance of the harmonic measure. This
notable fact is what justifies our convention for the dynamical push-
forward of the measure.

Example 3.3. We claim that
3 (52'0) =

holds (as usual, we have P(z) = #1). In fact, let f(2) = fo(2) +g(P(2))
with fy odd. Then we have

/fo(z)+g(P(Z))5Z1(P(Z)) = /g(P(Z))5zl(P(Z))

Il
Q
—~

IS
~
(=%}
™
oy
—
IS
~

= g(z1).
On the other side, oddness of fy implies % ZP(2)221 fo(2) =0, so we get
[h@+aP@) G 3 5 =5 3 () +e(PE) =g

P(é):zl P(2)221

[\]

Thus, the two values coincide, and the measures agree.

1
An easy induction delivers d,, o P°" = — Z 0: as well, for

Pon(2)=z,
Zn = PO”(ZO).
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Lemma 3.4. The measures T and 7 o P have the same norm.

Proof. Notice that 7(f) = 7o P(f o P) implies ||7]| < [|7 o P||.
Now take f + g o P with f odd subject to ||f + g o P|| < 1. Then
llgll = llg o Pll = [|E(f +go P)|| <1 forces

ITo P(f+goP)l[=|lTeP(go Pl = I[lr(Il <II7llllgll < Il
O

Lemma 3.5. All even measures have the form T7oP for some T € M(K).

Proof. Let v be a measure that kills all odd functions. For the functional
w(h = [ #PE) e,

the convention /f(z) 7(2) = /f(P(z)) 7(P(z)) joining forces with the
symbolism 7(f) = / F(2) 7(2) leads us to v(2) = 7(P(2)). 0
In view of Lemma 3.5, we have a natural splitting
v(2) = ro(2) + 0 (P(2)),

where 1 is odd. However, before iterating this odd—even decomposition,
practice gained in the manipulation of continuous functions suggests we
better subtract the “harmonic” part first. For that, we set

H,=v(1) = /u(z)
Whenever we have H,, = 0, we say that v is harmonic free.

Proposition 3.6. Fix n > 0. There are unique odd measures vy, . ..Uy
and a measure T, such that

v(z) = H,dH(2) + vo(2) + - - - 4+ v, (P°™(2)) + T (P°"T1(2)).
This decomposition is unique provided H, = 0. In this case we have

Il < 21[¥[| and [vi]| < [|v]].
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Proof. Trivial. O

What is not trivial is the following asymptotic decomposition.

Theorem 3.7. If K has no interior, the partial sums
H,dH(z) +vo(z) + -+ vpn(P°"(2))
converge *-weak to v.

Proof. Key here is to understand how
v(z) = HydH(z) + vp(2) + -+ + v, (P (2)) + 1 (PO (2))
acts on the function
f(z) = Hy + fo(2) + fr(P(2)) + ...+ fu(P°"(2)) + en (P (2)).

To begin with, by definition H; is the way how dH(z) acts on f.
Therefore H, dH (%) paired against f gives HyH,,.

Next, v;(P°(z)) acts on g(P°™(z)), with m > i, as v;(z) acts on
G(P°™~%(z)), hence kills them all since v; is odd and the said func-
tions are even. This applies to Hy, f(P°™ (%)), for m > i, and to
en(P°"1(2)). When m < i then v;(P°(z)) acts on f,,,(P°™(z)) in the
same way as v;(P°"™(z)) acts on f,,(2), thus annihilating them. We
also have /fi(POi(z))z/l-(POi(z)) = /fl(z)ul(z) by reduction, the sur-
viving term at this stage.

Finally, it should be clear by now that 7, (P°"*1(2)) annihilates all
the f;. Also, evaluating at the constant function 1 we get

v(l)=HW)H(1) +vo(1) + ...+ vp(1) + 7.(1).
Since we have relations v;(1) = 0 and H,H(1) = v(1)H(1) = v(1), we

conclude the equality 7,(1) = 0. Therefore, 7,(P°""!(2)) acts merely
on e, (P°"1(2)).
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Collecting our findings we obtain

[ s _mH+Z/ﬁla + [ealerm).

