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Abstract
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Ramanan in [8] to prove a large deviation principle for a sequence of
point processes defined by Gibbs measures on a compact orientable two-
dimensional Riemannian manifold. We see that the corresponding se-
quence of empirical measures converges to the solution of a partial dif-
ferential equation and, in some cases, to the volume form of a constant
curvature metric.
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1 Model and results

Let (M, g) be a compact oriented two-dimensional Riemannian manifold
of genus different from one. Denote by vol the normalized volume form
associated to g and the orientation. Define the 2-form

Ricg

= am (M) -

where Ric g is the Ricci curvature seen as a 2-form and y (M) denotes the
Euler characteristic. More precisely, write Ricg = Kgyvol, where K is
the Gaussian curvature of g, while the usual symmetric Ricci curvature
would be K, g. We shall think of A as a signed measure.

It is known that there exists a continuous symmetric function

G:MxM—RU{oo}

such that the function G, : M — R U {oo} defined by G,(y) = G(z,y)
is integrable and satisfies

AG, = 6, + A (1.2)

for every x € M. More precisely, for every f € C°(M) and z € M, we
have

/ Gz, ) Af(y) = —f(z) + / F(y)dA(y), (1.3)
M M

here A : C°(M) — Q?(M) is the usual Laplacian, i.e. A = dxd, where
* is the Hodge star operator and d is the exterior derivative. Moreover,
such G is unique up to an additive constant and we can choose G such
that

/ G, y)dA(y) = 0 (1.4)
M

for every « € M. See [0] for a proof and more information.

Take an integer n > 2. We consider a system of n indistinguishable
particles with total charge 1 interacting via the electrostatic force. In
other words, each particle has charge 1/n and the two-particle interaction
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potential is G. This means that the total energy will be H,, : M™ —
R U {oo}, defined by

Hn(xl, ceey J,‘n) = % Z G(Z‘Z, JJ]').
1<
Choose a sequence of positive numbers {3, },>2 and a positive num-
ber 5 > 0 such that 8, — . We define the Gibbs non-normalized
measure associated to H, and (3, as the finite measure =, on M"
given by
dyn = exp (—nS, H,) dvol®".

The Gibbs probability measure will be the probability measure

Pn, = %a

where Z,, = v,(M™) is called the partition function. The probability
measure P, describes a system of n particles with Hamiltonian H,, and
inverse temperature nj,.

For any metrizable compact space E we endow P(FE), the space
of probability measures on F, with the smallest topology such that for
every continuous function f : E — R the application p — [ g fdu is
continuous. We can see that this is again a metrizable compact space.
See Appendix for a short proof, and [5] for extra information. Further-
more, a sequence of probability measures on E, say {in }nen, converges
to € P(E) if and only if [, fdu, converges to [, fdu for every con-
tinuous function f : F — R. In fact, it is enough to verify that fE fduny,
converges to | g fdp for f belonging to a countable dense family of the
space of continuous functions with the uniform topology.

The space M™ is to be ‘injected’ in P(M) by means of the continuous
application

in: M™ = P(M)

(T1, ey Tp) — l Zézi’
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and we will study the limit of the sequence of probabilites i, (P,), the
pushforward laws of P,,.
Define the macroscopic energy as

W :P(M)—RU{cc}

MxM

and the free energy as
F:P(M)—RU{}
B
p W) + D (ullvol),

where D (i || vol) denotes the relative entropy of pu with respect to vol,
also known as the Kullback - Leibler divergence, defined by

dp
D [) = 1 — ] d
(o) = [ 1o (324 )

if 11 is absolutely continuous with respect to vol, and D(u|lvol) = oo
otherwise. Now we can state our main result.

Theorem 1.1 (Laplace principle). For every continuous f : P(M) — R
we have the convergence

1 )
=1 “nfolngy 5 inf F .
—log / e o~ Helg(M){f (w) + F (1)}

To state a large deviation principle as an easy corollary we need to
define first the function

I:P(M)—RU{oo}
wr— F(u) —inf F.
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Corollary 1.2 (A large deviation principle). For every closed set C C
P(M) we have

1
limsup — logP,, (i, *(C)) < — inf I(z),

n—oo N zeC

and for every open set O C P(M) we have

lim inf llogIP’n(i,:l(O)) > — inf I(x).

n—oo n z€0

This tells us that to understand the limiting behavior of i,,(P,) we
must study the free energy F. The first two main properties will be
studied in Section 21

Proposition 1.3 (Convexity and lower semicontinuity of F'). The func-
tion F' is strictly conver and lower semicontinuous.

