A short proof of Jung's theorem

J.A. Guccione ${ }^{1,4,5}$, J.J. Guccione ${ }^{1,4}$, C. Valqui ${ }^{2,3,5}$

May, 2016

Abstract

We give a short and elementary proof of Jung's theorem, which states that for a field K of characteristic zero the automorphisms of $K[x, y]$ are generated by elementary automorphisms and linear automorphisms.

MSC(2010): 13F25, 13P15.

Keywords: Jacobian conjecture, Jung's theorem.

[^0]
Introduction

The theorem of Jung [5] states that if K is a field of characteristic zero, then any automorphism of $L=K[x, y]$ is the finite composition of elementary automorphisms (given by $x \mapsto x, y \mapsto y+p(x)$ or by $y \mapsto y, x \mapsto x+p(y))$ and linear automorphisms. Many authors have given proofs of this fact, for example [1], [3], [7], [8], [9], [10] and [11]. The last and very short and elegant proof is given in [6], proof that works in every algebraically closed field of characteristic zero. The key step in the proof of [6] is the same as in ours: In the situation of the figure

there exists a polynomial F (called ζ in [6]) such that $F=\mu x\left(y+\lambda x^{\sigma}\right)$ with $\left[F, \ell_{\rho, \sigma}(P)\right]=\ell_{\rho, \sigma}(P)$. Then we apply φ given by $\varphi(x)=x$ and $\varphi(y)=y-\lambda x^{\sigma}$ and obtain $\operatorname{deg}(\varphi(P))<\operatorname{deg}(P)$. Here $[P, Q]$ stands for the determinant of the jacobian matrix of two polynomials P, Q and $\ell_{\rho, \sigma}(P)$ is the leading form of P with respect to the weight (ρ, σ).

To our knowledge our proof is the shortest and simplest (except for that of [6]), and Theorem 1.5 is the only fact we use that is not straightforward nor elementary. The element F can be traced back to 1975 in [4]. In order to obtain a proof for a field that is not necessarily algebraically closed, we have to prove that for a polynomial automorphism there can be only one point at infinity, which we do in Proposition 2.2.

1. Preliminaries

We first gather notation and results of [2]. We define the set of directions by

$$
\mathfrak{V}=\left\{(\rho, \sigma) \in \mathbb{Z}^{2}: \operatorname{gcd}(\rho, \sigma)=1\right\}
$$

For all $(\rho, \sigma) \in \mathfrak{V}$ and $(i, j) \in \mathbb{Z} \times \mathbb{Z}$ we write $v_{\rho, \sigma}(i, j)=\rho i+\sigma j$ and for $P=\sum a_{i, j} x^{i} y^{j} \in L \backslash\{0\}$, we define

- the support of P as $\operatorname{Supp}(P)=\left\{(i, j): a_{i, j} \neq 0\right\}$;
- the (ρ, σ)-degree of P as $v_{\rho, \sigma}(P)=\max \left\{v_{\rho, \sigma}(i, j): a_{i, j} \neq 0\right\}$;
- the (ρ, σ)-leading term of P as $\ell_{\rho, \sigma}(P)=\sum_{\left\{\rho i+\sigma j=v_{\rho, \sigma}(P)\right\}} a_{i, j} x^{i} y^{j}$.

We also set $\ell_{\rho, \sigma}(0)=0$.
We say that $P \in L$ is (ρ, σ)-homogeneous if $P=\ell_{\rho, \sigma}(P)$. We assign to each direction its corresponding unit vector in S^{1}, and we define an interval in \mathfrak{V} as the preimage under this map of an arc of S^{1} that is not the whole circle. We consider each interval endowed with the order that increases counterclockwise.

For each $P \in L \backslash\{0\}$, we let $H(P)$ denote the Newton polygon of P. It is evident that each one of its edges is the convex hull of the support of $\ell_{\rho, \sigma}(P)$, where (ρ, σ) is orthogonal to the given edge and points outside of $H(P)$. These directions form the set

$$
\operatorname{Dir}(P)=\left\{(\rho, \sigma) \in \mathfrak{V}: \# \operatorname{Supp}\left(\ell_{\rho, \sigma}(P)\right)>1\right\}
$$

Notation 1.1. Let $(\rho, \sigma) \in \mathfrak{V}$ arbitrary. We let $\operatorname{st}_{\rho, \sigma}(P)$ and $\mathrm{en}_{\rho, \sigma}(P)$ denote the first and the last point that we find on $H\left(\ell_{\rho, \sigma}(P)\right)$ when we run counterclockwise along the boundary of $H(P)$. Note that these points coincide when $\ell_{\rho, \sigma}(P)$ is a monomial.

