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Abstract

We give a short and elementary proof of Jung’s theorem, which states
that for a field K of characteristic zero the automorphisms of K[x, y] are
generated by elementary automorphisms and linear automorphisms.
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Introduction

The theorem of Jung [5] states that if K is a field of characteristic
zero, then any automorphism of L = K[x, y] is the finite composition
of elementary automorphisms (given by x 7→ x, y 7→ y + p(x) or by
y 7→ y, x 7→ x + p(y)) and linear automorphisms. Many authors have
given proofs of this fact, for example [1], [3], [7], [8], [9], [10] and [11].
The last and very short and elegant proof is given in [6], proof that works
in every algebraically closed field of characteristic zero. The key step in
the proof of [6] is the same as in ours: In the situation of the figure

(ρ,σ)

`ρ,σ(P )

x

y

F

there exists a polynomial F (called ζ in [6]) such that F = µx(y + λxσ)
with [F, `ρ,σ(P )] = `ρ,σ(P ). Then we apply ϕ given by ϕ(x) = x and
ϕ(y) = y − λxσ and obtain deg(ϕ(P )) < deg(P ). Here [P,Q] stands
for the determinant of the jacobian matrix of two polynomials P,Q and
`ρ,σ(P ) is the leading form of P with respect to the weight (ρ, σ).

To our knowledge our proof is the shortest and simplest (except for
that of [6]), and Theorem 1.5 is the only fact we use that is not straight-
forward nor elementary. The element F can be traced back to 1975 in [4].
In order to obtain a proof for a field that is not necessarily algebraically
closed, we have to prove that for a polynomial automorphism there can
be only one point at infinity, which we do in Proposition 2.2.
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1. Preliminaries

We first gather notation and results of [2]. We define the set of directions
by

V = {(ρ, σ) ∈ Z2 : gcd(ρ, σ) = 1}.

For all (ρ, σ) ∈ V and (i, j) ∈ Z×Z we write vρ,σ(i, j) = ρi+ σj and for
P =

∑
ai,jx

iyj ∈ L \ {0}, we define

• the support of P as Supp(P ) = {(i, j) : ai,j 6= 0};

• the (ρ, σ)-degree of P as vρ,σ(P ) = max {vρ,σ(i, j) : ai,j 6= 0};

• the (ρ, σ)-leading term of P as `ρ,σ(P ) =
∑

{ρi+σj=vρ,σ(P )}

ai,jx
iyj .

We also set `ρ,σ(0) = 0.

We say that P ∈ L is (ρ, σ)-homogeneous if P = `ρ,σ(P ). We assign
to each direction its corresponding unit vector in S1, and we define an
interval in V as the preimage under this map of an arc of S1 that is not
the whole circle. We consider each interval endowed with the order that
increases counterclockwise.

For each P ∈ L\{0}, we let H(P ) denote the Newton polygon of P .
It is evident that each one of its edges is the convex hull of the support of
`ρ,σ(P ), where (ρ, σ) is orthogonal to the given edge and points outside
of H(P ). These directions form the set

Dir(P ) = {(ρ, σ) ∈ V : # Supp(`ρ,σ(P )) > 1}.

Notation 1.1. Let (ρ, σ) ∈ V arbitrary. We let stρ,σ(P ) and enρ,σ(P )
denote the first and the last point that we find on H(`ρ,σ(P )) when
we run counterclockwise along the boundary of H(P ). Note that these
points coincide when `ρ,σ(P ) is a monomial.

We say that two vectors A,B ∈ R2 are aligned, and write A ∼ B, if
we have 0 = A×B = det

( a1 a2
b1 b2

)
, where A = (a1, a2) and B = (b1, b2).
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Proposition 1.2 (Proposition 1.13 in [2]). Let P,Q ∈ L \ {0} and let
(ρ, σ) be a direction. If [`ρ,σ(P ), `ρ,σ(Q)] 6= 0 then [`ρ,σ(P ), `ρ,σ(Q)] =
`ρ,σ([P,Q]). �

The next result is in the spirit of [2, Proposition 2.4].

Proposition 1.3. Let P,Q ∈ L \ {0}.

If st1,1(P ) � st1,1(Q) then st1,1(P ) + st1,1(Q)− (1, 1) = st1,1([P,Q]).

If en1,1(P ) � en1,1(Q) then en1,1(P ) + en1,1(Q)− (1, 1) = en1,1([P,Q]).

Proof. We only prove the first statement, the other one is similar. Write

`1,1(P ) = a0x
rys + a1x

r−1ys+1 + · · ·+ anx
r−nys+n

and
`1,1(Q) = b0x

uyv + · · ·+ bmx
u−myv+m,

with a0, b0 6= 0. Then st1,1(P ) = (r, s), st1,1(Q) = (u, v) and

[`1,1(P ), `1,1(Q)] = a0b0(rv − us)xr+u−1ys+v−1+

+α1x
r+u−2ys+v + α2x

r+u−3ys+v+1 + · · · ,

for some αj . If st1,1(P ) � st1,1(Q), then rv − us 6= 0 and from Propo-
sition 1.2 we obtain `1,1([P,Q]) = [`1,1(P ), `1,1(Q)]. Consequently we
get

st1,1([P,Q]) = (r + u− 1, s+ v − 1) = st1,1(P ) + st1,1(Q)− (1, 1),

as desired.

