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1 Sección Matemáticas, Departamento de Ciencias, PUCP.



Measures in quadratic Julia sets

1. Introduction

For a given a degree d ≥ 2 polynomial, the filled Julia set is the set of

points that have bounded orbit under iteration. We denote this set by

K. It is well known that this set is a compact invariant subset of C. For

this and several other facts related to iteration of rational functions we

refer the reader to [3].

In this paper we are concerned with the algebra of continuous func-

tions defined on K. For them, our starting point is the following classical

setting.

Let C(K) be the algebra of continuous functions defined on a com-

pact set K ⊂ C with values in C. We denote by Pol(K) the linear space

of polynomial restrictions to K.

Theorem 1.1 (Lavrientiev, Mergelyan [1],[4]). Let K be a compact set of

the plane whose interior is empty. If the complement of K is connected,

then Pol(K) is dense in C(K) in the uniform topology. �

Along this work, P (z) = z2 + c is a degree two polynomial whose

filled Julia set K has no interior. Therefore K is compact with empty

interior and connected complement, and Lavrientiev’s theorem applies.

2. The harmonic decomposition

Let P (z) = z2 + c be a degree two polynomial whose filled Julia set K

has no interior. As this set is symmetric by the involution z 7→ −z, it is

safe to define even and odd objects using a standard procedure.

Given f ∈ C(K), continuous, its even and odd parts are defined

by the averages

E(f)(z) =
f(z) + f(−z)

2
, O(f)(z) =

f(z)− f(−z)
2

,
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respectively.

Lemma 2.1. The odd and even parts of f are continuous functions with

norm not bigger than ||f ||. If f is a (restriction of a) polynomial, so are

E(f) and O(f).

Proof. Both claims are elementary.

A continuous function f is even if E(f) = f , and odd if O(f) = f .

Alternatively, as f = O(f) + E(f) holds, we have that f to be even is

equivalent to O(f) = 0 (that is to f(z) = f(−z)), while f to be odd is

equivalent to E(f) = 0 (or to f(z) = −f(−z)).
Also note that E ,O : C(K) → C(K), which recover in turn the

symmetric and antisymmetric part, are norm 1 operators. Both E and

O are projections.

Lemma 2.2 (Reduction lemma). A continuous function f ∈ C(K) is

even if and only if there exists g ∈ C(K) such that f(z) = g(P (z)). In

particular, we have E(f ◦ P ) = f ◦ P for all f ∈ C(K). On the other

side, if g(P (z)) is continuous, then g(z) is continuous. We always have

||f || = ||g||. Anyway, f is a polynomial if and only if g is a polynomial.

Proof. If f is even, as K is closed and P : K → K is surjective and

proper, we have that f factors through P . Conversely, g(P (z)) is always

even and continuous.

It is clear that f peaks at z0 if and only if g peaks at P (z0) and

that f is continuous at z0 if and only if g is continuous at P (z0).

That g is a polynomial (when f is) was already indicated in Lemma

2.1.

This lemma gives rise to a unique even—odd decomposition

f(z) = f0(z) + g0(P (z)),
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where f0 is odd and g0 continuous. If we again split g0 into its odd and

even parts as g0(z) = f1(z) + g1(P (z)), we get

f(z) = f0(z) + f1(P (z)) + g1(P ◦2(z)).

We can continue this process indefinitely.

Proposition 2.3. Fix n ≥ 0. For every f ∈ C(K) there are unique odd

continuous functions f0, f1, . . . fn and gn ∈ C(K) subject to

f(z) = f0(z) + f1(P (z)) + · · ·+ fn(P ◦n(z)) + gn(P ◦n+1(z)).

Here we have ||fi|| ≤ ||f || and ||gn|| ≤ ||f ||.

Proof. Apply induction to the odd—even decomposition of f .

Corollary 2.4. In the decomposition above we have

|f0(z) + f1(P (z)) + · · ·+ fn(P ◦n(z))| ≤ 2||f ||.

Proof. Indeed, the partial sum is bounded by |f(z)|+|gn(P ◦n+1(z))|.

The decomposition displayed in Proposition 2.3 is much simpler for

polynomials as the process eventually reaches a deadlock.

Proposition 2.5. Given a polynomial F ∈ Pol(K), there exist a con-

stant H(F ) subject to |H(F )| ≤ ||F ||, and a finite number of odd poly-

nomials, say F0, F1, . . . Fn, such that

F (z) = H(F ) + F0(z) + F1(P (z)) + · · ·+ Fn(P ◦n(z)).

