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1 Model and results

Let (M, g) be a compact oriented two-dimensional Riemannian manifold

of genus different from one. Denote by vol the normalized volume form

associated to g and the orientation. Define the 2-form

Λ =
Ric g

2πχ(M)
, (1.1)

where Ric g is the Ricci curvature seen as a 2-form and χ(M) denotes the

Euler characteristic. More precisely, write Ric g = Kgvol, where Kg is

the Gaussian curvature of g, while the usual symmetric Ricci curvature

would be Kg g. We shall think of Λ as a signed measure.

It is known that there exists a continuous symmetric function

G : M ×M → R ∪ {∞}

such that the function Gx : M → R ∪ {∞} defined by Gx(y) = G(x, y)

is integrable and satisfies

∆Gx = −δx + Λ (1.2)

for every x ∈ M . More precisely, for every f ∈ C∞(M) and x ∈ M , we

have ∫
M

G(x, y)∆f(y) = −f(x) +

∫
M

f(y)dΛ(y), (1.3)

here ∆ : C∞(M)→ Ω2(M) is the usual Laplacian, i.e. ∆ = d ∗ d, where

∗ is the Hodge star operator and d is the exterior derivative. Moreover,

such G is unique up to an additive constant and we can choose G such

that ∫
M

G(x, y)dΛ(y) = 0 (1.4)

for every x ∈M . See [6] for a proof and more information.

Take an integer n ≥ 2. We consider a system of n indistinguishable

particles with total charge 1 interacting via the electrostatic force. In

other words, each particle has charge 1/n and the two-particle interaction
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potential is G. This means that the total energy will be Hn : Mn →
R ∪ {∞}, defined by

Hn(x1, ..., xn) =
1

n2

∑
i<j

G(xi, xj).

Choose a sequence of positive numbers {βn}n≥2 and a positive num-

ber β > 0 such that βn → β. We define the Gibbs non-normalized

measure associated to Hn and βn as the finite measure γn on Mn

given by

dγn = exp (−nβnHn) dvol⊗n.

The Gibbs probability measure will be the probability measure

Pn =
γn
Zn

,

where Zn = γn(Mn) is called the partition function. The probability

measure Pn describes a system of n particles with Hamiltonian Hn and

inverse temperature nβn.

For any metrizable compact space E we endow P(E), the space

of probability measures on E, with the smallest topology such that for

every continuous function f : E → R the application µ →
∫
E
fdµ is

continuous. We can see that this is again a metrizable compact space.

See Appendix for a short proof, and [5] for extra information. Further-

more, a sequence of probability measures on E, say {µn}n∈N, converges

to µ ∈ P(E) if and only if
∫
E
fdµn converges to

∫
E
fdµ for every con-

tinuous function f : E → R. In fact, it is enough to verify that
∫
E
fdµn

converges to
∫
E
fdµ for f belonging to a countable dense family of the

space of continuous functions with the uniform topology.

The spaceMn is to be ‘injected’ in P(M) by means of the continuous

application

in : Mn → P(M)

(x1, ..., xn) 7→ 1

n

n∑
i=1

δxi ,
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and we will study the limit of the sequence of probabilites in(Pn), the

pushforward laws of Pn.

Define the macroscopic energy as

W : P(M)→ R ∪ {∞}

µ 7→
∫
M×M

G(x, y) dµ(x) dµ(y),

and the free energy as

F : P(M)→ R ∪ {∞}

µ 7→ β

2
W (µ) +D (µ ‖ vol) ,

where D (µ ‖ vol) denotes the relative entropy of µ with respect to vol,

also known as the Kullback - Leibler divergence, defined by

D(µ‖vol) =

∫
M

log

(
dµ

dvol

)
dµ

if µ is absolutely continuous with respect to vol, and D(µ‖vol) = ∞
otherwise. Now we can state our main result.

Theorem 1.1 (Laplace principle). For every continuous f : P(M)→ R
we have the convergence

1

n
log

∫
Mn

e−nf◦indγn −−−−→
n→∞

− inf
µ∈P(M)

{f (µ) + F (µ)}.

To state a large deviation principle as an easy corollary we need to

define first the function

I : P(M)→ R ∪ {∞}
µ 7→ F (µ)− inf F.
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Corollary 1.2 (A large deviation principle). For every closed set C ⊂
P(M) we have

lim sup
n→∞

1

n
logPn(i−1n (C)) ≤ − inf

x∈C
I(x),

and for every open set O ⊂ P(M) we have

lim inf
n→∞

1

n
logPn(i−1n (O)) ≥ − inf

x∈O
I(x).

This tells us that to understand the limiting behavior of in(Pn) we

must study the free energy F . The first two main properties will be

studied in Section 2.

Proposition 1.3 (Convexity and lower semicontinuity of F ). The func-

tion F is strictly convex and lower semicontinuous.

Thus, F achieves its minimum at only one point. The following

theorem characterizes this minimum.