Remark 1.4. Let (ρ, σ) ∈ V and let P, F ∈ L\{0} be (ρ, σ)-homogeneous
such that [F, P ] = P . If F is a monomial, then F = λxy with λ ∈ K×,
and either we have ρ+ σ = 0 or P is also a monomial.

The following theorem is an important tool in the constructions
of [2]. It is the only result we use that is not straightforward.
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Theorem 1.5 (Theorem 2.6 in [2]). Let P ∈ L and let (ρ, σ) ∈ V be
such that ρ + σ > 0 and vρ,σ(P ) > 0. If [P,Q] ∈ K× for some Q ∈ L,
then there exists a (ρ, σ)-homogeneous element F ∈ L such that

vρ,σ(F ) = ρ+ σ and [F, `ρ,σ(P )] = `ρ,σ(P ).

�

If I is an interval in V and if there is no closed half circle contained
in I, then for all (ρ, σ), (ρ1σ1) ∈ I we have

(ρ1, σ1) < (ρ, σ) if and only if (ρ1, σ1)× (ρ, σ) > 0.

Proposition 1.6 (Proposition 3.6 in [2]). Let P ∈L\{0} and let (ρ1, σ1)
and (ρ2, σ2) be consecutive elements in Dir(P ). Then we have

enρ1,σ1(P ) = Supp(`ρ,σ(P )) = stρ2,σ2(P )

for each (ρ, σ) such that (ρ1, σ1) < (ρ, σ) < (ρ2, σ2). �

Proposition 1.7 (Proposition 3.10 in [2]). Let P,Q ∈ L and ϕ : L→ L

be an algebra morphism. Then

[ϕ(P ), ϕ(Q)] = ϕ([P,Q])[ϕ(x), ϕ(y)].

�

2. Jung’s Theorem

Now we start our proof of Jung’s theorem.

Lemma 2.1. Take f ∈ Aut(L) and set P = f(x). If

(a, b) ∈ {en1,1(P ), st1,1(P )},

then a = 0 or b = 0.
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Proof. We will prove only the case (a, b) = st1,1(P ), since the argument
in the other case is the same. Assume a ≥ b > 0. We set R0 = x and
Rj = [Rj−1, P ] for j > 0. Then we have

st1,1(R0) = (1, 0) � (a, b) = st1,1(P ),

and so, by Proposition 1.3(1) we also have

st1,1(R1) = (1, 0) + (a, b)− (1, 1) = (a, b− 1),

which is not aligned to (a, b). Increasing k and using Proposition 1.3(1)
again and again one obtains inductively

st1,1(Rk) = (ka− k + 1, kb− k),

since (ka−k+ 1, kb−k) � (a, b) holds for all k ≥ 1. Hence, we conclude
Rk 6= 0 for all k. But this is impossible by the following argument. since
x ∈ K[P,Q], we can write x =

∑
i,j ai,jP

iQj . For λ = [Q,P ] ∈ K×,
we have R1 = λ

∑
i,j jai,jP

iQj−1, so the maximal power of Q decreases.
Eventually it is zero for some Rk, and then Rk+1 = 0.

If b ≥ a > 0, then we set R0 = y and Rj+1 = [Rj , P ], and the same
argument yields a contradiction. Hence we must have a = 0 or b = 0, as
claimed.

The following proposition shows that for an automorphism f there
can be only one factor at infinity, or equivalently, that `1,1(f(x)) is the
power of one linear factor.

Proposition 2.2. Let f : L → L be an automorphism and set P =
f(x). Then we have either Supp(`1,1(P )) = {(a, 0)} or Supp(`1,1(P )) =
{(0, a)} or `1,1(P ) = µ(x− λy)a; here a = v1,1(P ) and µ, λ ∈ K×.

Proof. Without loss of generality we assume that K is algebraically
closed. Suppose a = v1,1(P ) > 0 and write `1,1(P ) = xap(z), where
z = x−1y and p(z) ∈ K[z]. Let b denote deg(p(z)). If 0 < b < a, then
en1,1(P ) = (a, 0) + b(−1, 1) = (a − b, b), which contradicts Lemma 2.1.
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On the other hand, if deg(p) = 0, then we get Supp(`1,1(P )) = {(a, 0)}.
So we are reduced to consider the case deg(p(z)) = a. If we have neither

Supp(`1,1(P )) = {(0, a)} nor `1,1(P ) = µ(x− λy)a,

then p(z) = µ

k∏
i=1

(z−λi)mi has a root λi0 with multiplicity 0 < mi0 < a.

But then the automorphism ϕ given by ϕ(x) = x and ϕ(y) = y + λi0x

yields

`1,1(ϕ(P )) = ϕ(`1,1(P )) = xap(z + λi0) = µxazmi0
k∏
i=1
i6=i0

(z − λi)mi ,

where λi = λi − λi0 and
k∏
i=1
i6=i0

λ
mi
i 6= 0. This implies

st1,1(ϕ(P )) = (a, 0) +mi0(−1, 1) = (a−mi0 ,mi0),

where a − mi0 6= 0 and mi0 6= 0, which contradicts Lemma 2.1 and
concludes the proof.