Thus, F' achieves its minimum at only one point. The following
theorem characterizes this minimum.

Theorem 1.4 (Minimum of F'). The function F achieves its minimum
at a probability measure [ieq that is absolutely continuous with respect to
d

vol and such that p = Wea ;o 4 0o strictly positive everywhere function

V0,
that satisfies the differential equation

Alog p = 3 fteg — BA. (1.5)

Remark 1.5 (Equivalent formulation: equation on the Ricci curvature).
If we define the metric = pg, we have that p., is the volume form
associated to @, and Equation [1.5| can be written as

Ricw = (27rx(M) + g) Ricg — g,ueq

(because of the identity Alogp = 2Ricg — 2Ric).

Finally, by Corollary and an application of the Borel-Cantelli
lemma we get the following.
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Corollary 1.6 (Convergence of the empirical measures). If {X,},>2 is
a sequence of random elements in P(M) such that X,, ~ i,(Py), then

a.s.
Xn — Heg;

where [ieq 15 the unique minimizer of F.

2 Lower semicontinuity and convexity of 1

In this section we prove Proposition[1.3] It is well known that D([|vol) is
lower semicontinuous and strictly convex (see [9 Lemma 1.4.3]). What
we need to establish is lower semicontinuity and convexity for W.

Proof of the lower semicontinuity of W. For positive m set G, (z,y) =

G(z,y) Am =min{G(z,y),m}. Then

T Gm(z,y) du(z) du(y)
M x M

is a continuous function of y. As W is the increasing limit of functions
as m tends to infinity, we get that W is lower semicontinuous. O

Proof of the convexity of W. To prove convexity it is enough to show
that for every u,v € P(M) we have

w (;u + ;u) < %W(u) + %W(V) (2.1)

due to the lower semicontinuity of W. Inequality 2.1]is equivalent to

VW0 > [ Gapd@at). (22

This inequality is easy to verify if p and v are differentiable, i.e., given
by differentiable forms. Indeed, in that case, the functions

flx)= [ G(z,y)du(y) and g(z)= [ G(x,y)dv(y)
M M
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satisfy
Af=—p+A and Ag=-v+A

because of are differentiable due to the ellipticity of the Laplacian,
and have zero integral with respect to A because of [[.4} So, in terms of
f and g Inequality [2:2) reads

_%/MfAf —%/MgAgZ—/MfAQ,

which is equivalent to

[ 190 =9l vol 2 0
M

For the general case we need two lemmas.

Lemma 2.1. Let p be a continuous probability measure, i.e., given by
a continuous 2-form. Then there exists a sequence u, of differentiable
probability measures such that

fn =g and W (pn) = W(n).

Proof. As p is continuous, we can write du = p dvol with p continuous.
Take a sequence of differentiable functions {py, }nen such that p, — p
uniformly. We can assume p,, > 0 (redefine p,, = pp, + ||p — pulleo) and
Jas P dvol = 1 (because [, pndvol — [, pdvol). Define i, by means
of du, = pndvol. We notice that

P — [

holds due to the uniform convergence and, as p,, ® p, = p® p uniformly,
we obtain

/ G, 9)n () () dvol (z) dvol(y)
M x M

— G(z,y)p(x)p(y) dvol(z) dvol(y)
M x M

by the dominated convergence theorem outside the diagonal (because G
is vol ® vol - integrable and the sequence p,, is uniformly bounded). O
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To approximate arbitrary probability measures with continuous ones
we refer to [I2], Lemma 6.3.1]. It states the following.

Lemma 2.2. Let p be any probability measure such that W(u) < oo.
Then there exists a sequence , of continuous probability measures such
that

Po = and  W(pn) = W().

O

To complete the proof of the convexity, let u,v € P(M). Take two
sequences {pntneny and {vy, bnen of differentiable measures such that
tn =y W(pn) = W(n), and v, — v, W(v,) — W(v). We want to
take the lower limit to the sequence of inequalities

%W(,un) + %W(l/n) > /MXM G(z,y) dun (z)dvn (y).