Theorem 1.4 (Minimum of F ). The function F achieves its minimum

at a probability measure µeq that is absolutely continuous with respect to

vol and such that ρ =
dµeq
dvol

is a C∞ strictly positive everywhere function

that satisfies the differential equation

∆ log ρ = β µeq − βΛ. (1.5)

Remark 1.5 (Equivalent formulation: equation on the Ricci curvature).

If we define the metric ω̄ = ρ g, we have that µeq is the volume form

associated to ω̄, and Equation 1.5 can be written as

Ric ω̄ =

(
2πχ(M) +

β

2

)
Ric g − β

2
µeq

(because of the identity ∆ log ρ = 2Ric g − 2Ric ω̄).

Finally, by Corollary 1.2 and an application of the Borel-Cantelli

lemma we get the following.
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David Garćıa Zelada

Corollary 1.6 (Convergence of the empirical measures). If {Xn}n≥2 is

a sequence of random elements in P(M) such that Xn ∼ in(Pn), then

Xn
a.s.−−→ µeq,

where µeq is the unique minimizer of F .

2 Lower semicontinuity and convexity of I

In this section we prove Proposition 1.3. It is well known that D(·‖vol) is

lower semicontinuous and strictly convex (see [9, Lemma 1.4.3]). What

we need to establish is lower semicontinuity and convexity for W .

Proof of the lower semicontinuity of W. For positive m set Gm(x, y) =

G(x, y) ∧m = min{G(x, y),m}. Then

µ 7→
∫
M×M

Gm(x, y) dµ(x) dµ(y)

is a continuous function of µ. As W is the increasing limit of functions

as m tends to infinity, we get that W is lower semicontinuous.

Proof of the convexity of W. To prove convexity it is enough to show

that for every µ, ν ∈ P(M) we have

W

(
1

2
µ+

1

2
ν

)
≤ 1

2
W (µ) +

1

2
W (ν) (2.1)

due to the lower semicontinuity of W . Inequality 2.1 is equivalent to

1

2
W (µ) +

1

2
W (ν) ≥

∫
M×M

G(x, y) dµ(x) dν(y). (2.2)

This inequality is easy to verify if µ and ν are differentiable, i.e., given

by differentiable forms. Indeed, in that case, the functions

f(x) =

∫
M

G(x, y) dµ(y) and g(x) =

∫
M

G(x, y) dν(y)
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satisfy

∆f = −µ+ Λ and ∆g = −ν + Λ

because of 1.3, are differentiable due to the ellipticity of the Laplacian,

and have zero integral with respect to Λ because of 1.4. So, in terms of

f and g Inequality 2.2 reads

−1

2

∫
M

f ∆f − 1

2

∫
M

g∆g ≥ −
∫
M

f ∆g,

which is equivalent to ∫
M

‖∇(f − g)‖2 dvol ≥ 0.

For the general case we need two lemmas.

Lemma 2.1. Let µ be a continuous probability measure, i.e., given by

a continuous 2-form. Then there exists a sequence µn of differentiable

probability measures such that

µn → µ and W (µn)→W (µ).

Proof. As µ is continuous, we can write dµ = ρ dvol with ρ continuous.

Take a sequence of differentiable functions {ρn}n∈N such that ρn → ρ

uniformly. We can assume ρn ≥ 0 (redefine ρn = ρn + ‖ρ − ρn‖∞) and∫
M
ρn dvol = 1 (because

∫
M
ρndvol →

∫
M
ρ dvol). Define µn by means

of dµn = ρndvol. We notice that

µn → µ

holds due to the uniform convergence and, as ρn⊗ρn → ρ⊗ρ uniformly,

we obtain∫
M×M

G(x, y)ρn(x)ρn(y) dvol(x) dvol(y)

→
∫
M×M

G(x, y)ρ(x)ρ(y) dvol(x) dvol(y)

by the dominated convergence theorem outside the diagonal (because G

is vol ⊗ vol - integrable and the sequence ρn is uniformly bounded).
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To approximate arbitrary probability measures with continuous ones

we refer to [12, Lemma 6.3.1]. It states the following.

Lemma 2.2. Let µ be any probability measure such that W (µ) < ∞.

Then there exists a sequence µn of continuous probability measures such

that

µn → µ and W (µn)→W (µ).

�

To complete the proof of the convexity, let µ, ν ∈ P(M). Take two

sequences {µn}n∈N and {νn}n∈N of differentiable measures such that

µn → µ, W (µn) → W (µ), and νn → ν, W (νn) → W (ν). We want to

take the lower limit to the sequence of inequalities

1

2
W (µn) +

1

2
W (νn) ≥

∫
M×M

G(x, y) dµn(x)dνn(y).

For this, notice that (µ, ν) 7→
∫
M×M G(x, y) dµ(x)dν(y) is lower semicon-

tinuous. This can be seen as a consequence of the fact that it can be reex-

presed as the increasing limit as m goes to infinity of the continuous func-

tions (µ, ν) 7→
∫
M×M Gm(x, y) dµ(x)dν(y) whereGm(x, y) = G(x, y)∧m.