By the above formula, the action on f of v(2) — 7,,(P°"*1(2)) (i.e,
of H,dH(z) + vo(z) + -+ Vn(PO"( ))) is HfH + >0 o [ fi(z)vil2);
which in turn equals [ f(2)v(z) — [ €,(2)7,(2). However,

]/kmam@>

converges to 0, so we are done. O

< leal[ Il < 2[[¥[[ llen]

Example 3.8. We try the decomposition of a delta mass. Let zg € K.
Then we have

8oy (2) = dH (2) + Do(2) + ...+ An(P°"(2)) + ...,

since the harmonic part is d,,(1) = 1.
Now take f € C(K) odd (so that f(z)+ f(—z) =0 for all z € K).
Then the formula

/f ) Ao(z /f 020 (2) = f(20) = f(220) - f(—zo)’

029 — 02
shows that the odd part of 4, is % (compare also Example 3.3).

In general, (we use here the convention z, = P°"(z))) for f odd
we get

[ 1P @) 80P ) = [ FPT )50 ) = )

0., —0—2
and we conclude that A,, is the odd part of 6, , that is % In
short, we have
0z =14 0O(3,,)0 P
i=0
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A measure v is invariant when for all f € C(K) we have

[ 1w = [1ee)ve.

The harmonic measure dH (2) and the delta masses d., located at fixed
points zy are prototypical examples of invariant measures. This is in
sharp contrast with the function case where we only have one invariant
object. Other examples of invariant measures are averages along periodic
orbits.

The following is a characterization of invariant measures using the
canonical decomposition.

Theorem 3.9. Suppose K has no interior. If v(z) = a + vy(z) +
v1(P(z)) + ... is an invariant measure, then vg =11 = v = .. ..

Proof. For any odd test function f we get thanks to invariance

[eme =[5 mEn)
JEGoe
((2)

_ /f(z)l/o(z).

Il
—
kﬁ

Therefore v,, and vy are the same functional. O
As an extra remark, we should indicate that not all odd functions

give rise to invariant measures. For instance, we will see briefly that the
odd part of a delta mass seldom determines an invariant measure.

Corollary 3.10. If K has no interior, then the space of even invariant
measures supported in K is one-dimensional. O
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Theorem 3.11. Suppose K has no interior. Let vy be an odd measure.
Then the partial sums p, = vg + 190 P+ ...+ v, o P°™ converge (x-
weak) to an invariant measure if and only if there is a constant M so
that ||un|| < M.

Proof. If the sequence pu,, converges x-weak, then their norms certainly
form a bounded sequence.

On the other side, if | |1, || is bounded, it carries *-weakly convergent
subsequences. Therefore it is enough to prove that for all f € C'(K) the
limit of uy, (f) exists. Given e > 0, let N be such that for n > N we have

fz2) = Hp + fo(2) + ...+ fu(P") + en(P"T(2)),
with ||en|| < e. When we take m > n > N, we get

|t () = ()] = (k0 = ) (en 0 PEYHY)| < 2M|len]| < 2Me.

O

Example 3.12. Let zg € K be a non-periodic point outside the orbit
of the critical point (any point with a countable number of exceptions
would do). We use Theorem 3.11 to prove that the odd part of the delta
mass d,, does not generate an invariant measure.

If 421 are the two preimages of 2, the measures d1, , (P°(z))
have total mass 1 and support (P°")~!(£z_;), mutually disjoint sets.
The bottom line is that

n—1 62 _6_2 ) ,
Z( -1 5 - )OPO’L

=0

has norm n.
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4. Iteration and reduction

In this section we study the iteration process as an operator acting both
on continuous functions and on measures. For better understanding, we
introduce in parallel the process of reduction.

The iteration operator it is defined in continuous functions as
it(f)(z) = f(P(z)) and in measures as it(v)(z) = v(P(z)). The reduc-
tion operator red is defined as follows. If p(z) = O(p)(2) + ¥(P(z)),
then we set red(y)(z) = ¥(z), both for functions and measures.

When K has no interior and

0(2) = Hy + ¢o(2) + >_ 0i(P°(2)),
i=1
with ¢; odd, holds, then we write
red(p)(z) = Hy, + Y _¢i(P*71(2)).

i=1
Proposition 4.1. The adjoint operator of red : C(K) — C(K) is
given by it : M(K) — M(K), while the adjoint of it : C(K) — C(K) is
red : M(K) — M(K). Both are norm 1 operators.
Proof. For f € C(K) let f(z) = O(f)(z) + g(P(z)) and for v € M(K)
let v(z) = O(v)(2) + 7(P(2)). Then we have

/f(Z) red”(v)(z) = /red(f)(Z) v(z) = /g(Z)V(Z)

[ —!
= O
—~
\(\_z/t';
et
e
= =
= +
o a
e,
—~
N
=
=
e,
—
N
N—
N~—

Therefore, we obtain it(v) = red”(v).
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The other identity is tackled in a similar way.
About the norm, this should be obvious by now. O

Next we comment briefly about the operators I — Ait and I — Ared,
with A € C.