For this, notice that (p,v) — [, 1, G(z,y) du(x)dv(y) is lower semicon-
tinuous. This can be seen as a consequence of the fact that it can be reex-
presed as the increasing limit as m goes to infinity of the continuous func-
tions (11, ) = [y, 1y Gm (2, y) du(z)dv(y) where G, (z,y) = G(x,y)Am.
Then, we get

W0 + W) Z1hninf/LXA4CX$7y)dunﬁﬂanQﬁ

zAMMG@wmmmwwx

and the proof is complete. O

3 The minimum of F

Now we prove Theorem Let p € C*°(M) be a differentiable positive
solution of the equation (see [7])

AIng:5Ueq — BA,
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where dp.q = pdvol. We will prove that the functional F' achieves its
minimum at p.q. For this we shall calculate the derivative of F' at pieq
and prove that it is zero. We start with the following result.

Lemma 3.1 (Derivative of the energy). Let o and 1 be two probability
measures. Define py = tuy + (1 —t)po, fort € [0,1]. If W(pg) < oo and
W (p1) < oo then W () is differentiable at t = 0, and satisfies

d

SW im0 =2 [ Glag)dile) (s () = diol).

M x M

Proof. As W(uo) and W (uy) are finite, due to the convexity of W we
have that

W (i) = 12 /M Gl (@) da o)+

s 1) [ Gy dun )+
MxM
HA-0? [ Glag)du(o) duo(y)
M x M
is finite. The linear term (in the variable ¢) is given by

2 / G(z,y) dpo(z) (dp () — dpo(y))
M x M

which is the sought derivative. O

Lemma 3.2 (Derivative of the entropy). Let ug and pq be two probability
measures. Define uy = tuy + (1 — t)uo, for ¢ € [0,1]. If D(uollvol) <
00, D(pllvol) < oo and [, ‘log (%)’dul < 00, then D(ul|vol) is
differentiable at t = 0, and satisfies

SDulvon) o = [ ou (200 (s o) — do().

Proof. We use the notation

_ dp
dwvol’

_ dpio
dwvol

Lo and P1
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As D(uollvol) and D(pql||vol) are finite, by the convexity of the entropy
we get that D(u¢||vol) is also finite. In particular, we have

[ 1B tp1(0) + (1 = Op00)) s < o0
M
and, as py = tpy + (1 — t)po, if 0 < ¢ < 1, we get

/ l1og (tpr(z) + (1 — D)po() ) |dpo < o0
M

and
/ g (to1(2) + (1 - £)po(z) ) |dpa < oo.
M

Keeping this in mind it makes sense to write

D(ueljvol) = /M log (t91(2) + (1 - £)po(z) ) tpr (x)dvol(z)+
+ / log (t1(z) + (1 — H)polx) ) (1 — t)po(x)dvol (x)
M
- / log (t91 () + (1 — )po(z) ) (p1(z) — pol(x)) dvol(z)+
M
+ [ 10g(tpr(a) + (1 = 1p0(0)) o) duola),
M

which together with

Dipalvol) = [ To(pul)) () vl

yields

1

= (Dullvol) ~ Di(pollvol)) = /og (tpr () + (1 — Dypola) ) dn () +
/ g (tp1(2) + (1~ )po(x) ) dptol)
/ llog (tp1 () + (1 — H)po() )] po(x)dvol(x)

_/ g10gp0(;1c)p0(x) dvol(x).
M
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For the first two terms we notice that, as ¢ — 0, we get

log (tp1(z) + (1 —t)po(x) ) — log po(z),

for every x € M. We know that |log (tp1(x) + (1 — t)po(z) )| is bounded

by [log (3p1 4 3p0)| + |log po()|, for 0 < ¢t < 3, and we can use the

dominated convergence theorem to reach
[ 1o (to1() + (1= Dp0(0) dpa(@) = [ o po(a) dps(z)
M M
and
[ togtn(@) + (1~ On(a) ) duole) > [ o8 po(z) do(a).
M M

Finally, we notice the convergence
1
7 Hlog (tp1(x) + (1 = t)po(x) ) —log po(@)] po(x) T [p1(2) = po ()]

as t | 0 for every x € M, and since each term is integrable, we can use
the monotone convergence theorem to obtain

| 4 1og(tp1(2) + (1= 091 (2)) = 1og po(a)] ) del(z) = 0.