Those elements are uniquely determined.

Proof. A trivial induction in the degree of F .

The assignment H : Pol(K)→ C clearly is linear and annihilates all

odd polynomials, hence the symmetry formula H(E(f)) = H(f). Also,

for F ∈ Pol(K) we have H(F ◦ P ) = H(F ) and |H(F )| ≤ ||F ||.
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Theorem 2.6. Suppose the filled Julia set K = K(P ) has no interior.

Then there exists a unique norm 1 even invariant measure supported on

the Julia set that agrees with H on polynomials. In other words, for all

f ∈ C(K) the measure H satisfies

• H(f) =

∫
f(z) dH(z) =

∫
f(P (z)) dH(z) (invariance),

• H(f) =

∫
f(z) dH(z) =

∫
E(f)(z) dH(z) = H(E(f)) (symmetry).

Proof. In fact, when K has no interior, polynomial restrictions to K

are dense in C(K). As H : Pol(K) → C is continuous, it can be ex-

tended uniquely to all of C(K). Since all other properties are satisfied

for polynomials, they are satisfied for continuous functions as well.

As Lyubich proved (cf. [2]), the harmonic measure already satisfies

the properties stated in the theorem, so H is actually the harmonic

measure of K. This corollary is actually true for all polynomial Julia

sets. Functions for which the harmonic integral vanish (i.e, f such that

H(f) = 0) are harmonic free functions. For simplicity, we will write

Hf for H(f).

Next we retrace our steps with these results in mind. First we apply

the odd—even decomposition to the function f(z)−Hf in order to obtain

f(z)−Hf = f0(z) + f1(P (z)) + . . .+ fn(P ◦n(z)) + en(P ◦n+1(z)).

where f0, . . . , fn are odd.

Notice that here we have 0 = H(f0) = H(f1) = . . . = H(fn) because

H is even and invariant. We also get H(en) = 0 by linearity (together

with invariance). From our previous work we get further estimates.

Lemma 2.7. We have ||en|| ≤ ||f −Hf || ≤ 2||f ||. �

Corollary 2.8. For n < m we get

||fn+1(P ◦n+1(z)) + . . .+ fm(P ◦m(z))|| ≤ 2||en||.
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Proof. From Proposition 2.3 with

en(P ◦n+1(z)) = fn+1(P ◦n+1(z)) + . . .+ fm(P ◦m(z)) + em(P ◦m+1(z))

in the role of f we get ||em|| ≤ ||en||. Then we apply several times

Lemma 2.2 and reduce to

en(z) = fn+1(z) + . . .+ fm(P ◦m−n(z)) + em(P ◦m−n+1(z)).

From here we conclude

||fn+1(z) + . . .+ fm(P ◦m−n(z))|| ≤ ||en||+ ||em|| ≤ 2||en||.

Lemma 2.9. If K have no interior, then ||en|| → 0.

Proof. Given ε > 0, choose a polynomial Q so that |f(z)−Hf−Q(z)| ≤ ε
on K. Expand Q as Q(z) = HQ +

∑N
i=0Qi(P

◦i(z)). Then, by unique-

ness, for n > N we get

f(z)−Hf −Q(z) = HQ +
N∑

i=0

fi(P
◦i(z))−Qi(P ◦i(z))

+
n∑

i=N+1

fi(P
◦i(z)) + en(P ◦n+1(z)).

Finally, Lemma 2.7 yields ||en|| ≤ 2||f −Hf −Q|| ≤ 2ε when applied to

f −Hf −Q.

The expansion in the next theorem is the harmonic decomposi-

tion of f .

Theorem 2.10. Let K have no interior. Then for f ∈ C(K) there are

odd continuous functions f0, f1, . . . such that

f(z) = Hf + f0(z) + f1(P (z)) + f2(P ◦2(z)) + . . . ;

the convergence here is uniform.
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Proof. In fact, for m ≥ n ≥ N we have

||fn+1(P ◦n+1(z)) + . . .+ fm(P ◦m(z))|| ≤ 2||en|| → 0.

So, the partial sums form a Cauchy sequence since the discrepancy en
tends to 0.

The next result is trivial after inspecting grand orbits. Anyhow, we

present an alternative proof.

Lemma 2.11 (Lyubich [2]). If K has no interior, the only invariant

continuous functions are the constants.