Then, we get

1

2
W (µ) +

1

2
W (ν) ≥ lim inf

n→∞

∫
M×M

G(x, y) dµn(x)dνn(y)

≥
∫
M×M

G(x, y) dµ(x)dν(y),

and the proof is complete.

3 The minimum of F

Now we prove Theorem 1.4. Let ρ ∈ C∞(M) be a differentiable positive

solution of the equation (see [7])

∆ log ρ = β µeq − βΛ,
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where dµeq = ρ dvol. We will prove that the functional F achieves its

minimum at µeq. For this we shall calculate the derivative of F at µeq
and prove that it is zero. We start with the following result.

Lemma 3.1 (Derivative of the energy). Let µ0 and µ1 be two probability

measures. Define µt = tµ1 + (1− t)µ0, for t ∈ [0, 1]. If W (µ0) <∞ and

W (µ1) <∞ then W (µt) is differentiable at t = 0, and satisfies

d

dt
W (µt) |t=0 = 2

∫
M×M

G(x, y) dµ0(x) (dµ1(y)− dµ0(y)) .

Proof. As W (µ0) and W (µ1) are finite, due to the convexity of W we

have that

W (µt) = t2
∫
M×M

G(x, y)dµ1(x) dµ1(y)+

+ 2t(1− t)
∫
M×M

G(x, y)dµ0(x) dµ1(y)+

+ (1− t)2
∫
M×M

G(x, y)dµ0(x) dµ0(y)

is finite. The linear term (in the variable t) is given by

2

∫
M×M

G(x, y) dµ0(x) (dµ1(y)− dµ0(y)) ,

which is the sought derivative.

Lemma 3.2 (Derivative of the entropy). Let µ0 and µ1 be two probability

measures. Define µt = tµ1 + (1 − t)µ0, for t ∈ [0, 1]. If D(µ0‖vol) <
∞, D(µ1‖vol) < ∞ and

∫
M

∣∣∣log
(
dµ0

d vol

)∣∣∣ dµ1 < ∞, then D(µt‖vol) is

differentiable at t = 0, and satisfies

d

dt
D(µt‖vol) |t=0 =

∫
M

log

(
dµ0

d vol
(y)

)
(dµ1(y)− dµ0(y)) .

Proof. We use the notation

ρ0 =
dµ0

d vol
and ρ1 =

dµ1

d vol
.
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As D(µ0‖vol) and D(µ1‖vol) are finite, by the convexity of the entropy

we get that D(µt‖vol) is also finite. In particular, we have∫
M

| log (tρ1(x) + (1− t)ρ0(x) ) |dµt <∞

and, as µt = tµ1 + (1− t)µ0, if 0 < t < 1, we get∫
M

| log (tρ1(x) + (1− t)ρ0(x) ) |dµ0 <∞

and ∫
M

| log (tρ1(x) + (1− t)ρ0(x) ) |dµ1 <∞.

Keeping this in mind it makes sense to write

D(µt‖vol) =

∫
M

log (tρ1(x) + (1− t)ρ0(x) ) tρ1(x)dvol(x)+

+

∫
M

log (tρ1(x) + (1− t)ρ0(x) ) (1− t)ρ0(x)dvol(x)

= t

∫
M

log (tρ1(x) + (1− t)ρ0(x) ) (ρ1(x)− ρ0(x)) dvol(x)+

+

∫
M

log (tρ1(x) + (1− t)ρ0(x) ) ρ0(x) dvol(x),

which together with

D(µ0‖vol) =

∫
M

log(ρ0(x)) ρ0(x) dvol(x)

yields

1

t
(D(µt‖vol)−D(µ0‖vol)) =

∫
M

log (tρ1(x) + (1− t)ρ0(x) ) dµ1(x)+

−
∫
M

log (tρ1(x) + (1− t)ρ0(x) ) dµ0(x)

+

∫
M

1

t
[log (tρ1(x) + (1− t)ρ0(x) )] ρ0(x)dvol(x)

−
∫
M

1

t
log ρ0(x)ρ0(x) dvol(x).
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For the first two terms we notice that, as t→ 0, we get

log ( tρ1(x) + (1− t)ρ0(x) )→ log ρ0(x),

for every x ∈M . We know that |log (tρ1(x) + (1− t)ρ0(x) )| is bounded

by
∣∣log

(
1
2ρ1 + 1

2ρ0
)∣∣ + |log ρ0(x)|, for 0 < t ≤ 1

2 , and we can use the

dominated convergence theorem to reach∫
M

log (tρ1(x) + (1− t)ρ0(x) ) dµ1(x)→
∫
M

log ρ0(x) dµ1(x)

and ∫
M

log (tρ1(x) + (1− t)ρ0(x) ) dµ0(x)→
∫
M

log ρ0(x) dµ0(x).