Now we are in position to prove Theorem

Proof of Theorem[I]. Let u be any probability measure different from
feq and such that F(u) < oo. Define py = tp + (1 — t)peq, for t € [0, 1].
Multiply the equality

Alogp = B pvol — BA,

by G(z,y) and integrate in one variable to get

~logp(s) + [ Tozp(a)ahw) = 8 | Gla.y)ola) dvol(x)
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for every y € M. Then, by Lemma [3.1] and [3:2] we have

CFulico =58 [ Gl y)duea(w) (An(y) ~ dpeglu)) +
M x M

+ / log p(y) (dp(y) — dpeq(y))
M x M

— /M (5 /M G(z,y)p(x) dvol(x) + log p(y)> (du(y) — dpeq(y))

— /M ( /M log p(x) dA(x)) (dp(y) — dpieq(y))
= ([ ozpte)an)) [ ut) - duato) =

This implies, due to the strict convexity of F'(u;), the inequality

F(pteq) > F(p).

4 Laplace principle

Theorem [I.1] will be proved in this section. For this, we first understand
some limiting properties of the energy. Write

1
Wiz, ...ozn) = 2H, (21, ...y xp) = ) ZG(xi,asj).
i#j
The easiest property we need to establish is the following.
Proposition 4.1. For n € P(M), we have
Wodp®™ — W (p).
M’V‘L
Proof. We integrate to get
n(n—1
W dp®" = % / G(z,y) du(x) du(y).
M n MxM

Then we take limits to complete the proof. O
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For more general 7, € P(M™) (not necessarily of the form u®") we
can obtain a bound for below of the lim inf.

Proposition 4.2. For each n choose 7, € P(M™). Suppose there exists
a probability distribution on P(M), say ¢ (that is ¢ € P(P(M))), such
that i, (7,) — ¢. Then we have

Wd(¢ < liminf W, dr,.
P(M) n—00  Jarn
Proof. As usual, for each m > 0 define G,,,(z,y) = G(x,y) Am. For each
n take a random element (X7, ..., X)) € M™ with law 7,, and p € P(M)
with law . Define p,, = i, (X7, ..., X}?). We have then

/ G (z,y)dpn (x) dpy (y) = QZG (X7, X7)
M x M i#]
< —ZG (XI, X7+ 2,
n
1#]

from which, taking expected values, we obtain

Bl [ o)) dun ()] < BIVL (T e X0+ 2 (4)
M x M
‘We have thus

E { /MXM G, y)dpin (2) d,un(y):| —E [ /MxM G(z,y)dp(x) du(y)

by the continuity of G,,. So, by letting n — oo in Inequality we
reach

E [/ G (z,y)du(z) du(y)] < liminf E [W, (X7, ..., X)].
M xM

n—roo

By letting m — oo, we finally conclude

E [/ G(z,y)du(zx) d,u(y)} <liminf E [W, (X7, ..., X)]
MxM

n— 00

by the monotone convergence theorem. O
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Remark 4.3. In the previous proposition we may choose a sequence of
increasing integers ny and for each k a measure 7, € P(M™) such that
in, (T) = C, and get the same result:

Wd¢ < liminf W, d7e.

P(M) k—oo  fprmi
Now we can start proving Theorem

Proof of Theorem[1.1 Take f :P(M) — R continuous. Because of the
identity

1 - 1 i 4 Bn
flog/ e oy, = flog/ 6_”(f°“’+%w")dvol®",
n n n n

we only need to prove

1 . B
Z1 *n(fOZnJr o Wn)d j®n — inf +F )
~log / e vol ™ = — i ){f (1) + F (1)}

For that we use the following result (see [9, Proposition 4.5.1]).

Lemma 4.4 (Variational formulation). Let E be a Polish space, i a
probability measure on E and g : E — R U {oco} a measurable function
bounded from below. Under those hypothesis, the relation

lo /e_gd =— inf {/ dr + D(t }
g ) etdp=— ik ]9 (Tl
holds O
In our case, we have
llog / ein(fOi”Jr%W")dvol@” =
n n

1
=— inf { foindr+ Pn W, dr + D(T||vol®”)} .
TEP(M™) Mn 2 Mn n
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Let us start with an upper limit inequality. More precisely, we prove
the relation

n 1
limsup inf { foindr+ bn Wy dr + D(T||Uol®”)}
n—soo TEP(M™) Mn 2 Mn n

S%g%ﬁﬂm+FWH-

(4.2)

For this, we need to see that for every probability measure p € P(M)
we get

. . . Bn 1 }
lim su inf 014, dT + — W, dr + = D(7||vol®"
,Hoop TeP(M™) { M ! 2 Jyn n (7l )

< fu)+F(p).
(4.3)

It will be enough to find, for every n > 2, a probability measure
Tn € P(M™) such that

limsup{ foindr, + &
M’n

n—oo 2 Mn
< f(u)+F(p).