Proof. In fact, if f = f ◦ P , then by matching their harmonic decom-

positions we get Hf = Hf◦P together with f0 = 0, f1 = f0, f2 = f1, . . ..

Hence f(z) = Hf is a constant.

3. The dual decomposition

For the study of measures supported in K we will take the functional

analysis approach. Thus, a “measure” on K “is” a linear functional

(with values in C) defined on C(K). We denote by M(K) the space of

(complex valued) measures.

Given a measure ν, the odd and even parts are given by

O(ν)(f) = ν(O(f)) E(ν)(f) = ν(E(f)).

Evidently, we get ||O(ν)||, ||E(ν)|| ≤ ||ν|| (because at the level of func-

tions we have ||O||, ||E|| ≤ 1). Also, note the equality ν = O(ν) + E(ν).

The measure O(ν) is odd in the sense that it kills all even functions,

while E(ν) is even as it kills the odd functions.
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Example 3.1. For the delta mass δz0 based at a point z0 ∈ K, the even

part E(δz0) is given by
1

2

∑

P (ẑ)=P (z0)

δẑ =
δz0 + δ−z0

2
. In fact, we get

E(δz0)(f) = E(f)(z0) =
1

2

∑

P (ẑ)=P (z0)

f(ẑ) =


1

2

∑

P (ẑ)=P (z0)

δẑ


 (f).

As a by-product we obtain

O(δz0) =
δz0 − δ−z0

2
.

It is important to set some notation straight. Instead of the custom-

ary dν(z) we will use ν(z) most of the time. In this way, given f ∈ C(K),

we write

ν(f) =

∫
f ν =

∫
f(z) ν(z)

when needed. We will even use ν(z), meaning ν, when the context calls

for it.

The measure ν ◦ P (or ν(P (z)) in brief) is by convention the even

measure that satisfies

∫
g(P (z))ν(P (z)) =

∫
g(z)ν(z).

Example 3.2. The harmonic measure is even as the relation H(f) =

H(E(f)) is equivalent to H(f) = E(H)(f).

Also, for f ∈ C(K) we set hf (z) = f(z)H(z), where H(z) is the

standard harmonic measure as defined in Section 2. Then we have

hf (P (z)) = f(P (z))H(z). In fact, as both of the above measures are

even, it is enough to check the equality

∫
g(P (z))hf (P (z)) =

∫
g(P (z))f(P (z))H(z).
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For them, however, we readily get

∫
g(P (z))hf (P (z)) =

∫
g(z)hf (z)

=

∫
g(z)f(z)H(z)

=

∫
g(P (z))f(P (z))H(z),

where the fist equality is given by convention, the second by definition

of hf , and the third by the invariance of the harmonic measure. This

notable fact is what justifies our convention for the dynamical push-

forward of the measure.

Example 3.3. We claim that

E(δz0) =
δz0 + δ−z0

2
= δz1 ◦ P

holds (as usual, we have P (z0) = z1). In fact, let f(z) = f0(z) + g(P (z))

with f0 odd. Then we have

∫
f0(z) + g(P (z)) δz1(P (z)) =

∫
g(P (z)) δz1(P (z))

=

∫
g(z) δz1(z)

= g(z1).

On the other side, oddness of f0 implies 1
2

∑
P (ẑ)=z1

f0(ẑ) = 0, so we get

∫
f0(z) + g(P (z)) (

1

2

∑

P (ẑ)=z1

δẑ) =
1

2

∑

P (ẑ)=z1

(f0(ẑ) + g(P (ẑ))) = g(z1).

Thus, the two values coincide, and the measures agree.

An easy induction delivers δzn ◦ P ◦n =
1

2n

∑

P◦n(ẑ)=zn

δẑ as well, for

zn = P ◦n(z0).
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Lemma 3.4. The measures τ and τ ◦ P have the same norm.

Proof. Notice that τ(f) = τ ◦ P (f ◦ P ) implies ||τ || ≤ ||τ ◦ P ||.
Now take f + g ◦ P with f odd subject to ||f + g ◦ P || ≤ 1. Then

||g|| = ||g ◦ P || = ||E(f + g ◦ P )|| ≤ 1 forces

||τ ◦ P (f + g ◦ P )|| = ||τ ◦ P (g ◦ P )|| = ||τ(g)|| ≤ ||τ || ||g|| ≤ ||τ ||.