Lemma 4.2. Both in C(K) and in M(K) the operators I — \it and
I — Ared are invertible for |A| < 1.

Proof. In fact, both it and red have norm 1. O

Lemma 4.3. Both in C(K) and in M(K), for |A\| > 1, the operators
I — \it are closed, injective but not surjective, while the I — Ared are
closed, surjective but not injective.

Proof. We first attack the surjectivity of I — Ared. Given 1 in the
appropriate space, we define ¢(z) = — > 2 (P (2)) /A", From

Ared(p)(z) “AD BN
i=0

DLV

—(2) = Y B(P(2) /N
i=1
—9(2) +¢(2),

we get {I — Ared}(¢) = v, and the operator is surjective. Evidently, a
surjective operator has closed range. Also, for any odd 1, the element
Yoo (P (2))/X\" is well defined (since [A| > 1) and belongs to the
kernel of I — Ared.

The properties for the operator I — \it follow by duality. O

When |[A| = 1, the study of those operators is not simple. We will
be concerned specially with the case A = 1, since they help characterize
invariant measures.
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Proposition 4.4. For v € M(K) the following properties are equiva-
lent.

o The measure v is invariant;

e the condition {I —it}(v) = O(v) holds;

o the measure {I —it}(v) is odd;
[ ]

the measure v belongs to the kernel of I — red.
Proof. Everything is trivial. O

Proposition 4.5. If K has empty interior, the kernel of I — it is one
dimensional: it consists of the constants or of the multiples of the har-
monic measure, depending in the case. These operators are not closed.

Proof. Tt is clear that the constants (or constant multiples of H) are the
only members of the kernel of I — it.

To prove that this operator acting on continuous functions is not
closed, we note that the space of all functions annihilated by the har-
monic measure is a codimension one space in where I —it acts injectively.
Therefore it is enough to construct a sequence of harmonic free functions
¢ of norm greater or equal to 1 such that |[{I —it}(¢,)|| converges to
0. With that in mind, let zy be a non-critical fixed point of P. Let
F : K — [-1,1] be any continuous function such that F'(zy) = 1 and
F(—zp) = —1. Write Fy = O(F'). Notice that F(zy) = —F(—zy) implies
Fy(zf) = F(z¢) = 1. Therefore we get 1 < ||Fy|| < ||F|| = 1. Now for

n—1
on(z) = % ZFO(POi(z)) we have ¢, (z7) =1, and so ||¢,|| > 1. How-
i=0

Fy(z) — Fp(P°om
ever by construction the function {I — it}(p,)(z) = 0(z) 0(P™(2)

n
has norm at most 2/n.

For measures we proceed similarly: for zg a point that is not even-
tually periodic (compare Example 3.12), we take the odd measure vy =
O(8,) and define ¢, (2) = (1/n) .74 vo(P%(2)). A trivial calculation
gives then ||p,|| =1 and ||{I — it}(n)|| = 2/n. O

Corollary 4.6. If K has empty interior, the image of Id —red is dense
in the space of harmonic free objects. This operator is not closed.
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Proof. This follows from Proposition 4.5 by duality. O

References

[1] T. Gamelin; Uniform Algebras, American Mathematical Society,
2005.

[2] M. Lyubich; The measure of mazimal entropy of a rational endo-
morphism of a Riemann sphere, Funktsional. Anal. i Prilozhen. 16
(1982), no. 4, 78-79. (Russian).

[3] J. Milnor; Dynamics in One Complex Variable, Introductory Lec-
tures, Vieweg, 1999.

[4] W. Rudin; Real and Complex Analysis, McGraw Hill, 1974.
Resumen

En este articulo caracterizamos medidas invariantes sobre conjuntos de
Julia sin interior asociados con polinomios cuadraticos. Probamos que
mas alla de la medida armdnica —Ila tnica par e invariante—, el resto
son generadas por su parte impar.
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