We choose the simplest one: 7,, = u®". If so, by the law of large numbers
in the compact space M, we have

1
W, dr, + D(Tn||vol®")}
n

in(Tn) = Op-

Indeed, take a sequence {Xj}ren of independent and identically dis-
tributed random elements of M with law p and take any continuous
function g : M — R. Then, {g(Xk)}ren is a sequence of independent
and identically distributed bounded random variables. By the strong
law of large numbers we have

Tim 3™ (X5 = Elg(X,)]
k=1
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almost surely. This can be written as

M

n—oo M

and taking a countable dense family of functions we get

lim 4, (X1, ..., Xpn) = p

n— oo

almost surely. By the dominated convergence theorem, the almost sure
convergence implies the convergence of their laws, and so, as the law of
in(X1,...,Xy) i8 iy(7,) and p is deterministic (of law ¢,,), we obtain

in(Tn) = 0p.

Hence, we get

n—oo [rrn

The second term has already been studied in Proposition 4.1} we have

lim Wydr, = W(n).

n—o00 [yrn
Finally, we use

D(7||vol®™) = nD(uljvol)
to get

n 1
lim { foindr, + B— W, dr, + D(Tn||vol®")}
Mn n

= )+ SW () + Dol

The second and final step is to prove the lower bound

n 1
liminf inf { foindr+ Bu W, dr + D(T||Uol®")}
n—oo TeP(M™) Mn 2 M n

> pei71>1(fM){f (1) + F (1)}

(4.4)
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We proceed by contradiction. Suppose this is not true, i.e. we have

liminf inf { fozndT—i——/ W, dr + D( ||vol®")}
n—oo reP(Mm) Mn

< inf {f(u) + F ()}

HEP(M)

Then we can find C € R subject to

1
inf d +— Wedr + —D en
TG’;I(an){ M"foll"’l T n n 4T (T”UO )}

<C < f

nf {0+ F ()
for every n along a subsequence. For each of those n we pick 7, € P(M™)
such that

foindm + Pn Wy, dr, + D( Wl|vol®™) < C

Mn 2 Mn
The idea now is to take the limit (or just the limit of a subsequence) and
derive a contradiction. To achieve that we use the following lemma.

Lemma 4.5. There exists a subsequence of {7,}, that we will still call
{Tn} for ease of notation, and a probability distribution ¢ (i.e. ( €
P(P(M))) on P(M), such that in(s) — ¢ and

1
/ D (+||lvol) d¢ < liminf —D(7,|[vol®™).
P(M) n—oo n

Proof. Given a probability measure 7, € P(M™) we can construct a
n-tuple of random probabilities in M by means of marginals. More

precisely, there exists a random variable (7,1, 7,2, ..., T,") on P(M)" and
a random variable (X1, ..., X,,) € M™ with law 7,,, such that

/ gdT,! = E[g(X:)| X1, ..., X;_1],
M

for every continuous function g : M — R.
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We can prove (see Proposition [7.2] in the Appendix for an idea of
the proof, or see [9, Theorem C.3.1] for a complete proof) that

D(1p||vol®") = E lz D(ﬂ”vol)]

holds. So, by the convexity of D(-||vol) we get
RN 1
D <H§Tn vol)] <-E

The compactness of P(P(M)xP(M)) allows us to extract a subsequence
of (X0 THLLIN 6x,) € P(M) x P(M) such that (3", 77,
L3 1 6x,) converges in law to, say, (x, X). Then, we get x = X almost
surely (see Proposition in the Appendix or [8, Lemma 3.5]). Denote
by ¢ the common law of x and X. The fact that D (-||vol) is lower

semicontinuous and bounded from below implies that it can be written

E

ZDmnvon] = D(r Juol®").

i=1

as an increasing pointwise limit of bounded continuous functions, and
then the function o — fp( M) D(+||vol)da is also lower semicontinuous.

In particular, we get
UOZ>] .