Lemma 3.5. All even measures have the form τ◦P for some τ ∈M(K).

Proof. Let ν be a measure that kills all odd functions. For the functional

τ(f) =

∫
f(P (z)) ν(z),

the convention

∫
f(z) τ(z) =

∫
f(P (z)) τ(P (z)) joining forces with the

symbolism τ(f) =

∫
f(z) τ(z) leads us to ν(z) = τ(P (z)).

In view of Lemma 3.5, we have a natural splitting

ν(z) = ν0(z) + σ(P (z)),

where ν0 is odd. However, before iterating this odd–even decomposition,

practice gained in the manipulation of continuous functions suggests we

better subtract the “harmonic” part first. For that, we set

Hν = ν(1) =

∫
ν(z).

Whenever we have Hν = 0, we say that ν is harmonic free.

Proposition 3.6. Fix n ≥ 0. There are unique odd measures ν0, . . . νn
and a measure τn such that

ν(z) = Hν dH(z) + ν0(z) + · · ·+ νn(P ◦n(z)) + τn(P ◦n+1(z)).

This decomposition is unique provided Hτn = 0. In this case we have

||τn|| ≤ 2||ν|| and ||νi|| ≤ ||ν||.
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Proof. Trivial.

What is not trivial is the following asymptotic decomposition.

Theorem 3.7. If K has no interior, the partial sums

Hν dH(z) + ν0(z) + · · ·+ νn(P ◦n(z))

converge ∗-weak to ν.

Proof. Key here is to understand how

ν(z) = Hν dH(z) + ν0(z) + · · ·+ νn(P ◦n(z)) + τn(P ◦n+1(z))

acts on the function

f(z) = Hf + f0(z) + f1(P (z)) + . . .+ fn(P ◦n(z)) + en(P ◦n+1(z)).

To begin with, by definition Hf is the way how dH(z) acts on f .

Therefore Hν dH(z) paired against f gives HfHν .

Next, νi(P
◦i(z)) acts on g(P ◦m(z)), with m > i, as νi(z) acts on

G(P ◦m−i(z)), hence kills them all since νi is odd and the said func-

tions are even. This applies to Hf , fm(P ◦m(z)), for m > i, and to

en(P ◦n+1(z)). When m < i then νi(P
◦i(z)) acts on fm(P ◦m(z)) in the

same way as νi(P
◦i−m(z)) acts on fm(z), thus annihilating them. We

also have

∫
fi(P

◦i(z))νi(P
◦i(z)) =

∫
fi(z)νi(z) by reduction, the sur-

viving term at this stage.

Finally, it should be clear by now that τn(P ◦n+1(z)) annihilates all

the fi. Also, evaluating at the constant function 1 we get

ν(1) = H(ν)H(1) + ν0(1) + . . .+ νn(1) + τn(1).

Since we have relations νi(1) = 0 and HνH(1) = ν(1)H(1) = ν(1), we

conclude the equality τn(1) = 0. Therefore, τn(P ◦n+1(z)) acts merely

on en(P ◦n+1(z)).
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Collecting our findings we obtain

∫
f(z)ν(z) = HfHν +

n∑

i=0

∫
fi(z)νi(z) +

∫
en(z)τn(z).

By the above formula, the action on f of ν(z)− τn(P ◦n+1(z)) (i.e,

of Hν dH(z) + ν0(z) + · · · + νn(P ◦n(z))) is HfHν +
∑n
i=0

∫
fi(z)νi(z);

which in turn equals
∫
f(z)ν(z)−

∫
en(z)τn(z). However,

∣∣∣∣
∫
en(z)τn(z)

∣∣∣∣ ≤ ||en|| ||τn|| ≤ 2||ν|| ||en||

converges to 0, so we are done.

Example 3.8. We try the decomposition of a delta mass. Let z0 ∈ K.

Then we have

δz0(z) = dH(z) + ∆0(z) + . . .+ ∆n(P ◦n(z)) + . . . ,

since the harmonic part is δz0(1) = 1.

Now take f ∈ C(K) odd (so that f(z) + f(−z) = 0 for all z ∈ K).

Then the formula
∫
f(z) ∆0(z) =

∫
f(z) δz0(z) = f(z0) =

f(z0)

2
− f(−z0)

2
,

shows that the odd part of δz0 is
δz0 − δ−z0

2
(compare also Example 3.3).