Finally, we notice the convergence

1

t
[log (tρ1(x) + (1− t)ρ0(x) )− log ρ0(x)] ρ0(x) ↑ [ρ1(x)− ρ0(x)]

as t ↓ 0 for every x ∈ M , and since each term is integrable, we can use

the monotone convergence theorem to obtain

∫
M

1

t
[log (tρ1(x) + (1− t)ρ1(x) )− log ρ0(x)] ρ0(x) dvol(x)→ 0.

Now we are in position to prove Theorem 1.4.

Proof of Theorem 1.4. Let µ be any probability measure different from

µeq and such that F (µ) <∞. Define µt = tµ+ (1− t)µeq, for t ∈ [0, 1].

Multiply the equality

∆ log ρ = β ρ vol − βΛ,

by G(x, y) and integrate in one variable to get

− log ρ(y) +

∫
M

log ρ(x) dΛ(x) = β

∫
M

G(x, y)ρ(x) dvol(x)
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for every y ∈M . Then, by Lemma 3.1 and 3.2, we have

d

dt
F (µt)|t=0 = β

∫
M×M

G(x, y)dµeq(x) (dµ(y)− dµeq(y)) +

+

∫
M×M

log ρ(y) (dµ(y)− dµeq(y))

=

∫
M

(
β

∫
M

G(x, y)ρ(x) dvol(x) + log ρ(y)

)
(dµ(y)− dµeq(y))

=

∫
M

(∫
M

log ρ(x) dΛ(x)

)
(dµ(y)− dµeq(y))

=

(∫
M

log ρ(x) dΛ(x)

)∫
M

(dµ(y)− dµeq(y)) = 0.

This implies, due to the strict convexity of F (µt), the inequality

F (µeq) > F (µ).

4 Laplace principle

Theorem 1.1 will be proved in this section. For this, we first understand

some limiting properties of the energy. Write

Wn(x1, ..., xn) = 2Hn(x1, ..., xn) =
1

n2

∑
i6=j

G(xi, xj).

The easiest property we need to establish is the following.

Proposition 4.1. For µ ∈ P(M), we have∫
Mn

Wndµ
⊗n →W (µ).

Proof. We integrate to get∫
Mn

Wndµ
⊗n =

n(n− 1)

n2

∫
M×M

G(x, y) dµ(x) dµ(y).

Then we take limits to complete the proof.
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For more general τn ∈ P(Mn) (not necessarily of the form µ⊗n) we

can obtain a bound for below of the lim inf.

Proposition 4.2. For each n choose τn ∈ P(Mn). Suppose there exists

a probability distribution on P(M), say ζ (that is ζ ∈ P(P(M))), such

that in(τn)→ ζ. Then we have∫
P(M)

Wdζ ≤ lim inf
n→∞

∫
Mn

Wndτn.

Proof. As usual, for each m ≥ 0 define Gm(x, y) = G(x, y)∧m. For each

n take a random element (Xn
1 , ..., X

n
n ) ∈Mn with law τn and µ ∈ P(M)

with law ζ. Define µn = in(Xn
1 , ..., X

n
n ). We have then∫

M×M
Gm(x, y)dµn(x) dµn(y) =

1

n2

∑
i 6=j

Gm(Xn
i , X

n
j ) +

m

n

≤ 1

n2

∑
i 6=j

G(Xn
i , X

n
j ) +

m

n
,

from which, taking expected values, we obtain

E
[∫

M×M
Gm(x, y)dµn(x) dµn(y)

]
≤ E [Wn(Xn

1 , ..., X
n
n )] +

m

n
. (4.1)

We have thus

E
[∫

M×M
Gm(x, y)dµn(x) dµn(y)

]
→ E

[∫
M×M

Gm(x, y)dµ(x) dµ(y)

]
by the continuity of Gm. So, by letting n → ∞ in Inequality 4.1, we

reach

E
[∫

M×M
Gm(x, y)dµ(x) dµ(y)

]
≤ lim inf

n→∞
E [Wn(Xn

1 , ..., X
n
n )] .

By letting m→∞, we finally conclude

E
[∫

M×M
G(x, y)dµ(x) dµ(y)

]
≤ lim inf

n→∞
E [Wn(Xn

1 , ..., X
n
n )]

by the monotone convergence theorem.
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Remark 4.3. In the previous proposition we may choose a sequence of

increasing integers nk and for each k a measure τk ∈ P(Mnk) such that

ink(τk)→ ζ, and get the same result:∫
P(M)

Wdζ ≤ lim inf
k→∞

∫
Mnk

Wnkdτk.

Now we can start proving Theorem 1.1.

Proof of Theorem 1.1. Take f : P(M) → R continuous. Because of the

identity

1

n
log

∫
Mn

e−nf◦indγn =
1

n
log

∫
Mn

e−n(f◦in+ βn
2 Wn)dvol⊗n,

we only need to prove

1

n
log

∫
Mn

e−n(f◦in+ βn
2 Wn)dvol⊗n → − inf

µ∈P(M)
{f (µ) + F (µ)}.