We can now complete the proof by noticing that Lemma [4.5] and
Proposition imply

/ D (Jvol) da < liminf E
P(M)

RN

O

B .
/P(M) (f +oW D(-|U0l)) d¢< C < HE%(fM){f(u) +F(w)},

or, equivalently,

[y G PV < int (7605 F )

which is impossible. O
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5 Convergence of i, (P,)

We prove the corollaries in this section: Corollary [.2] about the large
deviation principle, and Corollary about the convergence of the em-
pirical measures.

Proof of Corollary[1.3 By [9, Theorem 1.2.3] and the fact that I is lower
semicontinuous the following Laplace principle implies the large devia-
tion principle: for every continuous function f : P(M) — R we have

1 .
—1 “nfeingp, "= —  inf I(w)}-
Dlog [ enetap, S nt (f () + 1)

Using the measures 7, and the definition of I it is enough to prove that
for every continuous function f : P(M) — R we have

~1 nfoin ZIN M7 g + F (1) — inf F}.
~log / e 7 Lo ){f(u) (n) — inf F'}

However, by Theorem [T.1] applied to the function f = 0, we get
1 .
—log Z,, — —inf F,
n n— o0

and combining this with the same theorem for general f, we get

1 .
—1 “nfoingy, "2 inf + F(w)},
Vo [ ety Lt )+ F ()

and the proof is finished. O

Proof of Corollary[1.¢] . Take random probabilities {X,, },,>2 coupled in
any way but such that X,, ~ i,(P,). For any closed set C that does
not contain fieq, we have infzec I(z) > 0 due to the semicontinuity of I.
The property

limsuplloan(i:Ll(C)) < — inf I(x)
n

n— o0 zeC
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implies that there exists A > 0 and N € N such that
1 1
log P, (i7(C)) < —A
n

for every n > N. Hence we have

for every n > N, which yields
oo
> Pu(in ' (C)) < oo
n=1

By the Borel-Cantelli lemma we get then
P(there exists M € N such that i > M implies X; ¢ C) = 1.

Take a countable local base {O;};en around g, and apply the previous
argument for every C' = Of to obtain almost sure convergence. O

6 Final comments

This work has been inspired on the article by Robert Berman [4] where
a slightly different model is treated. Our proof of the large deviation
principle is an adaptation of the article by Paul Dupuis, Vaios Laschos,
and Kavita Ramanan [§] to the case of compact manifolds.

Here we have studied just one kind of limiting behavior for a se-
quence of point processes on a surface. There are two main issues that,
to our knowledge, are still open: the fluctuations and the local be-
haviour.

By fluctuations we mean the following. Take f € C*°(M) and
i a sequence with law i, (P,). We have proved, in Corollary the

Convergence
/ Fin — / f ey,
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what we could rewrite as

/fdpn:/fdueq +o(1).

The idea is to find the next order terms (to prove a central limit type
theorem). More precisely, to find a sequence «;,, — oo such that

n ([ s~ [ iy

converges weakly, and describe such limit.
When we talk about local behavior we take x € M and a chart

o:U—->T,M

such that ¢(x) = 0 and d¢, = id|r, ;. We fix n points (Xq,..., Xp)
distributed according to P,,. We get a point process in T, M with points
d(X1), ..., 6(X,) (when X; € U). We then scale this point process by
v/n and find the limit (in some sense) point process. We ask how this
point process depends on x € M.

These questions are already answered in the case of some determi-
nantal point processes (see [I] and [3]) and in the one dimensional case

(see [10]). Very recent results about fluctuations on R? can be found in
[2] and [11].

7 Appendix

Here we deal with several tools used along this paper.

Proposition 7.1. Let E be a compact metrizable space. Then P(E),
the space of probability measures on E, is a compact metrizable space.

Proof. By the Stone-Weierstrass theorem we know that the space of
continuous functions on F is separable in the topology of uniform con-
vergence. Choose a dense countable set { f,, bmen.
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Let d be a metric in F that induces its topology. Define d : P(E) x
P(E) — R by

) = 3 g r| [t [ g

meN

We can see that the topology induced by d is the smallest topology
such that p +— [, g fmdp is continuous for every m € N. But by density
and uniform convergence the functional p — [ g Jmdp is continuous for
every m € N if and only if y— [  Jdp is continuous for any continuous
function f : E — R. So, the topology induced by d is the weak topology
of P(E).