In general, (we use here the convention zn = P ◦n(z0))) for f odd

we get
∫
f(P ◦n(z)) ∆n(P ◦n(z)) =

∫
f(P ◦n(z)) δz0(z) = f(zn),

and we conclude that ∆n is the odd part of δzn , that is
δzn − δ−zn

2
. In

short, we have

δz0 = 1 +
∞∑

i=0

O(δzi) ◦ P ◦i.
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A measure ν is invariant when for all f ∈ C(K) we have

∫
f(z) ν(z) =

∫
f(P (z)) ν(z).

The harmonic measure dH(z) and the delta masses δzf located at fixed

points zf are prototypical examples of invariant measures. This is in

sharp contrast with the function case where we only have one invariant

object. Other examples of invariant measures are averages along periodic

orbits.

The following is a characterization of invariant measures using the

canonical decomposition.

Theorem 3.9. Suppose K has no interior. If ν(z) = α + ν0(z) +

ν1(P (z)) + . . . is an invariant measure, then ν0 = ν1 = ν2 = . . ..

Proof. For any odd test function f we get thanks to invariance

∫
f(z)νn(z) =

∫
f(P ◦n(z))νn(P ◦n(z))

=

∫
f(P ◦n(z))ν(z)

=

∫
f(z)ν(z)

=

∫
f(z)ν0(z).

Therefore νn and ν0 are the same functional.

As an extra remark, we should indicate that not all odd functions

give rise to invariant measures. For instance, we will see briefly that the

odd part of a delta mass seldom determines an invariant measure.

Corollary 3.10. If K has no interior, then the space of even invariant

measures supported in K is one-dimensional. �
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Theorem 3.11. Suppose K has no interior. Let ν0 be an odd measure.

Then the partial sums µn = ν0 + ν0 ◦ P + . . . + νn ◦ P ◦n converge (∗-
weak) to an invariant measure if and only if there is a constant M so

that ||µn|| ≤M .

Proof. If the sequence µn converges ∗-weak, then their norms certainly

form a bounded sequence.

On the other side, if ||µn|| is bounded, it carries ∗-weakly convergent

subsequences. Therefore it is enough to prove that for all f ∈ C(K) the

limit of µn(f) exists. Given ε > 0, let N be such that for n ≥ N we have

f(z) = Hf + f0(z) + . . .+ fn(P ◦n) + en(P ◦n+1(z)),

with ||en|| ≤ ε. When we take m > n ≥ N , we get

|µm(f)− µn(f)| = |(µn − µm)(eN ◦ P ◦N+1)| ≤ 2M ||eN || ≤ 2Mε.

Example 3.12. Let z0 ∈ K be a non-periodic point outside the orbit

of the critical point (any point with a countable number of exceptions

would do). We use Theorem 3.11 to prove that the odd part of the delta

mass δz0 does not generate an invariant measure.

If ±z−1 are the two preimages of z0, the measures δ±z−1
(P ◦i(z))

have total mass 1 and support (P ◦i)−1(±z−1), mutually disjoint sets.

The bottom line is that

n−1∑

i=0

(
δz−1

− δ−z−1

2
) ◦ P ◦i

has norm n.
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4. Iteration and reduction

In this section we study the iteration process as an operator acting both

on continuous functions and on measures. For better understanding, we

introduce in parallel the process of reduction.

The iteration operator it is defined in continuous functions as

it(f)(z) = f(P (z)) and in measures as it(ν)(z) = ν(P (z)). The reduc-

tion operator red is defined as follows. If ϕ(z) = O(ϕ)(z) + ψ(P (z)),

then we set red(ϕ)(z) = ψ(z), both for functions and measures.

When K has no interior and

ϕ(z) = Hϕ + ϕ0(z) +
∞∑

i=1

ϕi(P
◦i(z)),

with ϕi odd, holds, then we write

red(ϕ)(z) = Hϕ +
∞∑

i=1

ϕi(P
◦i−1(z)).

Proposition 4.1. The adjoint operator of red : C(K) → C(K) is

given by it :M(K)→M(K), while the adjoint of it : C(K)→ C(K) is

red :M(K)→M(K). Both are norm 1 operators.

Proof. For f ∈ C(K) let f(z) = O(f)(z) + g(P (z)) and for ν ∈ M(K)

let ν(z) = O(ν)(z) + τ(P (z)). Then we have
∫
f(z) red∗(ν)(z) =

∫
red(f)(z) ν(z) =

∫
g(z) ν(z)

=

∫
g(P (z)) ν(P (z))

=

∫
O(f)(z) + g(P (z)) ν(P (z))

=

∫
f(z) it(ν)(z).