For that we use the following result (see [9, Proposition 4.5.1]).

Lemma 4.4 (Variational formulation). Let E be a Polish space, µ a

probability measure on E and g : E → R ∪ {∞} a measurable function

bounded from below. Under those hypothesis, the relation

log

∫
E

e−gdµ = − inf
τ∈P(E)

{∫
E

g dτ +D(τ‖µ)

}
.

holds �

In our case, we have

1

n
log

∫
Mn

e−n(f◦in+ βn
2 Wn)dvol⊗n =

= − inf
τ∈P(Mn)

{∫
Mn

f ◦ in dτ +
βn
2

∫
Mn

Wn dτ +
1

n
D(τ‖vol⊗n)

}
.
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Let us start with an upper limit inequality. More precisely, we prove

the relation

lim sup
n→∞

inf
τ∈P(Mn)

{∫
Mn

f ◦ in dτ +
βn
2

∫
Mn

Wn dτ +
1

n
D(τ‖vol⊗n)

}
≤ inf
µ∈P(M)

{f (µ) + F (µ)}.

(4.2)

For this, we need to see that for every probability measure µ ∈ P(M)

we get

lim sup
n→∞

inf
τ∈P(Mn)

{∫
Mn

f ◦ in dτ +
βn
2

∫
Mn

Wn dτ +
1

n
D(τ‖vol⊗n)

}
≤ f (µ) + F (µ) .

(4.3)

It will be enough to find, for every n ≥ 2, a probability measure

τn ∈ P(Mn) such that

lim sup
n→∞

{∫
Mn

f ◦ in dτn +
βn
2

∫
Mn

Wn dτn +
1

n
D(τn‖vol⊗n)

}
≤ f (µ) + F (µ) .

We choose the simplest one: τn = µ⊗n. If so, by the law of large numbers

in the compact space M , we have

in(τn)→ δµ.

Indeed, take a sequence {Xk}k∈N of independent and identically dis-

tributed random elements of M with law µ and take any continuous

function g : M → R. Then, {g(Xk)}k∈N is a sequence of independent

and identically distributed bounded random variables. By the strong

law of large numbers we have

lim
n→∞

1

n

n∑
k=1

g(Xk) = E[g(X1)]
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almost surely. This can be written as

lim
n→∞

∫
M

g d[in(X1, ..., Xn)] =

∫
M

g dµ,

and taking a countable dense family of functions we get

lim
n→∞

in(X1, ..., Xn) = µ

almost surely. By the dominated convergence theorem, the almost sure

convergence implies the convergence of their laws, and so, as the law of

in(X1, ..., Xn) is in(τn) and µ is deterministic (of law δµ), we obtain

in(τn)→ δµ.

Hence, we get

lim
n→∞

∫
Mn

f ◦ in dτn = f(µ).

The second term has already been studied in Proposition 4.1: we have

lim
n→∞

∫
Mn

Wndτn = W (µ).

Finally, we use

D(τn‖vol⊗n) = nD(µ‖vol)

to get

lim
n→∞

{∫
Mn

f ◦ in dτn +
βn
2

∫
Mn

Wn dτn +
1

n
D(τn‖vol⊗n)

}
= f(µ) +

β

2
W (µ) +D(µ‖vol).

The second and final step is to prove the lower bound

lim inf
n→∞

inf
τ∈P(Mn)

{∫
Mn

f ◦ in dτ +
βn
2

∫
Mn

Wn dτ +
1

n
D(τ‖vol⊗n)

}
≥ inf
µ∈P(M)

{f (µ) + F (µ)}.

(4.4)
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We proceed by contradiction. Suppose this is not true, i.e. we have

lim inf
n→∞

inf
τ∈P(Mn)

{∫
Mn

f ◦ in dτ +
βn
2

∫
Mn

Wn dτ +
1

n
D(τ‖vol⊗n)

}
< inf
µ∈P(M)

{f (µ) + F (µ)}.

Then we can find C ∈ R subject to

inf
τ∈P(Mn)

{∫
Mn

f ◦ in dτ +
βn
2

∫
Mn

Wn dτ +
1

n
D(τ‖vol⊗n)

}
< C < inf

µ∈P(M)
{f (µ) + F (µ)}

for every n along a subsequence. For each of those n we pick τn ∈ P(Mn)

such that∫
Mn

f ◦ in dτn +
βn
2

∫
Mn

Wn dτn +
1

n
D(τn‖vol⊗n) < C

The idea now is to take the limit (or just the limit of a subsequence) and

derive a contradiction. To achieve that we use the following lemma.

Lemma 4.5. There exists a subsequence of {τn}, that we will still call

{τn} for ease of notation, and a probability distribution ζ (i.e. ζ ∈
P(P(M))) on P(M), such that in(τn)→ ζ and∫

P(M)

D (·‖vol) dζ ≤ lim inf
n→∞

1

n
D(τn‖vol⊗n).