To see that P(E) is compact it is enough to show that it is sequen-
tially compact. Take a sequence {u,}nen of probability measures on
E. By a diagonal procedure we can choose a subsequence {ji,, }icn such
that || g fmdpin, converges as i goes to infinity for every m € N. This
implies that | g fdpn, converges as i goes to infinity for every continuous
function f : E — R. Indeed, we can prove that { [}, fdjn, }ien is Cauchy.
For this, take € > 0 and choose m € N such that || f,, — f|| < ¢/3. Take
a number M such that if i, j > M then | [, frdpin, — [ fmdpn,| < €/3.
Then, whenever 7,5 > M, we have

/Ede e /Ef Afin; /Ef dptn; — /E Fndpin,
| i = [ i,
/E Fmdpin; — /E Fmdpin,

Define A : C(E) — R as A(f) = lim;_,o [, fdpin,. Then A is a pos-
itive linear functional and so, there exists a positive measure p on E such
that A(f) = [ fdu for every f € C(E). As A(1) = lim;_o0 [ 1dpn, =
1, we obtain p € P(FE). In this way, we have extracted a subsequence of
{ttn }nen that converges. O

< +

+ +

_|_
<€
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In what follows, instead of writing du(z) we write u(dx).

As in the proof of Lemma given a probability measure p €
P(M™) we can construct a n-tuple of random probabilities (g1, fi2, ..., fin)
in P(M)™ and a random element (X1, ..., X;,) € M™ with law p such that

/ fdp; = E[f(X:)[ X1, ..., Xia]
M
holds.

Proposition 7.2 (Chain rule). We have

D(uljvol®") =B [Z D(uinvoz)] .

=1

Sketch of the proof. We will give an idea of the proof ignoring issues of
measurability and finiteness of the entropy. For extra details we refer to
[9, Theorem C.3.1].

We consider M™ with a probability measure u. In this case the
random element with law p is (X7, ..., X,;) where X; : M™ — M is the
projection onto the i-th coordinate. Suppose that

fig - MEL — P(M)

is a transition kernel from (X1, ..., Xx_1) to Xp.
If we define

M = flg © T_1,

where 7,1 : M™ — MP*~! is the projection onto the first k — 1 coordi-
nates, we see that (u1, ..., i) satisfies the properties of the definition. If
we assume all entropies are finite, we get
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E

>0 (ukuvow] = > ElDuvoD)

a)|[vol) [mx—1(w)](dx)

k- (/ (W) “’“("””’dy)) [me—1(p)](dz)

> f,."
),
/ ] (“j(fﬁd‘fj)) ()] (dz, dy)
>,

HM3 HM: HMS HM:

IOg pk (d.’l?),

n

_ e (z,dy)
vol(dy)

Then we just have to notice the equality

where py : M™ — [0, 00] is equal to p =

O T

n

dx
H pi(z) = voégn (;x)’

that follows from the definition.
O

Lemma 7.3. Let (X1,...,X,) € M™ and (p1, ..., ptn) € P(M)™ be ran-
dom elements as before. Consider the random measures

Then we have

p(| [ o~ [ swan]> ) <all,
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Proof. By Chebyshev’s inequality, we need to understand the quantity

o ([ s@itan - [ swtan).
The first term is

| rian) - Z 0l = 3B X0 s X

while the second is

ode) = L ,
[, S = L3 p0x,

We can see that both have the same expected value, and if i < j, we
have

B[ (X)) = BLAX)IX 1, o Xii] JELF () X X 1] =
= B[ (£(X0) — ELF(X0) X1, . Xi 1)) £(X))]

because (f(Xz) — ]E[f(Xi)|X1,...,Xi,1]) is (X1,..., Xj_1) measurable.
Then we get

E[ (4 (X0) =B (X0) X1, X)) (£ =LA () X1, o X ] )| =0

So we have

o ([ st - [ o) -

= % Zn:]E |:<f(Xi) — E[f(X3)| X, ""X"‘ﬂﬂ

1 & 1
< = 4| flZ = =4 f|?
< 7w A1 = S

and by Chebyshev’s inequality we conclude our claim. O
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Proposition 7.4. Using the notation of the proof in Lemma[].5, if we

(fin, D) = ( Z Z&(,,) X5 X)

in law, then we have x = x almost surely.

have

Proof. For any continuous f : M — R, the function

TfZP( )XP( )

(1) / f@tan) = [ 1wwidy)

is continuous. By Lemma [7.3] for every continuous f, we get

. 1712
P (|T¢(fon, <4—/>,
(1T (ims70)| > ) < 4121

and, by the Portmanteau theorem (taking the lower limit on both sides),
we reach

P(IT¢(x, X)| > €) =0

for every € > 0. Thus we have

P (T (x, x)| = 0) = 1.

