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Abstract

We give a short and elementary proof of Jung’s theorem, which states
that for a field K of characteristic zero the automorphisms of K|x,y] are
generated by elementary automorphisms and linear automorphisms.
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Introduction

The theorem of Jung [5] states that if K is a field of characteristic
zero, then any automorphism of L = K[x,y] is the finite composition
of elementary automorphisms (given by z — x, y — y + p(x) or by
y —y, x — x+ p(y)) and linear automorphisms. Many authors have
given proofs of this fact, for example [1], [3], [7], [8], [9], [10] and [11].
The last and very short and elegant proof is given in [6], proof that works
in every algebraically closed field of characteristic zero. The key step in
the proof of [6] is the same as in ours: In the situation of the figure

Y

there exists a polynomial F' (called ¢ in [6]) such that F = px(y + A\x?)
with [F,{, -(P)] = {,,(P). Then we apply ¢ given by ¢(z) = x and
o(y) = y — Az? and obtain deg(p(P)) < deg(P). Here [P, Q)] stands
for the determinant of the jacobian matrix of two polynomials P, Q and
¢, (P) is the leading form of P with respect to the weight (p, o).

To our knowledge our proof is the shortest and simplest (except for
that of [6]), and Theorem 1.5 is the only fact we use that is not straight-
forward nor elementary. The element F' can be traced back to 1975 in [4].
In order to obtain a proof for a field that is not necessarily algebraically
closed, we have to prove that for a polynomial automorphism there can
be only one point at infinity, which we do in Proposition 2.2.
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1. Preliminaries

We first gather notation and results of [2]. We define the set of directions
by

U= {(p,0) € Z* : ged(p,0) = 1}.

For all (p,0) € U and (i,7) € Z x Z we write v, ,(i,7) = pi+oj and for
P =73 a;;x'yl € L\ {0}, we define

e the support of P as Supp(P) = {(4,7) : a; ; # 0};
o the (p,0)-degree of P as v, ,(P) = max {v,,(i,7) : a;; # 0};

o the (p,0)-leading term of P as £, ,(P) = Z a; 'y’
{pi+0'j:Up,a(P)}

We also set ¢, ,(0) = 0.

We say that P € L is (p, 0)-homogeneous if P = £, ,(P). We assign
to each direction its corresponding unit vector in S', and we define an
interval in U as the preimage under this map of an arc of S' that is not
the whole circle. We consider each interval endowed with the order that
increases counterclockwise.

For each P € L\ {0}, we let H(P) denote the Newton polygon of P.
It is evident that each one of its edges is the convex hull of the support of
lpo(P), where (p,0) is orthogonal to the given edge and points outside
of H(P). These directions form the set

Dir(P) = {(p,) € T : # Supp(£,,0(P)) > 1}.

Notation 1.1. Let (p,0) € U arbitrary. We let st, ,(P) and en, ,(P)
denote the first and the last point that we find on H(¢,,(P)) when
we run counterclockwise along the boundary of H(P). Note that these
points coincide when £, ,(P) is a monomial.

We say that two vectors A, B € R? are aligned, and write A ~ B, if
we have 0 = A x B = det (le Z;), where A = (a1,a2) and B = (b1, ba).
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Proposition 1.2 (Proposition 1.13 in [2]). Let P,Q € L\ {0} and let
(p, o) be a direction. If £y 5(P), £, -(Q)] # 0 then [{, -(P),{p(Q)]
ep,a([Pv Q])

The next result is in the spirit of [2, Proposition 2.4].

oo

Proposition 1.3. Let P,Q € L\ {0}.
]f Stl,l(P) (2 Stl,l(Q) then Stlyl(P) + Stlyl(Q) - (1, ].) = Stlyl([P, Q])
If enl,l(P) e en171(Q) then en171(P) + enLl(Q) — (1, 1) = enLl([P, Q])

Proof. We only prove the first statement, the other one is similar. Write
gl,l(P) = aoxrys + alxr—lys+l NI anxr—nys+n

and
fl,l(Q) = boxuyv + .4 bml'u_my”"‘m,

with ag, by # 0. Then sty 1(P) = (r,s), st1,1(Q) = (u,v) and

[1,1(P), 01,1(Q)] = agbo(rv — us)z" "~ 1ysTv 14

r+u—2ys+v r+u—3, s+v+1 4.
)

+o1x + aox Y

)

for some . If sty 1(P) » st11(Q), then 7v — us # 0 and from Propo-
sition 1.2 we obtain 41 1([P,Q]) = [{1,1(P), ¢1,1(Q)]. Consequently we
get

st11([P,Q) =(r+u—1,s+v—1)=st11(P) +st11(Q) — (1,1),
as desired. O

Remark 1.4. Let (p,0) € Y and let P, F € L\{0} be (p, 0)-homogeneous
such that [F, P] = P. If F' is a monomial, then F' = Azy with A € K*|
and either we have p+ 0 =0 or P is also a monomial.