We say that two vectors $A, B \in \mathbb{R}^{2}$ are aligned, and write $A \sim B$, if we have $0=A \times B=\operatorname{det}\left(\begin{array}{cc}a_{1} & a_{2} \\ b_{1} & b_{2}\end{array}\right)$, where $A=\left(a_{1}, a_{2}\right)$ and $B=\left(b_{1}, b_{2}\right)$.

Proposition 1.2 (Proposition 1.13 in [2]). Let $P, Q \in L \backslash\{0\}$ and let (ρ, σ) be a direction. If $\left[\ell_{\rho, \sigma}(P), \ell_{\rho, \sigma}(Q)\right] \neq 0$ then $\left[\ell_{\rho, \sigma}(P), \ell_{\rho, \sigma}(Q)\right]=$ $\ell_{\rho, \sigma}([P, Q])$.

The next result is in the spirit of [2, Proposition 2.4].
Proposition 1.3. Let $P, Q \in L \backslash\{0\}$.
If $\mathrm{st}_{1,1}(P) \nsim \mathrm{st}_{1,1}(Q)$ then $\mathrm{st}_{1,1}(P)+\mathrm{st}_{1,1}(Q)-(1,1)=\mathrm{st}_{1,1}([P, Q])$.
If $\mathrm{en}_{1,1}(P) \nsim \mathrm{en}_{1,1}(Q)$ then $\mathrm{en}_{1,1}(P)+\mathrm{en}_{1,1}(Q)-(1,1)=\mathrm{en}_{1,1}([P, Q])$.
Proof. We only prove the first statement, the other one is similar. Write

$$
\ell_{1,1}(P)=a_{0} x^{r} y^{s}+a_{1} x^{r-1} y^{s+1}+\cdots+a_{n} x^{r-n} y^{s+n}
$$

and

$$
\ell_{1,1}(Q)=b_{0} x^{u} y^{v}+\cdots+b_{m} x^{u-m} y^{v+m}
$$

with $a_{0}, b_{0} \neq 0$. Then $\operatorname{st}_{1,1}(P)=(r, s), \operatorname{st}_{1,1}(Q)=(u, v)$ and

$$
\begin{aligned}
{\left[\ell_{1,1}(P), \ell_{1,1}(Q)\right]=} & a_{0} b_{0}(r v-u s) x^{r+u-1} y^{s+v-1}+ \\
& +\alpha_{1} x^{r+u-2} y^{s+v}+\alpha_{2} x^{r+u-3} y^{s+v+1}+\cdots,
\end{aligned}
$$

for some α_{j}. If $\operatorname{st}_{1,1}(P) \nsim \operatorname{st}_{1,1}(Q)$, then $r v-u s \neq 0$ and from Proposition 1.2 we obtain $\ell_{1,1}([P, Q])=\left[\ell_{1,1}(P), \ell_{1,1}(Q)\right]$. Consequently we get

$$
\mathrm{st}_{1,1}([P, Q])=(r+u-1, s+v-1)=\mathrm{st}_{1,1}(P)+\mathrm{st}_{1,1}(Q)-(1,1)
$$

as desired.
Remark 1.4. Let $(\rho, \sigma) \in \mathfrak{V}$ and let $P, F \in L \backslash\{0\}$ be (ρ, σ)-homogeneous such that $[F, P]=P$. If F is a monomial, then $F=\lambda x y$ with $\lambda \in K^{\times}$, and either we have $\rho+\sigma=0$ or P is also a monomial.

The following theorem is an important tool in the constructions of [2]. It is the only result we use that is not straightforward.