Proof. Given a probability measure τn ∈ P(Mn) we can construct a

n-tuple of random probabilities in M by means of marginals. More

precisely, there exists a random variable (T 1
n , T 2

n , ..., T nn ) on P(M)n and

a random variable (X1, ..., Xn) ∈Mn with law τn, such that∫
M

g dT in = E[g(Xi)|X1, ..., Xi−1],

for every continuous function g : M → R.
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We can prove (see Proposition 7.2 in the Appendix for an idea of

the proof, or see [9, Theorem C.3.1] for a complete proof) that

D(τn‖vol⊗n) = E

[
n∑
i=1

D(T in‖vol)

]
holds. So, by the convexity of D(·‖vol) we get

E

[
D

(
1

n

n∑
i=1

T in

∥∥∥∥∥ vol
)]
≤ 1

n
E

[
n∑
i=1

D(T in‖vol)

]
=

1

n
D(τn‖vol⊗n).

The compactness of P(P(M)×P(M)) allows us to extract a subsequence

of
(
1
n

∑n
i=1 T in ,

1
n

∑n
i=1 δXi

)
∈ P(M) × P(M) such that

(
1
n

∑n
i=1 T in ,

1
n

∑n
i=1 δXi

)
converges in law to, say, (χ, χ̃). Then, we get χ = χ̃ almost

surely (see Proposition 7.4 in the Appendix or [8, Lemma 3.5]). Denote

by ζ the common law of χ and χ̃. The fact that D (·‖vol) is lower

semicontinuous and bounded from below implies that it can be written

as an increasing pointwise limit of bounded continuous functions, and

then the function α 7→
∫
P(M)

D(·‖vol)dα is also lower semicontinuous.

In particular, we get∫
P(M)

D (·‖vol) dα ≤ lim inf E

[
D

(
1

n

n∑
i=1

T in

∥∥∥∥∥ vol
)]

.

We can now complete the proof by noticing that Lemma 4.5 and

Proposition 4.2 imply

∫
P(M)

(
f +

β

2
W +D(·‖vol)

)
dζ ≤ C < inf

µ∈P(M)
{f (µ) + F (µ)},

or, equivalently,∫
P(M)

(f + F ) dζ ≤ C < inf
µ∈P(M)

{f (µ) + F (µ)},

which is impossible.
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5 Convergence of in(Pn)
We prove the corollaries in this section: Corollary 1.2, about the large

deviation principle, and Corollary 1.6, about the convergence of the em-

pirical measures.

Proof of Corollary 1.2. By [9, Theorem 1.2.3] and the fact that I is lower

semicontinuous the following Laplace principle implies the large devia-

tion principle: for every continuous function f : P(M)→ R we have

1

n
log

∫
Mn

e−nf◦indPn
n→∞−→ − inf

µ∈P(M)
{f (µ) + I(µ)}.

Using the measures γn and the definition of I it is enough to prove that

for every continuous function f : P(M)→ R we have

1

n
log

∫
Mn

e−nf◦in
dγn
Zn

n→∞−→ − inf
µ∈P(M)

{f (µ) + F (µ)− inf F}.

However, by Theorem 1.1 applied to the function f = 0, we get

1

n
log Zn −→

n→∞
− inf F,

and combining this with the same theorem for general f , we get

1

n
log

∫
Mn

e−nf◦indγn
n→∞−→ − inf

µ∈P(M)
{f (µ) + F (µ)},

and the proof is finished.

Proof of Corollary 1.6 . Take random probabilities {Xn}n≥2 coupled in

any way but such that Xn ∼ in(Pn). For any closed set C that does

not contain µeq, we have infx∈C I(x) > 0 due to the semicontinuity of I.

The property

lim sup
n→∞

1

n
logPn(i−1n (C)) ≤ − inf

x∈C
I(x)
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implies that there exists A > 0 and N ∈ N such that

1

n
logPn(i−1n (C)) ≤ −A

for every n > N . Hence we have

Pn(i−1n (C)) ≤ e−nA

for every n > N , which yields

∞∑
n=1

Pn(i−1n (C)) <∞.

By the Borel-Cantelli lemma we get then

P(there exists M ∈ N such that i > M implies Xi /∈ C) = 1.

Take a countable local base {Oi}i∈N around µeq and apply the previous

argument for every C = Oci to obtain almost sure convergence.

6 Final comments

This work has been inspired on the article by Robert Berman [4] where

a slightly different model is treated. Our proof of the large deviation

principle is an adaptation of the article by Paul Dupuis, Vaios Laschos,

and Kavita Ramanan [8] to the case of compact manifolds.

Here we have studied just one kind of limiting behavior for a se-

quence of point processes on a surface. There are two main issues that,

to our knowledge, are still open: the fluctuations and the local be-

haviour.

By fluctuations we mean the following. Take f ∈ C∞(M) and

µn a sequence with law in(Pn). We have proved, in Corollary 1.6, the

convergence ∫
fdµn →

∫
f dµeq,
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what we could rewrite as∫
fdµn =

∫
f dµeq + o(1).