The following theorem is an important tool in the constructions
of [2]. It is the only result we use that is not straightforward.
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Theorem 1.5 (Theorem 2.6 in [2]). Let P € L and let (p,0) € U be
such that p+ o0 > 0 and v, ,(P) > 0. If [P,Q] € K* for some Q € L,
then there exists a (p,o)-homogeneous element F' € L such that

Vpo(F)=p+o and [F,{,,(P)]=/{,,(P).
O

If I is an interval in 2 and if there is no closed half circle contained
in I, then for all (p, o), (p101) € I we have

(p1,01) < (p,o) if and only if (p1,01) x (p, o) > 0.

Proposition 1.6 (Proposition 3.6 in [2]). Let P € L\{0} and let (p1,01)
and (p2,09) be consecutive elements in Dir(P). Then we have

€y, 04 (P) = Supp(epyff(P)) = Stpz,dfz (P)
for each (p, o) such that (p1,01) < (p,0) < (p2,02). O

Proposition 1.7 (Proposition 3.10 in [2]). Let P,Q € L and p: L — L
be an algebra morphism. Then

[p(P), p(Q)] = ([P, QDp(2), p(y)]-

2. Jung’s Theorem

Now we start our proof of Jung’s theorem.

Lemma 2.1. Toke f € Aut(L) and set P = f(z). If
(a,b) € {en1,1(P),st11(P)},

then a =0 or b =0.
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Proof. We will prove only the case (a,b) = sty 1(P), since the argument
in the other case is the same. Assume a > b > 0. We set Ry = = and
R; =[Rj_1, P] for j > 0. Then we have

St1,1(R0) = (1,0) lead (a,b) = S13171(1D)7
and so, by Proposition 1.3(1) we also have
St171(R1) = (170) + (avb) - (L 1) = (Cl,b - 1)7

which is not aligned to (a,b). Increasing k and using Proposition 1.3(1)
again and again one obtains inductively

st11(Re) = (ka —k+ 1,kb— k),

since (ka—k+1,kb—k) ~ (a,b) holds for all £k > 1. Hence, we conclude
Ry, # 0 for all k. But this is impossible by the following argument. since
z € K[P,QJ, we can write z = ), ;a; ;P'Q’. For A = [Q,P] € K*,
we have Ry = A Z” jai;P'Q771, so the maximal power of Q decreases.
Eventually it is zero for some Ry, and then Ri41 = 0.

If b > a > 0, then we set Ry =y and Rj+1 = [R;, P], and the same
argument yields a contradiction. Hence we must have a =0 or b =0, as
claimed. O

The following proposition shows that for an automorphism f there
can be only one factor at infinity, or equivalently, that ¢, 1(f(z)) is the
power of one linear factor.

Proposition 2.2. Let f : L — L be an automorphism and set P
f(x). Then we have either Supp(¢1,1(P)) = {(a,0)} or Supp(¢1,1(P))
{(0,a)} or l11(P) = p(x — \y)®; here a = v1,1(P) and p, A € K*.

Proof. Without loss of generality we assume that K is algebraically
closed. Suppose a = v;1(P) > 0 and write ¢; 1(P) = z%p(z), where
z =x 1ty and p(z) € K[z]. Let b denote deg(p(z)). If 0 < b < a, then
eny 1(P) = (a,0) + b(—1,1) = (a — b,b), which contradicts Lemma 2.1.
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On the other hand, if deg(p) = 0, then we get Supp(41,1(P)) = {(a,0)}.
So we are reduced to consider the case deg(p(z)) = a. If we have neither

Supp(41,1(P)) = {(0,a)} nor £1,1(P) = p(z — Ay)*,

k
then p(z) = ,uH(z—)\,»)mi has a root A;, with multiplicity 0 < m;, < a.
=1

But then the a:ltomorphism ¢ given by ¢(z) = z and o(y) = y + A,z
yields

k
01(p(P)) = @(f,1(P)) = 2%p(z + Nig) = pa®2™o T (2 = A)™,

i=1

i#ig

k
where \; = \; — \;, and H X" # 0. This implies
i=1

i#ig
Stl,l(SD(P)) = (a7 0) + mio(_17 1) = (a’ - mioamio)a

where a — m;, # 0 and m;, # 0, which contradicts Lemma 2.1 and
concludes the proof. O

Theorem 2.3. Fach automorphism f : L — L is a composition of
elementary automorphisms and linear automorphisms.