Theorem 1.5 (Theorem 2.6 in [2]). Let $P \in L$ and let $(\rho, \sigma) \in \mathfrak{V}$ be such that $\rho+\sigma>0$ and $v_{\rho, \sigma}(P)>0$. If $[P, Q] \in K^{\times}$for some $Q \in L$, then there exists a (ρ, σ)-homogeneous element $F \in L$ such that

$$
v_{\rho, \sigma}(F)=\rho+\sigma \quad \text { and } \quad\left[F, \ell_{\rho, \sigma}(P)\right]=\ell_{\rho, \sigma}(P) .
$$

If I is an interval in \mathfrak{V} and if there is no closed half circle contained in I, then for all $(\rho, \sigma),\left(\rho_{1} \sigma_{1}\right) \in I$ we have

$$
\left(\rho_{1}, \sigma_{1}\right)<(\rho, \sigma) \text { if and only if }\left(\rho_{1}, \sigma_{1}\right) \times(\rho, \sigma)>0
$$

Proposition 1.6 (Proposition 3.6 in [2]). Let $P \in L \backslash\{0\}$ and let (ρ_{1}, σ_{1}) and $\left(\rho_{2}, \sigma_{2}\right)$ be consecutive elements in $\operatorname{Dir}(P)$. Then we have

$$
\operatorname{en}_{\rho_{1}, \sigma_{1}}(P)=\operatorname{Supp}\left(\ell_{\rho, \sigma}(P)\right)=\operatorname{st}_{\rho_{2}, \sigma_{2}}(P)
$$

for each (ρ, σ) such that $\left(\rho_{1}, \sigma_{1}\right)<(\rho, \sigma)<\left(\rho_{2}, \sigma_{2}\right)$.
Proposition 1.7 (Proposition 3.10 in [2]). Let $P, Q \in L$ and $\varphi: L \rightarrow L$ be an algebra morphism. Then

$$
[\varphi(P), \varphi(Q)]=\varphi([P, Q])[\varphi(x), \varphi(y)]
$$

2. Jung's Theorem

Now we start our proof of Jung's theorem.
Lemma 2.1. Take $f \in \operatorname{Aut}(L)$ and set $P=f(x)$. If

$$
(a, b) \in\left\{\mathrm{en}_{1,1}(P), \mathrm{st}_{1,1}(P)\right\}
$$

then $a=0$ or $b=0$.

Jorge A. Guccione, Juan J. Guccione and Christian Valqui

Proof. We will prove only the case $(a, b)=\mathrm{st}_{1,1}(P)$, since the argument in the other case is the same. Assume $a \geq b>0$. We set $R_{0}=x$ and $R_{j}=\left[R_{j-1}, P\right]$ for $j>0$. Then we have

$$
\mathrm{st}_{1,1}\left(R_{0}\right)=(1,0) \nsim(a, b)=\mathrm{st}_{1,1}(P)
$$

and so, by Proposition 1.3(1) we also have

$$
\mathrm{st}_{1,1}\left(R_{1}\right)=(1,0)+(a, b)-(1,1)=(a, b-1)
$$

which is not aligned to (a, b). Increasing k and using Proposition 1.3(1) again and again one obtains inductively

$$
\mathrm{st}_{1,1}\left(R_{k}\right)=(k a-k+1, k b-k),
$$

since $(k a-k+1, k b-k) \nsim(a, b)$ holds for all $k \geq 1$. Hence, we conclude $R_{k} \neq 0$ for all k. But this is impossible by the following argument. since $x \in K[P, Q]$, we can write $x=\sum_{i, j} a_{i, j} P^{i} Q^{j}$. For $\lambda=[Q, P] \in K^{\times}$, we have $R_{1}=\lambda \sum_{i, j} j a_{i, j} P^{i} Q^{j-1}$, so the maximal power of Q decreases. Eventually it is zero for some R_{k}, and then $R_{k+1}=0$.

If $b \geq a>0$, then we set $R_{0}=y$ and $R_{j+1}=\left[R_{j}, P\right]$, and the same argument yields a contradiction. Hence we must have $a=0$ or $b=0$, as claimed.

The following proposition shows that for an automorphism f there can be only one factor at infinity, or equivalently, that $\ell_{1,1}(f(x))$ is the power of one linear factor.

Proposition 2.2. Let $f: L \rightarrow L$ be an automorphism and set $P=$ $f(x)$. Then we have either $\operatorname{Supp}\left(\ell_{1,1}(P)\right)=\{(a, 0)\}$ or $\operatorname{Supp}\left(\ell_{1,1}(P)\right)=$ $\{(0, a)\}$ or $\ell_{1,1}(P)=\mu(x-\lambda y)^{a}$; here $a=v_{1,1}(P)$ and $\mu, \lambda \in K^{\times}$.