Theorem 2.3. Each automorphism f : L → L is a composition of
elementary automorphisms and linear automorphisms.

Proof. Set P = f(x). If deg(P ) = 1, then we can assume P = x,
and then we have f(y) = λy + q(x) since [f(x), f(y)] ∈ K×. It follows
that f is the composition of elementary automorphisms and linear au-
tomorphisms. Therefore it suffices to prove that if deg(P ) > 1, then
there exists a map ϕ, which is a composition of elementary automor-
phisms, such that deg(ϕ(P )) < deg(P ). By Proposition 2.2 we have
either Supp(`1,1(P )) = {(a, 0)}, Supp(`1,1(P )) = {(0, a)} or `1,1(P ) =
µ(x − λy)a, here a = deg(P ) and µ, λ ∈ K×. Actually we can assume
(and we do it) that we have

Supp(`1,1(P )) = {(a, 0)}. (2.1)
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In fact, if Supp(`1,1(P )) = {(0, a)}, then we apply the automorphism
given by x 7→ y and y 7→ −x, which is a composition of elementary
automorphisms, and if `1,1(P ) = µ(x − λy)a, we apply the elementary
automorphism given by x 7→ x+ λy and y 7→ y.

Moreover, since we have [P, f(y)] ∈ K×, it is impossible to have
P = µXa, and so P is not a monomial.

Let (ρ, σ) be the successor of (1, 1), which is the first element of
Dir(P ) that one encounters starting from (1, 1) and running counter-
clockwise.

If (ρ, σ) ≥ (0, 1), then from Proposition 1.6 we obtain (a, 0) =
st0,1(P ), and then for all (i, j) ∈ Supp(P ) we have j = v0,1(i, j) ≤
v0,1(a, 0) = 0, which implies P ∈ K[x]. Hence, since [P, f(y)] ∈ K×, we
have deg(P ) = 1.

It remains to consider the case (1, 1) < (ρ, σ) < (0, 1), or, equiva-
lently, σ > ρ > 0. By Theorem 1.5 we know that there exists a (ρ, σ)-
homogenous element F ∈ K[x, y] such that

[F, `ρ,σ(P )] = `ρ,σ(P ) and vρ,σ(F ) = ρ+ σ.

For all (i, j) ∈ Supp(F ) we have ρi+ σj = ρ+ σ and so

(1− i)ρ = (j − 1)σ. (2.2)

Hence j > 1 is impossible and if j = 1, then i = 1. Since `ρ,σ(P ) is not
a monomial, we know from Remark 1.4 that F has at least two points
in its support. Hence we get (1, 1) ∈ Supp(F ) and there must be a point
of the form (i, 0) ∈ Supp(F ). Using this and Equality (2.2), we obtain
σ = (i − 1)ρ, which implies ρ = 1, since ρ and σ are coprime. Hence
F = µx(y+λxσ) for some µ, λ ∈ K×. Moreover, since stρ,σ(P ) = (a, 0),
there exists p(z) ∈ K[z] such that `ρ,σ(P ) = xap(z), where z = yx−σ.
Note also that deg(p(z)) > 0 is satisfied, since `ρ,σ(P ) is not a monomial.

Consider now the elementary automorphism ϕ given by ϕ(x) = x

and ϕ(y) = y − λxσ. Since ϕ is (ρ, σ)-homogenous we have

`ρ,σ(ϕ(P )) = ϕ(`ρ,σ(P )) = ϕ(xap(z)) = xap(z − λ). (2.3)
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On the other hand, by Proposition 1.7, we get

[ϕ(F ), `ρ,σ(ϕ(P ))] = [ϕ(F ), ϕ(`ρ,σ(P ))] = ϕ(`ρ,σ(P )) = `ρ,σ(ϕ(P )).

Since ϕ(F ) = µxy, from Remark 1.4, it follows that `ρ,σ(ϕ(P )) is a
monomial. Hence, by (2.3), we have

`ρ,σ(ϕ(P )) = µpx
azN ,

and so, also (a, 0) 6∈ Supp(ϕ(P )). Now, for (i, j) ∈ Supp(ϕ(P )), we have

v1,1(i, j) = i+ j

≤ i+ σj = vρ,σ(i, j)

≤ vρ,σ(ϕ(P )) = vρ,σ(P ) = vρ,σ(a, 0) = a = v1,1(P ),

where the last equality follows from (2.1). Furthermore, the equality
would be possible only if j = 0 and i = a, but just prove above that
(i, j) 6= (a, 0) is satisfied. Hence we get v1,1(ϕ(P )) < v1,1(P ), as desired.
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Resumen

Presentaremos una prueba corta y elemental del teorema de Jung. Este
teorema establece que para un cuerpo K de caracteŕıstica cero los au-
tomorfismos de K[x, y] son generados por automorfismos lineales y los
llamados elementales.

Palabras clave: Conjetura del jacobiano, teorema de Jung.
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