Therefore, we obtain it(ν) = red∗(ν).
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The other identity is tackled in a similar way.

About the norm, this should be obvious by now.

Next we comment briefly about the operators I−λ it and I−λ red,

with λ ∈ C.

Lemma 4.2. Both in C(K) and in M(K) the operators I − λ it and

I − λ red are invertible for |λ| < 1.

Proof. In fact, both it and red have norm 1.

Lemma 4.3. Both in C(K) and in M(K), for |λ| > 1, the operators

I − λ it are closed, injective but not surjective, while the I − λ red are

closed, surjective but not injective.

Proof. We first attack the surjectivity of I − λ red. Given ψ in the

appropriate space, we define ϕ(z) = −∑∞i=0 ψ(P ◦i+1(z))/λi+1. From

λ red(ϕ)(z) = −λ
∞∑

i=0

ψ(P ◦i(z))/λi+1

= −
∞∑

i=0

ψ(P ◦i(z))/λi

= −ψ(z)−
∞∑

i=1

ψ(P ◦i(z))/λi

= −ψ(z) + ϕ(z),

we get {I − λ red}(ϕ) = ψ, and the operator is surjective. Evidently, a

surjective operator has closed range. Also, for any odd ψ, the element∑∞
i=0 ψ(P ◦i(z))/λi is well defined (since |λ| > 1) and belongs to the

kernel of I − λ red.

The properties for the operator I − λ it follow by duality.

When |λ| = 1, the study of those operators is not simple. We will

be concerned specially with the case λ = 1, since they help characterize

invariant measures.

Pro Mathematica, 28, 56 (2014), 118-135 133



Alfredo Poirier

Proposition 4.4. For ν ∈ M(K) the following properties are equiva-

lent.

• The measure ν is invariant;

• the condition {I − it}(ν) = O(ν) holds;

• the measure {I − it}(ν) is odd;

• the measure ν belongs to the kernel of I − red.

Proof. Everything is trivial.

Proposition 4.5. If K has empty interior, the kernel of I − it is one

dimensional: it consists of the constants or of the multiples of the har-

monic measure, depending in the case. These operators are not closed.

Proof. It is clear that the constants (or constant multiples of H) are the

only members of the kernel of I − it.

To prove that this operator acting on continuous functions is not

closed, we note that the space of all functions annihilated by the har-

monic measure is a codimension one space in where I−it acts injectively.

Therefore it is enough to construct a sequence of harmonic free functions

ϕn of norm greater or equal to 1 such that ||{I − it}(ϕn)|| converges to

0. With that in mind, let zf be a non-critical fixed point of P . Let

F : K → [−1, 1] be any continuous function such that F (zf ) = 1 and

F (−zf ) = −1. Write F0 = O(F ). Notice that F (zf ) = −F (−zf ) implies

F0(zf ) = F (zf ) = 1. Therefore we get 1 ≤ ||F0|| ≤ ||F || = 1. Now for

ϕn(z) =
1

n

n−1∑

i=0

F0(P ◦i(z)) we have ϕn(zf ) = 1, and so ||ϕn|| ≥ 1. How-

ever by construction the function {I − it}(ϕn)(z) =
F0(z)− F0(P ◦n(z))

n
has norm at most 2/n.

For measures we proceed similarly: for z0 a point that is not even-

tually periodic (compare Example 3.12), we take the odd measure ν0 =

O(δz0) and define ϕn(z) = (1/n)
∑n−1
i=0 ν0(P ◦i(z)). A trivial calculation

gives then ||ϕn|| = 1 and ||{I − it}(ϕn)|| = 2/n.

Corollary 4.6. If K has empty interior, the image of Id−red is dense

in the space of harmonic free objects. This operator is not closed.
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Proof. This follows from Proposition 4.5 by duality.
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Resumen

En este art́ıculo caracterizamos medidas invariantes sobre conjuntos de

Julia sin interior asociados con polinomios cuadráticos. Probamos que

más allá de la medida armónica —la única par e invariante—, el resto

son generadas por su parte impar.

Palabras clave: Dinámica holomorfa, iteración de polinomios, conjunto de

Maldelbrot, medidas invariantes.
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