Proof. Without loss of generality we assume that K is algebraically closed. Suppose $a=v_{1,1}(P)>0$ and write $\ell_{1,1}(P)=x^{a} p(z)$, where $z=x^{-1} y$ and $p(z) \in K[z]$. Let b denote $\operatorname{deg}(p(z))$. If $0<b<a$, then $\mathrm{en}_{1,1}(P)=(a, 0)+b(-1,1)=(a-b, b)$, which contradicts Lemma 2.1.

On the other hand, if $\operatorname{deg}(p)=0$, then we get $\operatorname{Supp}\left(\ell_{1,1}(P)\right)=\{(a, 0)\}$. So we are reduced to consider the case $\operatorname{deg}(p(z))=a$. If we have neither

$$
\operatorname{Supp}\left(\ell_{1,1}(P)\right)=\{(0, a)\} \quad \text { nor } \quad \ell_{1,1}(P)=\mu(x-\lambda y)^{a}
$$

then $p(z)=\mu \prod_{i=1}^{k}\left(z-\lambda_{i}\right)^{m_{i}}$ has a root $\lambda_{i_{0}}$ with multiplicity $0<m_{i_{0}}<a$.
But then the automorphism φ given by $\varphi(x)=x$ and $\varphi(y)=y+\lambda_{i_{0}} x$ yields

$$
\ell_{1,1}(\varphi(P))=\varphi\left(\ell_{1,1}(P)\right)=x^{a} p\left(z+\lambda_{i_{0}}\right)=\mu x^{a} z^{m_{i_{0}}} \prod_{\substack{i=1 \\ i \neq i_{0}}}^{k}\left(z-\bar{\lambda}_{i}\right)^{m_{i}}
$$

where $\bar{\lambda}_{i}=\lambda_{i}-\lambda_{i_{0}}$ and $\prod_{\substack{i=1 \\ i \neq i_{0}}}^{k} \bar{\lambda}_{i}^{m_{i}} \neq 0$. This implies

$$
\mathrm{st}_{1,1}(\varphi(P))=(a, 0)+m_{i_{0}}(-1,1)=\left(a-m_{i_{0}}, m_{i_{0}}\right)
$$

where $a-m_{i_{0}} \neq 0$ and $m_{i_{0}} \neq 0$, which contradicts Lemma 2.1 and concludes the proof.

Theorem 2.3. Each automorphism $f: L \rightarrow L$ is a composition of elementary automorphisms and linear automorphisms.

Proof. Set $P=f(x)$. If $\operatorname{deg}(P)=1$, then we can assume $P=x$, and then we have $f(y)=\lambda y+q(x)$ since $[f(x), f(y)] \in K^{\times}$. It follows that f is the composition of elementary automorphisms and linear automorphisms. Therefore it suffices to prove that if $\operatorname{deg}(P)>1$, then there exists a map φ, which is a composition of elementary automorphisms, such that $\operatorname{deg}(\varphi(P))<\operatorname{deg}(P)$. By Proposition 2.2 we have either $\operatorname{Supp}\left(\ell_{1,1}(P)\right)=\{(a, 0)\}, \operatorname{Supp}\left(\ell_{1,1}(P)\right)=\{(0, a)\}$ or $\ell_{1,1}(P)=$ $\mu(x-\lambda y)^{a}$, here $a=\operatorname{deg}(P)$ and $\mu, \lambda \in K^{\times}$. Actually we can assume (and we do it) that we have

$$
\begin{equation*}
\operatorname{Supp}\left(\ell_{1,1}(P)\right)=\{(a, 0)\} \tag{2.1}
\end{equation*}
$$

Jorge A. Guccione, Juan J. Guccione and Christian Valqui

In fact, if $\operatorname{Supp}\left(\ell_{1,1}(P)\right)=\{(0, a)\}$, then we apply the automorphism given by $x \mapsto y$ and $y \mapsto-x$, which is a composition of elementary automorphisms, and if $\ell_{1,1}(P)=\mu(x-\lambda y)^{a}$, we apply the elementary automorphism given by $x \mapsto x+\lambda y$ and $y \mapsto y$.