Next, choose a dense sequence { f,, }men in the space of continuous func-
tions on M endowed with the topology of uniform convergence in order
to obtain

P (|T},, (x, X)| = 0 for all m) = 1.

But, by density, we have
{IT%,.(x, x)| =0 for all m} = {|T¢(x, x)| = 0 for all continuous f},

which means x = x almost surely. O

48 Pro Mathematica, XXX, 59 (2017), 23-50, ISSN 2305-2430



A large deviation principle

References

1]

Yacin Ameur, Haakan Hedenmalm, and Nikolai Makarov. Random
normal matrices and Ward identities. Ann. Probab. 43 (2015), no.
3, 1157-1201

Roland Bauerschmidt, Paul Bourgade, Miika Nikula and Horng-
Tzer Yau. The two-dimensional Coulomb plasma: quasi-free approz-
imation and central limit theorem. https://arxiv.org/pdf/1609.
08582.pdf

Robert J. Berman. Determinantal point processes and fermions
on complex manifolds: Bulk universality. https://arxiv.org/pdf/
0811.3341v1.pdf

Robert J. Berman Kahler-Finstein metrics emerging from free
fermions and statistical mechanics. J. High Energy Phys. 2011, no.
10, 106.

Patrick Billingsley. Convergence of probability measures. Second edi-
tion. A Wiley-Interscience Publication. New York, 1999.

Peter Bruin. Green functions on Riemann surfaces and an applica-
tion to Arakelov theory. Master’s thesis, 2006. http://www.math.
leidenuniv.nl/~pbruin/scriptie.pdf

Jean-Baptiste Castras. A mean field type flow part I: Compactness of
solutions to a perturbed mean field type equation. Calc. Var. Partial
Differential Equations 53: 1-2 (2015), 221-246

Paul Dupuis, Vaios Laschos, and Kavita Ramanan. Large deviations
for empirical measures generated by Gibbs measures with singular
energy functionals. http://arxiv.org/abs/1511.06928

Paul Dupuis and Richard S. Ellis. A Weak Convergence Approach
to the Theory of Large Deviations. Wiley Series in Probability and
Statistics: Probability and Statistics. A Wiley-Interscience Publica-
tion, New York, 1997.

Pro Mathematica, XXX, 59 (2017), 23-50, ISSN 2305-2430 49


https://arxiv.org/pdf/1609.08582.pdf
https://arxiv.org/pdf/1609.08582.pdf
https://arxiv.org/pdf/0811.3341v1.pdf 
https://arxiv.org/pdf/0811.3341v1.pdf 
http://www.math.leidenuniv.nl/~pbruin/scriptie.pdf
http://www.math.leidenuniv.nl/~pbruin/scriptie.pdf
http://arxiv.org/abs/1511.06928

David Garcia Zelada

[10] Kurt Johansson. On fluctuations of eigenvalues of random Hermi-
tian matrices. Duke Math. J. 91 (1998), no. 1, 151-204.

[11] Thomas Lebl and Sylvia Serfaty. Fluctuations of two-dimensional
Coulomb gases. https://arxiv.org/pdf/1609.08088.pdf

[12] Brian Skinner. Logarithmic Potential Theory on Riemann Surfaces.
PhD thesis, 2015
http://thesis.library.caltech.edu/8915/1/BSkinnerFinal Thesis.pdf

Resumen

Siguiendo las técnicas desarrolladas por Paul Dupuis, Vaios Laschos y
Kavita Ramanan en [§], se establecerd un principio de grandes desvia-
ciones para una secuencia de procesos puntuales definidos por medidas
de Gibbs en una variedad riemanniana bidimensional compacta y ori-
entable. Veremos que la correspondiente secuencia de medidas empiricas
converge a la soluciéon de una ecuacién diferencial parcial y, en ciertos
casos, a la forma de volumen de una métrica de curvatura constante.

Palabras clave: Medidas de Gibbs; gas de Coulomb; medida empirica; prin-
cipio de grandes desvios; sistemas de particulas interactuantes; potencial sin-

gular; variedad de Einstein 2-dimensional; entropia relativa.
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