The idea is to find the next order terms (to prove a central limit type

theorem). More precisely, to find a sequence αn →∞ such that

αn

(∫
fdµn −

∫
f dµeq

)
converges weakly, and describe such limit.

When we talk about local behavior we take x ∈M and a chart

φ : U → TxM

such that φ(x) = 0 and dφx = id|TxM . We fix n points (X1, ..., Xn)

distributed according to Pn. We get a point process in TxM with points

φ(X1), ..., φ(Xn) (when Xi ∈ U). We then scale this point process by√
n and find the limit (in some sense) point process. We ask how this

point process depends on x ∈M .

These questions are already answered in the case of some determi-

nantal point processes (see [1] and [3]) and in the one dimensional case

(see [10]). Very recent results about fluctuations on R2 can be found in

[2] and [11].

7 Appendix

Here we deal with several tools used along this paper.

Proposition 7.1. Let E be a compact metrizable space. Then P(E),

the space of probability measures on E, is a compact metrizable space.

Proof. By the Stone-Weierstrass theorem we know that the space of

continuous functions on E is separable in the topology of uniform con-

vergence. Choose a dense countable set {fm}m∈N.
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Let d be a metric in E that induces its topology. Define d̄ : P(E)×
P(E)→ R by

d̄(µ, ν) =
∑
m∈N

1

2m
∧
∣∣∣∣∫
E

fmdµ−
∫
E

fmdν

∣∣∣∣ .
We can see that the topology induced by d̄ is the smallest topology

such that µ 7→
∫
E
fmdµ is continuous for every m ∈ N. But by density

and uniform convergence the functional µ 7→
∫
E
fmdµ is continuous for

every m ∈ N if and only if µ 7→
∫
E
fdµ is continuous for any continuous

function f : E → R. So, the topology induced by d̄ is the weak topology

of P(E).

To see that P(E) is compact it is enough to show that it is sequen-

tially compact. Take a sequence {µn}n∈N of probability measures on

E. By a diagonal procedure we can choose a subsequence {µni}i∈N such

that
∫
E
fmdµni converges as i goes to infinity for every m ∈ N. This

implies that
∫
E
fdµni converges as i goes to infinity for every continuous

function f : E → R. Indeed, we can prove that {
∫
E
fdµni}i∈N is Cauchy.

For this, take ε > 0 and choose m ∈ N such that ‖fm − f‖ < ε/3. Take

a number M such that if i, j > M then |
∫
E
fmdµni −

∫
E
fmdµnj | < ε/3.

Then, whenever i, j > M , we have∣∣∣∣∫
E

fdµni −
∫
E

fdµnj

∣∣∣∣ ≤ ∣∣∣∣∫
E

fdµni −
∫
E

fmdµni

∣∣∣∣+
+

∣∣∣∣∫
E

fmdµni −
∫
E

fmdµnj

∣∣∣∣+
+

∣∣∣∣∫
E

fmdµnj −
∫
E

fmdµnj

∣∣∣∣
<ε

Define Λ : C(E)→ R as Λ(f) = limi→∞
∫
E
fdµni . Then Λ is a pos-

itive linear functional and so, there exists a positive measure µ on E such

that Λ(f) =
∫
E
fdµ for every f ∈ C(E). As Λ(1) = limi→∞

∫
E

1dµni =

1, we obtain µ ∈ P(E). In this way, we have extracted a subsequence of

{µn}n∈N that converges.
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In what follows, instead of writing dµ(x) we write µ(dx).

As in the proof of Lemma 4.5, given a probability measure µ ∈
P(Mn) we can construct a n-tuple of random probabilities (µ1, µ2, ..., µn)

in P(M)n and a random element (X1, ..., Xn) ∈Mn with law µ such that

∫
M

fdµi = E[f(Xi)|X1, ..., Xi−1]

holds.

Proposition 7.2 (Chain rule). We have

D(µ‖vol⊗n) = E

[
n∑
i=1

D(µi‖vol)

]
.

Sketch of the proof. We will give an idea of the proof ignoring issues of

measurability and finiteness of the entropy. For extra details we refer to

[9, Theorem C.3.1].

We consider Mn with a probability measure µ. In this case the

random element with law µ is (X1, ..., Xn) where Xi : Mn → M is the

projection onto the i-th coordinate. Suppose that

µ̃k : Mk−1 → P(M)

is a transition kernel from (X1, ..., Xk−1) to Xk.