Moreover, since we have $[P, f(y)] \in K^{\times}$, it is impossible to have $P=\mu X^{a}$, and so P is not a monomial.

Let (ρ, σ) be the successor of $(1,1)$, which is the first element of $\operatorname{Dir}(P)$ that one encounters starting from $(1,1)$ and running counterclockwise.

If $(\rho, \sigma) \geq(0,1)$, then from Proposition 1.6 we obtain $(a, 0)=$ st $_{0,1}(P)$, and then for all $(i, j) \in \operatorname{Supp}(P)$ we have $j=v_{0,1}(i, j) \leq$ $v_{0,1}(a, 0)=0$, which implies $P \in K[x]$. Hence, since $[P, f(y)] \in K^{\times}$, we have $\operatorname{deg}(P)=1$.

It remains to consider the case $(1,1)<(\rho, \sigma)<(0,1)$, or, equivalently, $\sigma>\rho>0$. By Theorem 1.5 we know that there exists a (ρ, σ) homogenous element $F \in K[x, y]$ such that

$$
\left[F, \ell_{\rho, \sigma}(P)\right]=\ell_{\rho, \sigma}(P) \quad \text { and } \quad v_{\rho, \sigma}(F)=\rho+\sigma .
$$

For all $(i, j) \in \operatorname{Supp}(F)$ we have $\rho i+\sigma j=\rho+\sigma$ and so

$$
\begin{equation*}
(1-i) \rho=(j-1) \sigma . \tag{2.2}
\end{equation*}
$$

Hence $j>1$ is impossible and if $j=1$, then $i=1$. Since $\ell_{\rho, \sigma}(P)$ is not a monomial, we know from Remark 1.4 that F has at least two points in its support. Hence we get $(1,1) \in \operatorname{Supp}(F)$ and there must be a point of the form $(i, 0) \in \operatorname{Supp}(F)$. Using this and Equality (2.2), we obtain $\sigma=(i-1) \rho$, which implies $\rho=1$, since ρ and σ are coprime. Hence $F=\mu x\left(y+\lambda x^{\sigma}\right)$ for some $\mu, \lambda \in K^{\times}$. Moreover, since st $\operatorname{sp}_{\rho, \sigma}(P)=(a, 0)$, there exists $p(z) \in K[z]$ such that $\ell_{\rho, \sigma}(P)=x^{a} p(z)$, where $z=y x^{-\sigma}$. Note also that $\operatorname{deg}(p(z))>0$ is satisfied, since $\ell_{\rho, \sigma}(P)$ is not a monomial.

Consider now the elementary automorphism φ given by $\varphi(x)=x$ and $\varphi(y)=y-\lambda x^{\sigma}$. Since φ is (ρ, σ)-homogenous we have

$$
\begin{equation*}
\ell_{\rho, \sigma}(\varphi(P))=\varphi\left(\ell_{\rho, \sigma}(P)\right)=\varphi\left(x^{a} p(z)\right)=x^{a} p(z-\lambda) \tag{2.3}
\end{equation*}
$$

On the other hand, by Proposition 1.7, we get

$$
\left[\varphi(F), \ell_{\rho, \sigma}(\varphi(P))\right]=\left[\varphi(F), \varphi\left(\ell_{\rho, \sigma}(P)\right)\right]=\varphi\left(\ell_{\rho, \sigma}(P)\right)=\ell_{\rho, \sigma}(\varphi(P))
$$

Since $\varphi(F)=\mu x y$, from Remark 1.4, it follows that $\ell_{\rho, \sigma}(\varphi(P))$ is a monomial. Hence, by (2.3), we have

$$
\ell_{\rho, \sigma}(\varphi(P))=\mu_{p} x^{a} z^{N}
$$

and so, also $(a, 0) \notin \operatorname{Supp}(\varphi(P))$. Now, for $(i, j) \in \operatorname{Supp}(\varphi(P))$, we have

$$
\begin{aligned}
v_{1,1}(i, j) & =i+j \\
& \leq i+\sigma j=v_{\rho, \sigma}(i, j) \\
& \leq v_{\rho, \sigma}(\varphi(P))=v_{\rho, \sigma}(P)=v_{\rho, \sigma}(a, 0)=a=v_{1,1}(P)
\end{aligned}
$$

where the last equality follows from (2.1). Furthermore, the equality would be possible only if $j=0$ and $i=a$, but just prove above that $(i, j) \neq(a, 0)$ is satisfied. Hence we get $v_{1,1}(\varphi(P))<v_{1,1}(P)$, as desired.