Proof. Set P = f(x). If deg(P) = 1, then we can assume P = =z,
and then we have f(y) = Ay + ¢(x) since [f(x), f(y)] € K*. It follows
that f is the composition of elementary automorphisms and linear au-
tomorphisms. Therefore it suffices to prove that if deg(P) > 1, then
there exists a map ¢, which is a composition of elementary automor-
phisms, such that deg(o(P)) < deg(P). By Proposition 2.2 we have
either Supp(¢11(P)) = {(a,0)}, Supp(411(P)) = {(0,a)} or {11(P) =
w(x — Ay)?®, here a = deg(P) and p, A € K*. Actually we can assume
(and we do it) that we have

Supp(£1,1(P)) = {(a,0)}. (2.1)
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In fact, if Supp(¢1,1(P)) = {(0,a)}, then we apply the automorphism
given by  — y and y — —z, which is a composition of elementary
automorphisms, and if ¢1 1(P) = p(x — Ay)®, we apply the elementary
automorphism given by z — x 4+ Ay and y — y.

Moreover, since we have [P, f(y)] € K*, it is impossible to have
P = p;X?, and so P is not a monomial.

Let (p,0) be the successor of (1,1), which is the first element of
Dir(P) that one encounters starting from (1,1) and running counter-
clockwise.

If (p,o) > (0,1), then from Proposition 1.6 we obtain (a,0) =
sto,1(P), and then for all (¢,j) € Supp(P) we have j = vg,1(i,j) <
vo1(a,0) = 0, which implies P € K[z]. Hence, since [P, f(y)] € K*, we
have deg(P) = 1.

It remains to consider the case (1,1) < (p,0) < (0,1), or, equiva-
lently, & > p > 0. By Theorem 1.5 we know that there exists a (p,o)-
homogenous element F' € K[z, y] such that

[F.lpyo(P))=4,5(P) and v,,(F)=p+o.
For all (4, ) € Supp(F) we have pi +0j = p+ o and so
(1= i)p=(j—1)o. (2:2)

Hence j > 1 is impossible and if j = 1, then ¢ = 1. Since £, ,(P) is not
a monomial, we know from Remark 1.4 that F' has at least two points
in its support. Hence we get (1,1) € Supp(F') and there must be a point
of the form (¢,0) € Supp(F). Using this and Equality (2.2), we obtain
o = (i — 1)p, which implies p = 1, since p and o are coprime. Hence
F = pax(y+ Ax?) for some p, A € K*. Moreover, since st, ,(P) = (a,0),
there exists p(z) € K|z| such that ¢, ,(P) = xz%p(z), where z = yz~°.
Note also that deg(p(z)) > 0 is satisfied, since ¢, ,(P) is not a monomial.

Consider now the elementary automorphism ¢ given by ¢(z) = =

and p(y) =y — Az?. Since ¢ is (p, o)-homogenous we have

oo (p(P)) = ¢(ly0(P)) = p(x°p(2)) = 2p(z = A). (2.3)
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On the other hand, by Proposition 1.7, we get

[ (F), £p.0(2(P))] = [o(F), p(£p,o(P))] = ¢(lp,0(P)) = £y, (0(P)).

Since p(F) = pay, from Remark 1.4, it follows that ¢, ,(p(P)) is a
monomial. Hence, by (2.3), we have

lpo((P)) = ppr®z™,
and so, also (a,0) € Supp(p(P)). Now, for (i,5) € Supp(¢(P)), we have
vi1(,7) =1+]
<i+oj=v,4(i,7)

< Vo (9(P)) = Up,0(P) = vp0(a,0) = a = v1,1(P),

where the last equality follows from (2.1). Furthermore, the equality
would be possible only if j = 0 and ¢ = a, but just prove above that
(i,J) # (a,0) is satisfied. Hence we get v1,1(p(P)) < v1,1(P), as desired.

O
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Resumen

Presentaremos una prueba corta y elemental del teorema de Jung. Este
teorema establece que para un cuerpo K de caracteristica cero los au-
tomorfismos de K|z,y| son generados por automorfismos lineales y los
llamados elementales.

Palabras clave: Conjetura del jacobiano, teorema de Jung.
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