If we define

µk = µ̃k ◦ πk−1,

where πk−1 : Mn → Mk−1 is the projection onto the first k − 1 coordi-

nates, we see that (µ1, ..., µn) satisfies the properties of the definition. If

we assume all entropies are finite, we get
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E

[
n∑
k=1

D(µk‖vol)

]
=

n∑
k=1

E [D(µk‖vol)]

=

n∑
k=1

∫
Mk−1

D(µ̃k(x)‖vol) [πk−1(µ)](dx)

=

n∑
k=1

∫
Mk−1

(∫
M

log

(
µ̃k(x, dy)

vol(dy)

)
µk(x, dy)

)
[πk−1(µ)](dx)

=

n∑
k=1

∫
Mk−1×M

log

(
µ̃k(x, dy)

vol(dy)

)
[πk(µ)] (dx, dy)

=

n∑
k=1

∫
Mn

log (ρk(x))µ(dx),

where ρk : Mn → [0,∞] is equal to ρk = µ̃k(x,dy)
vol(dy) ◦ πk.

Then we just have to notice the equality

n∏
i=1

ρi(x) =
µ(dx)

vol⊗n(dx)
,

that follows from the definition.

Lemma 7.3. Let (X1, ..., Xn) ∈ Mn and (µ1, ..., µn) ∈ P(M)n be ran-

dom elements as before. Consider the random measures

µ̂ =
1

n

n∑
i=1

µi , ν̂ =
1

n

n∑
i=1

δXi .

Then we have

P
(∣∣∣∣∫

M

f(x)µ̂(dx)−
∫
M

f(y)ν̂(dy)

∣∣∣∣ > ε

)
≤ 4
‖f‖2∞
nε2

.
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Proof. By Chebyshev’s inequality, we need to understand the quantity

Var

(∫
M

f(x)µ̂(dx)−
∫
M

f(y)ν̂(dy)

)
.

The first term is∫
M

f(y)µ̂(dy) =
1

n

n∑
k=1

∫
M

f(y)µk(dy) =
1

n

n∑
k=1

E[f(Xk)|X1, ..., Xk−1]

while the second is ∫
M

f(x)ν̂(dx) =
1

n

n∑
i=1

f(Xi).

We can see that both have the same expected value, and if i < j, we

have

E
[(
f(Xi)− E[f(Xi)|X1, ..., Xi−1]

)
E[f(Xj)|X1, ..., Xj−1]

]
=

= E
[(
f(Xi)− E[f(Xi)|X1, ..., Xi−1]

)
f(Xj)

]
because

(
f(Xi) − E[f(Xi)|X1, ..., Xi−1]

)
is (X1, ..., Xj−1) measurable.

Then we get

E
[(
f(Xi)−E[f(Xi)|X1, ..., Xi−1]

)(
f(Xj)−E[f(Xj)|X1, ..., Xj−1]

)]
= 0.

So we have

Var

(∫
M

f(x)µ̂(dx)−
∫
M

f(y)ν̂(dy)

)
=

=
1

n2

n∑
i=1

E
[(
f(Xi)− E[f(Xi)|X1, ..., Xi−1]

)2]

≤ 1

n2

n∑
i=1

4‖f‖2∞ =
1

n
4‖f‖2∞,

and by Chebyshev’s inequality we conclude our claim.
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Proposition 7.4. Using the notation of the proof in Lemma 4.5, if we

have

(µ̂n, ν̂n) =

(
1

n

n∑
i=1

τ in,
1

n

n∑
i=1

δXi ,

)
→ (χ, χ̃)

in law, then we have χ = χ̃ almost surely.

Proof. For any continuous f : M → R, the function

Tf : P(M)× P(M)→ R

(µ, ν) 7→
∫
M

f(x)µ(dx)−
∫
M

f(y)ν(dy)

is continuous. By Lemma 7.3, for every continuous f , we get

P (|Tf (µ̂n, ν̂n)| > ε) ≤ 4
‖f‖2∞
nε2

,

and, by the Portmanteau theorem (taking the lower limit on both sides),

we reach

P (|Tf (χ, χ̃)| > ε) = 0

for every ε > 0. Thus we have

P (|Tf (χ, χ̃)| = 0) = 1.

Next, choose a dense sequence {fm}m∈N in the space of continuous func-

tions on M endowed with the topology of uniform convergence in order

to obtain

P (|Tfm(χ, χ̃)| = 0 for all m) = 1.

But, by density, we have

{|Tfm(χ, χ̃)| = 0 for all m} = {|Tf (χ, χ̃)| = 0 for all continuous f},

which means χ = χ̃ almost surely.
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Resumen

Siguiendo las técnicas desarrolladas por Paul Dupuis, Vaios Laschos y

Kavita Ramanan en [8], se establecerá un principio de grandes desvia-

ciones para una secuencia de procesos puntuales definidos por medidas

de Gibbs en una variedad riemanniana bidimensional compacta y ori-

entable. Veremos que la correspondiente secuencia de medidas emṕıricas

converge a la solución de una ecuación diferencial parcial y, en ciertos

casos, a la forma de volumen de una métrica de curvatura constante.

Palabras clave: Medidas de Gibbs; gas de Coulomb; medida emṕırica; prin-

cipio de grandes desv́ıos; sistemas de part́ıculas interactuantes; potencial sin-

gular; variedad de Einstein 2-dimensional; entroṕıa relativa.
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