References

[1] Abhyankar, Shreeram S., Moh, Tzuong Tsieng. Embeddings of the line in the plane. J. Reine Angew. Math, 276, (1975), pp. 148-166.
[2] Guccione, Jorge Alberto; Guccione, Juan José; Valqui, Christian. On the shape of possible counterexamples to the Jacobian conjecture. J. Algebra, 471 (2017), pp. 13-74.
[3] Gutwirth, A. An inequality for certain pencils of plane curves. Proc. Amer. Math. Soc.,12,(1961),pp. 631-638.
[4] Joseph, A. The Weyl algebra - semisimple and nilpotent elements. American Journal of Mathematics,97,(1975),pp. 597-615.

Jorge A. Guccione, Juan J. Guccione and Christian Valqui
[5] Jung, Heinrich W. E. Über ganze birationale Transformationen der Ebene. J. Reine Angew. Math,184,(1942),pp. 161-174.
[6] Makar-Limanov, Leonid On the Newton polygon of a Jacobian mate. Max-Planck-Institut für Mathematik Preprint Series 2013 (53)
[7] McKay, James H.,Wang, Stuart Sui Sheng An elementary proof of the automorphism theorem for the polynomial ring in two variables. J. Pure Appl. Algebra,52,(1988), no 1-2, pp. 91-102.
[8] Nagata, Masayoshi On automorphism group of $k[x, y]$. Kinokuniya Book-Store Co., Ltd., Tokyo, 1972. Department of Mathematics, Kyoto University, Lectures in Mathematics, No. 5
[9] Nguyen Van Chau A simple proof of Jung's theorem on polynomial automorphisms of \mathbf{C}^{2}. Acta Math. Vietnam,28,(2003), no 2, pp. 209214.
[10] Rentschler, Rudolf Opérations du groupe additif sur le plan affine. C. R. Acad. Sci. Paris Sér. A-B,267,(1968), no 2, pp. A384A387.
[11] van der Kulk, W. On polynomial rings in two variables. Nieuw Arch. Wiskunde (3),1,(1953), no 1-2, pp. 33-41.

Resumen

Presentaremos una prueba corta y elemental del teorema de Jung. Este teorema establece que para un cuerpo K de característica cero los automorfismos de $K[x, y]$ son generados por automorfismos lineales y los llamados elementales.

Palabras clave: Conjetura del jacobiano, teorema de Jung.

Jorge A. Guccione
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales-UBA,
Pabellón 1-Ciudad Universitaria
Intendente Guiraldes 2160 (C1428EGA) Buenos Aires, Argentina.
Instituto de Investigaciones Matemáticas "Luis A. Santalo""
Facultad de Ciencias Exactas y Naturales-UBA, Pabellón 1-Ciudad Universitaria
Intendente Guiraldes 2160 (C1428EGA) Buenos Aires, Argentina. vander@dm.uba.ar
Juan J. Guccione
Departamento de Matemática
Facultad de Ciencias Exactas y Naturales-UBA
Pabellón 1-Ciudad Universitaria
Intendente Guiraldes 2160 (C1428EGA) Buenos Aires, Argentina.
Instituto Argentino de Matemática-CONICET
Saavedra 15, 3er piso (C1083ACA) Buenos Aires, Argentina.
jjgucci@dm.uba.ar
Christian Valqui
Pontificia Universidad Católica del Perú
Sección Matemáticas
Av. Universitaria 1801, San Miguel, Lima 32, Perú.
Instituto de Matemática y Ciencias Afines (IMCA)
Calle Los Biólogos 245. Urb San César. La Molina, Lima 12, Perú.
cvalqui@pucp.edu.pe

[^0]: ${ }^{1}$ Universidad de Buenos Aires.
 ${ }^{2}$ Pontificia Universidad Católica del Perú.
 ${ }^{3}$ Instituto de Matemática y Ciencias Afines.
 ${ }^{4}$ Supported by UBACYT 095, PIP 112-200801-00900 (CONICET).
 5 Supported by PUCP-DGI-2013-3036.

